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Abstract
Drug-drug interactions (DDIs) can occur when two drugs interact with the same gene product.
Most available information about gene-drug relationships is contained within the scientific
literature, but is dispersed over a large number of publications, with thousands of new publications
added each month. In this setting, automated text mining is an attractive solution for identifying
gene-drug relationships and aggregating them to predict novel DDIs. In previous work, we have
shown that gene-drug interactions can be extracted from Medline abstracts with high fidelity - we
extract not only the genes and drugs, but also the type of relationship expressed in individual
sentences (e.g. metabolize, inhibit, activate and many others). We normalize these relationships
and map them to a standardized ontology. In this work, we hypothesize that we can combine these
normalized gene-drug relationships, drawn from a very broad and diverse literature, to infer DDIs.
Using a training set of established DDIs, we have trained a random forest classifier to score
potential DDIs based on the features of the normalized assertions extracted from the literature that
relate two drugs to a gene product. The classifier recognizes the combinations of relationships,
drugs and genes that are most associated with the gold standard DDIs, correctly identifying 79.8%
of assertions relating interacting drug pairs and 78.9% of assertions relating noninteracting drug
pairs. Most significantly, because our text processing method captures the semantics of individual
gene-drug relationships, we can construct mechanistic pharmacological explanations for the
newly-proposed DDIs. We show how our classifier can be used to explain known DDIs and to
uncover new DDIs that have not yet been reported.

1. Introduction
Americans are living longer than ever before, and with that increased age comes a greater
reliance on pharmaceuticals. For example, recent estimates by the Kaiser Family Foundation
indicate that the average 70-year-old American fills over 30 prescriptions per year.1 The
chance of an adverse drug reaction increases exponentially as each new drug is added to an
individual’s regime. Because clinical trials for new drugs do not typically test for drug-drug
interactions (DDI) directly, serious DDIs are often not discovered until a drug is already on
the market. In addition, a patient who is unaware that a symptom he experiences is due to a
DDI may attribute it to other factors. Many DDIs, therefore, probably go unreported.
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Biologically, many DDIs are the result of conflicting or synergistic interactions between a
pair of drugs and similar genes or molecular pathways within the human body.2,3

Therefore,what we observe as drug-drug interactions often take the form of drug-gene-drug
interactions. Unfortunately, while lists of known DDIs are widely available and commonly-
used in clinical practice, drug-gene interactions are not as widely known. In addition, genes
and drugs can interact in a variety of ways, and it is unclear which interaction types are most
predictive of a drug’s tendency to interact with other drugs. Furthermore, no complete
databases exist that concisely describe the exact mechanisms by which drugs and genes
interact; most of these interactions are only described in papers buried deep within the
scientific literature.

In this environment, text mining presents a solution to the problem of uncovering novel
DDIs.4-6 Our work extends a growing body of research that has sought to classify DDIs and
better understand gene-drug relationships using text mining; for example, Tari et al7

developed a method that combined text mining and automated reasoning to extract novel
DDIs. Other authors have built text-based networks of biological entities and used reasoning
techniques to uncover new biologically-relevant relationships among them.8,9 Previous work
from our own group10,11 has established methods for using a syntactical parser to identify
and characterize drug-gene relationships. The end result was a semantic network of drug-
gene relationships in which the edges consisted of several hundred interaction types and
subject/object context terms normalized to concepts in an ontology. All of these approaches
have sought to infer novel relationships among biological entities by combining known facts
expressed in scientific text.

Our current work extends this line of research by using our semantic network - in particular,
paths through the network that connect pairs of drugs - to infer the types of drug-gene
relationships that can predict drug-drug interactions. An advantage of our method is the fact
that it makes almost no a priori assumptions about the nature of these relationships, instead
using a machine learning algorithm (a random forest) to identify the kinds of gene-drug
relationships that best predict DDIs. Besides learning which textual features are most
relevant for predicting DDIs, the method can also be used to predict novel DDIs and to
“explain” these predictions through suggested mechanisms of interaction; this explanatory
process is a built-in component of the algorithm. In this paper, we describe the main features
of our algorithm, show how it can be used to predict possible mechanisms of interaction for
a known DDI, and describe how it can be used in the future to predict novel DDIs.

2. Methods
2.1. Extracting Drug-Gene Interactions

This project builds on an earlier method for text mining Medline to extract drug-gene
interactions.11 Briefly, that method works as follows:

1. Create two lexicons of terms, one for gene names and one for drug names. We used
two custom lexicons. The first consisted of a set of 731 known pharmacodynamic
and pharma-cokinetic genes identified by the PharmGKB database curators.12 The
second consisted of 2,910 unique drug and drug-class names, also from
PharmGKB. The gene lexicon also included all common synonyms for each gene;
we required the drug name to be in itsgeneric form (rather than a brand name) to be
included.a

aNote that throughout this analysis, we use the term “gene” interchangeably with “gene product” or “protein”; it is actually the protein
product of a gene that interacts with a drug.
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2. Obtain a corpus of Medline article abstracts. The Helix Group at Stanford
University maintains a corpus of all Medline abstracts published before 2009. The
corpus contained about 17.5 million abstracts and 88 million sentences.

3. Retrieve all sentences in Medline that mention both a drug and a gene of interest.
(For the purposes of this project, the drug and gene entities of interest will be
known as seeds.) We accomplished this using the two aforementioned lexicons and
running 100 search processes in parallel on Stanford’s BioX2 cluster.13

4. Represent sentences as dependency graphs using the Stanford Parser.14,15 The
dependency graphs are rooted, oriented, and labeled graphs, where the nodes are
words and the edges are dependency relations between words. If two seeds were
not located in the same sentence clause, that sentence was removed from
consideration. In addition, if a graph contained more than one clause and there was
a clause that did not contain either seed, that clause was removed from
consideration. A sample dependency graph for one Medline sentence of interest is
shown in Figure 1.

5. Identify and normalize composite entities. A seed does not usually occur in
isolation in a sentence, but as part of a larger composite entity that includes the
surrounding context. For example, a gene name like CYP3A4 will usually occur as
part of a larger entity, such as CYP3A4 degradation or CYP3A4 elimination. We
used a previously-established algorithm10 to identify the context terms surrounding
each seed and normalize them. The normalization process involved mapping
context terms with similar semantics but di erent syntax, such as degradation of
CYP3A4 and CYP3A4 degradation, to the same concept (Elimination) using a
previously-constructed ontology.11

6. Extract relations between composite entities. Relations describe the nature of the
interaction between the two entities in a given sentence. They take the form R(a, b),
where a and b represent the locations of the two entities in the dependency graph,
and R is a node that connects a and b and indicates the nature of their relationship.
For a sentence to progress past this stage of the analysis, the relation connecting the
gene and drug entities musthave been a verb (e.g. associated) or a nominalized verb
(e.g. association).

7. Normalize relations. The extracted relations, like the context terms surrounding
each seed, were normalized. During normalization, the raw relations were mapped
onto a much smaller set of normalized relationships taken from the ontology. For
example, the verbs associated and related both map to the ontological entity
isAssociatedWith. In addition, less-common terms like augment were mapped to
more common synonyms, like increase.

The overall goal of the normalization process for both composite entities and relations was
to collapse statements with the same semantic meaning but di erent word choice or syntax to
the same basic relationship, reducing the number of features that needed to be considered
later when building the DDI classifier. When tested on a smaller set of drug-gene
relationships extracted from Medline, our ontology was able to properly normalize
approximately 80% of all relation types mentioned in the literature. Nonetheless, by
including only those sentences where the relation could be normalized, we necessarily
excluded some true facts about drug-gene relationships from our network. It is important to
note that only sentences for which the relation could not be normalized were thrown out;
sentences for which the context terms could not be normalized were still included - the
context was simply normalized to Thing, as described further in Section 3.1.
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2.2. Semantic Network
When applied to the entire Medline corpus, the relation extraction and normalization process
yielded 76, 784 di erent normalized gene-drug relationships of the form shown in Figure 2.
We eliminated all relationships in which the verb could not be normalized (i.e. was not one
of the relations contained in the ontology), which left us with 53, 208 relationships b. We
then put all relations in active voice, collapsing passive/active pairs of normalized verbs
such as isMetabolizedBy and metabolizes into a single feature. This left 49, 021 normalized
relations. However, many of these normalized relations were duplicates of each other
because a given drug-gene relationship could be reported in similar ways many di erent
times throughout the biomedical literature. We chose to eliminate duplicate paths of this
nature. After collapsing the duplicate edges, we were left with 24, 155 unique edges, which
we used to construct asemantic network, a subset of which is shown in Figure 3. Each edge
in the semantic network had the form shown in Figure 2, but is simplified in Figure 3 for
clarity.

2.3. Feature Extraction
The feature extraction phase of this project relied on one central assumption: that the
shortest textual path linking two drugs in the network represented the simplest explanatory
mechanism of their interaction (if any such mechanism existed). The set of relevant features
then consisted of all the genes, relations, and context terms found on the shortest path. To
find the shortest path between any two drugs D1 and D2, we performed a breadth-first search
for D2, starting at D1. Breadth-first search is guaranteed to yield the optimal (shortest) path
between two points on a graph.16 The shortest possible path between any two drugs in the
network has the form shown in Figure 4. For the purposes of building our training set, we
considered only drug pairs that had one or more shortest paths of the form in Figure 4; if the
shortest path was longer than this, the drug pair was not included in the training set. We
made this decision because we wanted to explore only those drug pairs for which the
mechanistic explanation provided by the shortest path could be interpreted easily.

By assigning each feature a numeric index, we could easily convert the lists of normalized
terms found on the shortest paths into a matrix of numbers, with each row corresponding to
a single path and the columns corresponding to the number of occurrences of each feature on
the path. If multiple shortest paths were found, we included a separate row in our training
matrix for each unique path.

2.4. Classification
The next step was to train a supervised machine learning classifier to recognize interacting
drug pairs based on the textual features of their connecting paths. We randomly sampled
5000 drug pairs from a list of known interacting pairs provided by DrugBank,17 then
selected 5000 additional drug pairs randomly from the drug lexicon, ensuring that none of
them were on DrugBank’s list of interactionsc. For each of the 5000 pairs in our positive and
negative training sets, we found all of the paths between the two drugs in the pair that took
the form shown in Figure 4 and recorded the features observed along the paths. Each path
between an interacting drug pair became a positive training example, and each path between
a noninteracting drug pair became a negative training example.

bExamples of relations that could not be normalized included protects, mimicked, oxidize, encode, and seen. We are in the process of
expanding our ontology to include some of these less common relations.
cDrugBank obtains its list of drug interactions from a variety of sources, including the Physician’s Desk Reference, e-Therapeutics,
MedicinesComplete, Epocrates RX, and Drugs.com (which in turn uses Cerner Multum).
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We used a random forest,18 specifically the implementation found in the R library
randomForest, to perform the final classification for all of the drug pairs in our training set.
The random forest is an ensemble method in which many uncorrelated decision trees “vote”
to classify data points; it outperformed both logistic regression and a support-vector machine
classifier used in the early stages of this project. Each tree in the random forest uses only a
subset of the features for classification, which ensures that votes from di erent trees are
uncorrelated. We found that the overall classification error stabilized when approximately
200 trees were included in the forest.

2.5. Performance Evaluation
The standard metric of performance for the random forest is the out-of-bag (OOB) estimate
of the error, which is similar to leave-one-out cross-validation.18 Each tree in the random
forest is constructed using only about 2/3 of the available training data; the rest of the data
points are referred to as the “out of bag” data for that tree. Thus it is possible to build the
entire forest, then reclassify each training example using only those trees for which it was
OOB. The generally-accepted rule is to use a voting cuto of 50% to classify a training point
as positive; this means that for the random forest to assign the label “interacting” to a path,
50% or more of the trees in the forest had to classify that path as interacting. We used the
standard OOB estimate of the error to evaluate the random forest’s performance on our
training data.

One interesting feature of the random forest is that it provides a natural measure of its
classification certainty for each training example - namely, the fraction of trees that voted
“interact” for that example. By ranking the paths for a particular drug pair based on the
number of “yes” votes each received from the random forest, we can determine which
path(s)represent the most likely mechanism(s) of interaction for that pair.

3. Results
3.1. Feature Extraction

A total of 1806 entities were represented in our network: 1061 drugs, 532 genes, 172 con-
text terms, and 41 relations. There were 172, 271 negative training examples (paths between
5000 noninteracting drug pairs) and 182, 534 positive training examples (paths between
5000 interacting drug pairs) in our training set, all of which had the form shown in Figure 4.

The random forest uses a permutation method to provide an estimate of which textual
features were most important to the classification process; the 50 most important features are
shown in Figure 5. Among the most important features are the genes ABCB1, IL28B, TNF,
CYP3A4, EGF, CAMP, and CYP2D6, the context terms Synthesis, Expression, DrugDose,
GeneOrGeneProductActivity, DrugTreatment, DrugMetabolism, GeneProductActivation,
GeneInhibitor, Repression, and DrugE ect, and the relations metabolizes, isAssociatedWith,
inhibits, suppresses, increases, regulates, and induces.

Three context terms on this list appear strange at first glance: Drug, Gene, and Thing.
Context is normalized to the term Drug or Gene if the drug/gene seed is itself the subject or
object of the verb or nominalized verb in the sentence, as in the example sentence CYP2C9
metabolizes warfarin. In this sentence, the gene CYP2C9 would be normalized to “CYP2C9
Gene” and the drug warfarin would be normalized to “warfarin Drug”. Context is
normalized to the term Thing if the real context is some property of the drug or gene that
cannot be otherwise normalized. For example, in one sentence, the authors used the term
“polymorphism” incorrectly as a modifier of a drug name, referring to “polymorphisms in
(drug name) drugdose … ”. Because the drug context in that sentence was polymorphisms
but the seed was a drug name and not a gene name, polymorphisms was not found in the
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ontology among the acceptable context terms for the drug and the context was normalized to
Thing. One can therefore think of Thing as a marker for cases where normalization of a
context term was not possible (using the current version of the ontology), but normalization
of the relation proceeded normally.

3.2. Classification and Performance Evaluation
The final contingency table for the random forest classifier is shown in Table 2. The random
forest correctly assigned 281, 461 out of 354, 805 training paths (79.3%; 135, 842 non-
interacting and 145, 619 interacting paths) to the correct class. It said 36, 429 paths
represented interactions when the drug pair involved did not appear on the list from
DrugBank (false positives), and claimed that 36, 915 paths did not represent interactions
when in fact the drug pair did appear on the list from DrugBank (false negatives).

We can get a sense of the significance of this result by considering what would happen if we
simply flipped a coin to assign the label “interacting” or “noninteracting” to each path.
Roughly 50% of the paths in our training set corresponded to interacting drug pairs, and the
other 50% to noninteracting drug pairs. Therefore, if we assigned the labels “interacting”
and “noninteracting” entirely at random, we would expect to correctly classify about 50% of
paths (with the false positive error rate approximately equal to the false negative error rate).
Our method thus represents an improvement in accuracy of nearly 30% over simple
guessing.

3.3. Predicting Mechanisms of Interaction
In addition to classifying interacting and noninteracting drug pairs with nearly 80%
accuracy, our method provides valuable insight into the possible mechanisms by which
drugs interact. By choosing a path from one drug to the other through a particular gene, we
obtain one potential mechanism for how the two drugs could interact. For example, Figure 6
shows a selection of the highest-ranking paths for a known interacting drug pair: verapamil
and atorvastatin. Table 2 shows the Medline sentences corresponding to the edges that
comprise these paths. All of these paths received at least 90% “yes” votes from the random
forest.

Most of the edges connecting verapamil and ABCB1 in Figure 6 seem to indicate that
verapamil inhibits the activity of ABCB1. The edges connecting atorvastatin and ABCB1
indicate that atorvastatin upregulates the production of P-glycoprotein, the protein product
of ABCB1. The two drugs’ e ects on ABCB1 therefore interfere with each other. Following
an-other path, this time through the gene CYP3A4, we see that CYP3A4 induces the
breakdown of verapamil into its metabolites, specifically by N-dealkylation and N-
demethylation of the drug. Since CYP3A4 is a major metabolizing enzyme for atorvastatin,
we might expect that coadministration of the two drugs could lead to heightened levels of
one or both of them in the body, leading to toxicity. These represent two di erent possible
mechanisms of interaction.

4. Discussion
4.1. Predicting Interactions and Mechanisms

These suggested mechanisms are useful because they provide summaries of what the
scientific community knows about pharmacogenomically-mediated interactions between
drug pairs of interest. The drug-gene relationships that form the basis of these mechanisms
are all existing knowledge; however, our method provides a novel way to connect disparate
facts from across the biomedical literature to provide mechanistic explanations of drug-drug
interactions.19 In the case of drug pairs that are already known to interact, using this
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approach provides a list of potential mechanisms of interaction, which may help us uncover
new mechanisms that are not yet part of common medical knowledge. By looking at known
interacting drug pairs with similar mechanisms of interaction, we can also begin to predict
what the phenotypic e ects of our newly-predicted interactions might be.

Once the random forest has been trained on a set of known interacting drug pairs, it can be
used to predict whether any other drug pair will interact. In particular, it can be applied to a
novel test set that does not include drugs from the original training set. Provided a drug pair
is connected by at least one path of the form shown in Figure 4 in the semantic network,the
random forest can vote on each connecting path and rank it based on the probability that it
represents a mechanism of interaction. This provides us with a powerful tool for predicting
mechanisms of interaction that are not yet known. In the future, we hope to use the trained
random forest to predict the most likely mechanisms of interaction between drug pairs that
are often prescribed together but whose interaction status is not yet known.

4.2. Study Limitations
There are several limitations to the present approach that we hope to address in subsequent
iterations of this work. One major limitation is that we only searched Medline for 731
known pharmacodynamic and pharmacokinetic genes, many of which were liver
cytochromes and other enzymes known for their involvement in drug metabolismd. While
interactions involving these drugs are interesting, most are already known, and we also tend
to miss more specific interactions, such as drug pairs that share the same pharmacologic
target. In the future, we plan to expand our data set to encompass a much wider variety of
genes - there are 26, 216 genes in the full lexicon from PharmGKB - but the increase in
computational time required to search for 26, 216 × 2, 910 = 76, 288, 560 drug-gene pairs is
substantial.

On a similar note, because we included only pharmacokinetic and pharmacodynamic genes
in our analysis, we were unable to capture physical or chemical interactions that were not
the result of two drugs interacting directly with the same gene. Examples of such missed
interactions might include a drug that increases the pH of the stomach, reducing absorption
of another drug, or two drugs that have similar, relatively nonspecific phenotypic e ects
(such as reducing inflammatory responses throughout the body). We also miss interactions
in which two drugs interact with components of the same metabolic pathway but not the
same gene, or those in which one drug interacts with a transcription factor that controls the
activity of an enzyme responsible for metabolizing another drug. All of these are valid
interactions that could be captured if we expanded the semantic network to include gene-
gene interactions, as well as interactions of both drugs and genes with certain disease states
and phenotypes, all of which we plan to do in the future.

A final limitation of our model is its inability to resolve anaphoras. An example of an
anaphora is a two-sentence combination like CYP2C9 is a gene. It metabolizes warfarin.
Our model would not pick up the relationship between CYP2C9 and warfarin because the
two entities are found in separate sentences. As we refine this work, we would like to find
ways to resolve anaphoras, perhaps by considering pairs of entities that are mentioned in the
same abstract, not just the same sentence.

dReaders interested in drug interactions mediated by this class of genes are encouraged to visit
http://medicine.iupui.edu/clinpharm/ddis/, a valuable source of information on DDIs mediated by liver cytochromes.
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5. Conclusion
We have described a method for predicting and explaining drug-drug interactions based on
automated extraction of relevant pharmacogenomic facts from the biomedical literature. The
method classifies known drug-drug interactions with nearly 80% accuracy using only
textualfeatures from descriptions of drug-gene relationships, and provides reasonable
mechanistic explanations for its classification decisions. Its success opens many doors to the
future use of similar techniques in text mining, perhaps to predict gene-gene interactions,
uncover interactions of drugs and genes with diseases, and generate testable hypotheses
about the relationships between drugs, genes, and phenotypes.
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Fig. 1.
Dependency graph for the sentence “Pepstatin A also blocked the acetaminophen-induced
degradation of the CYP3A4 in a transfected HepG2 cell line” (PMID: 15078344). The red
arrows show the path through the graph that connects the seeds Pepstatin A (a drug) and
CYP3A4 (a gene). Because this path contains a verb - in this case, “blocked” - this is a
sentence of interest.

PERCHA et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2012 May 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
A single drug-gene edge in the semantic network. A composite entity consists of a drug or
gene and its surrounding [normalized] context terms. (a) The general form of an edge. (b) A
specific example.
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Fig. 3.
A subset of the semantic network (selected to enhance visual clarity), including only the 43
most pharmacogenomically-important genes from PharmGKB and 600 drugs that were
known to interact with at least one other drug. The green nodes represent drugs and the pink
nodes genes. The context terms and relations are not shown in this picture, but are present
on every edge, as shown in Figure 2. Multiple edges between the same gene-drug pair in this
figure represent di erent textual relationships found between that gene and drug in the
literature.
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Fig. 4.
The minimum-length path between two drugs in the network. It is two edges long. The
colors and symbols in this figure are identical to those in Figure 2: green squares represent
drugs, and the pink circle represents a gene. The yellow rectangles represent relations, and
the blue circles and squares represent context terms for genes and drugs, respectively.
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Fig. 5.
The 50 most important features to the random forest classifier, ordered according to a
permutation metric;18 the numeric values of importance are not as informative as the relative
sizes of the bars.
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Fig. 6.
A selection of the highest-ranking paths between verapamil and atorvastatin. The total
number of connecting paths between verapamil and atorvastatin in the network was 293. All
of the paths shown here received more than 90% “interact” votes from the random forest.
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Table 1

The final contingency table for the random forest classifier.

Random Forest Classification

True Class 0 1 Class-wide Error

No Interaction 135,842 36,429 0.211

Interaction 36,915 145,619 0.202
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Table 2

The raw sentences from Medline abstracts that correspond to the edges shown in Figure 6. Each path between
verapamil and atorvastatin consists of two edges (i.e. two sentences).

PMID Normalized Relation Sentence

Relationships involving f2 (thrombin)

2611956 verapamil Thing inhibits
Gene f2

Ilexonin A and verapamil markedly inhibited the thrombin induced Ca2+
influx.

12921859 atorvastatin DrugEfficacy
prevents Gene f2

In addition, thrombin induced NF-kappaB translocation and membrane
translocation of RhoA
in smooth muscle cells which were both prevented by pre-treatment of the cells
by atorvastatin.

12921859 atorvastatin Drug
decreases Gene f2

How atorvastatin could limit the pro-inflammatory response to thrombin was
studied in cultured
rat aortic smooth muscle cells.

15792677 atorvastatin Drug
decreases Thing f2

Atorvastatin reduces thrombin generation after percutaneous coronary
intervention independent
of soluble tissue factor.

Relationships involving ABCB1 (P-glycoprotein, MDR1)

16996216 atorvastatin Drug causes
Synthesis ABCB1

Atorvastatin at 10 and 20 microM up-regulated ABCB1 expression resulting in
a significant
1.4-fold increase of the protein levels.

16996216 atorvastatin Drug
increases Thing ABCB1

Treatment of HepG2 cells with 20 microM atorvastatin caused a 60%
reduction on mRNA ex
pression (p<0.05) and a 41% decrease in ABCB1-mediated efflux of
Rhodamine123 (p<0.01) by
flow cytometry.

9607955 verapamil DrugTreatment
induces GeneOrGeneProductActivity
ABCB1

Previous drug exposure of the cells showed that verapamil, celiprolol, and
vinblastine induced
the P-gp expression, while metkephamid (MKA) decreased the P-gp
expression level as compared
to the control.

9636053 verapamil DrugActivity
demonstrates Thing ABCB1

P-gp proteoliposomes from P. pastoris showed a strong verapamil- and
valinomycin-stimulated
ATPase activity, with characteristics (KM, Vmax) similar to those measured in
mammalian cells.

9535788 verapamil Drug inhibits
Gene ABCB1

In addition, the DNA-damaging agent was found to enhance in a dose-
dependent manner cellular
efflux of the P-gp substrate rhodamine 123, which was inhibited by the P-gp
inhibitor verapamil,
thus providing evidence that exposure to MMS led to increased P-gp-related
drug transport in
rat liver cells.

7769842 verapamil Drug inhibits
GeneOrGeneProductActivity ABCB1

When P-gp function was assessed by Rhodamine 123 (Rh123) efflux kinetics,
we found that only
KG1a and KG1 cells, which have an early (immature) CD34+ CD33- CD38-
phenotype, and
to a lesser extent TF1, with an intermediate (CD34+ CD33+ CD38+)
phenotype, displayed
significant P-gp activity which could be inhibited by both verapamil and SDZ
PSC 833.

16457995 verapamil DrugAbsorption
inhibits Gene ABCB1

While cyclosporine and verapamil significantly increased the absorption of
methylprednisolone
and vinblastine through potent inhibition of intestinal P-gp, tacrolimus failed to
achieve this.

17936633 verapamil Drug regulates
GeneOrGeneProductActivity ABCB1

The results displayed that only compound 3c was P-gp inhibitor as Elacridar,
while compound
3a and reference compounds Cyclosporin A and Verapamil modulated P-gp
activity saturating
the efflux pump as substrates.
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PMID Normalized Relation Sentence

16260035 verapamil Drug suppresses
Gene ABCB1

Depsipeptide-resistant KU812 cells expressed P-glycoprotein (P-gp) and their
resistance was
abolished by co-treatment with verapamil.

15257901 verapamil DrugDose
isAssociatedWith
Repression ABCB1

DL-PPMP and verapamil were found to inhibit MDR1 gene expression in
KBV(200) cells at
the mRNA level, and complete inhibition occurred after a 48-hour DL-PPMP
treatment at 25
micromol/L.

15257901 verapamil Drug inhibits
Expression ABCB1

The inhibition of GCS and mdr1 gene expressions is positively correlated with
the concentra
tions of DL-PPMP and verapamil, which can reverse MDR by inhibiting
synthesis of GCS and
mdr1 gene, indicating the positive correlation between the expression of GCS
gene and MDR in
KBV(200) cells.

7749215 verapamil DrugTreatment
decreases Expression
ABCB1

The level of mdr1 mRNAs is decreased in the presence of verapamil (with a
maximum effect
obtained at the 24th hour), which suggests that the mechanism of action of
verapamil is tran-
scriptional and/or post-transcriptional.

Relationships involving VEGFA

14615256 verapamil Drug decreases
Synthesis VEGFA

Verapamil (100 microM) decreased IL-6 and VEGF production (Pj0.03 and
Pj0.005, respectively)
in central keloid fibroblasts cultures at 72 h.

16701707 atorvastatin Drug induces
Gene VEGFA

We observed that atorvastatin significantly stimulated VEGF release in a dose-
dependent man
ner.

17389519 atorvastatin Drug
isAssociatedWith
Repression VEGFA

Atorvastatin effectively inhibited laser-induced CNV in mice and was
associated with downreg-
ulation of CCL2/MCP-1 and VEGF and reduced macrophage infiltration into
the RPE/choroid.

12084593 atorvastatin Drug
decreases Expression
VEGFA

Atorvastatin therapy reduced VEGF plasma levels in CAD patients (from 31.1
+/- 6.1 to 19.0
+/− 3.6 pg/ml; p i 0.05).

Relationships involving CYP3A4

15001968 verapamil DrugEfficacy
isAssociatedWith
Expression CYP3A4

Values for the maximum rate of metabolism (V(max)) of verapamil N-
dealkylation (formation of
D-617) and N-demethylation (formation of norverapamil) activities correlated
with the CYP3A4
protein content in both organs.

11907487 CYP3A4 Gene induces
DrugMetabolite verapamil

Consistent with expression data, formation of verapamil metabolites catalyzed
by CYP3A4 and
CYP2C was shown.

11005703 CYP3A4 Enzyme metabolizes
Drug atorvastatin

Atorvastatin, cerivastatin, lovastatin and simvastatin are predominantly
metabolised by the
CYP3A4 isozyme.

11061579 CYP3A4 Gene metabolizes
Drug atorvastatin

Atorvastatin is metabolized solely by CYP3A4, and pravastatin metabolism is
not well defined.

Relationships involving CYP3A

16513446 verapamil Drug inhibits
GeneOrGeneProductActivity CYP3A

Verapamil inhibited CYP3A activity, with a maximum effect occurring within
10 days.

16013069 verapamil DrugMetabolism
inhibits Repression CYP3A

The above data suggested that the metabolism of verapamil and the formation
of norverapamil
was inhibited by naringin possibly by inhibition of CYP3A in rabbits.

14744949 verapamil DrugIsoform
inhibits Gene CYP3A

The present study showed that verapamil enantiomers and their major
metabolites [norverapamil
and N-desalkylverapamil (D617)] inhibited CYP3A in a time- and
concentration-dependent man
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PMID Normalized Relation Sentence

ner by using pooled human liver microsomes and the cDNA-expressed
CYP3A4 (+b5).

12433810 atorvastatin Drug
increases Expression
CYP3A

Treatment of 2- to 3-day-old human hepatocyte cultures with 3 × 10(−5) M
lovastatin, simvastatin,
fluvastatin, or atorvastatin for 24 h increased the amounts of CYP2B6 and
CYP3A mRNA by
an average of 3.8- to 9.2-fold and 24- to 36-fold, respectively.

16258024 CYP3A Gene metabolizes
Drug atorvastatin

Atorvastatin (ATV) is primarily metabolized by CYP3A in the liver to form
two active hydroxy
metabolites.
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