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Abstract
To detect genetic association with common and complex diseases, many statistical tests have been
proposed for candidate gene or genome-wide association studies with the case-control design. Due
to linkage disequilibrium (LD), multi-marker association tests can gain power over single-marker
tests with a Bonferroni multiple testing adjustment. Among many existing multi-marker
association tests, most target to detect only one of many possible aspects in distributional
differences between the genotypes of cases and controls, such as allele frequency differences,
while a few new ones aim to target two or three aspects, all of which can be implemented in
logistic regression. In contrast to logistic regression, a genomic-distance based regression (GDBR)
approach aims to detect some high-order genotypic differences between cases and controls. A
recent study has confirmed the high power of GDBR tests. At this moment, the popular logistic
regression and the emerging GDBR approaches are completely unrelated; for example, one has to
choose between the two. In this article, we reformulate GDBR as logistic regression, opening a
venue to constructing other powerful tests while overcoming some limitations of GDBR. For
example, asymptotic distributions can replace time-consuming permutations for deriving p-values,
and covariates, including gene-gene interactions, can be easily incorporated. Importantly, this
reformulation facilitates combining GDBR with other existing methods in a unified framework of
logistic regression. In particular, we show that Fisher’s p-value combining method can boost
statistical power by incorporating information from allele frequencies, Hardy-Weinberg
disequilibrium (HWD), LD patterns and other higher-order interactions among multi-markers as
captured by GDBR.
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1. INTRODUCTION
With the completion of the first-wave GWASs, some lessons have been learned (Altshuler et
al 2008). First, effect sizes for common variants are typically small to modest: often the
estimated odds ratios are only from 1.1 to 1.4 with a mode at only 1.2 (Flint and Mackay
2009). Given a small effect size and the typical sample size of a few thousand individuals,
the power of the standard single-marker test in most GWASs to detect weak association
becomes low. Second, in spite of some successes of GWASs, for most common diseases the
proportion of the overall phenotypic variance explained by discovered disease-susceptibility
loci remains very low (Maher 2008). It is likely that only a small fraction of causal loci have
been identified. Because most GWASs applied the univariate single-marker analysis with a
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conservative Bonferroni adjustment for multiple testing, which may have low power, the
development and application of more powerful statistical tests will increase the chance of
discovering more disease loci. On the other hand, in spite of many existing multi-marker
tests, most of which can be implemented in logistic regression, since there is no uniformly
most powerful test, it has become difficult for a geneticist to choose a suitable test from
many existing ones. At the same time, it has been increasingly recognized that many
existing tests may be powerful in some situations but not in others, since they solely target to
detect one or few aspects of genotypic distribution differences between cases and controls. It
should be more productive to combine information and aim to detect multiple aspects of
distributional differences. It is a main goal of this article to show that indeed it is possible to
combine multiple types of information in multi-marker genotypes within a unified
framework of logistic regression to construct powerful tests.

Although the most general approach to detecting genetic association for population-based
case-control studies with unphased multi-marker genotype data is to compare the
distributions of the genotypes between the case and control groups, as targeted by the B-
statistic (Zhang and Liu 2007), due to the complexity of such multivariate discrete
distributions, almost all existing methods, for simplicity and feasibility, aim to detect only
one aspect of distributional differences. Below are five classes of approaches to detecting
various targeted differences. As discussed by Won and Elston (2008, 2009), there are three
types of information demonstrating genotypic differences between cases and controls: in
allele frequencies, in parameters for Hardy-Weinberg disequilibrium (HWD), and in
parameters of linkage disequilibrium (LD), each of which can be targeted to construct the
corresponding class of association tests. The first class, perhaps most popular, aims to
compare mean genotype scores, e.g. allele frequencies, between the case and control groups.
This class includes some classic and most popular tests, such as Hotelling’s T2 test (Fan and
Knapp 2002; Xiong et al 2003) and combining single-marker-based tests (Roeder et al
2005). Some emerging powerful tests, such as the sum of squared score (SSU) test (Pan
2009), also belongs to this class. It is worth noting that these tests can be implemented
within the framework of logistic regression. The second class contrasts the HWD trends
between affected and unaffected individuals (Feder et al 1996; Nielsen et al 1998; Deng et al
2000; Jiang et al 2003). The third class includes an LD contrast (LDC) test (Zaykin et al
2006) and its modifications (Wang et al 2007). Note that the majority of the tests in the first
three classes can be implemented via logistic regression (Kim et al 2009; Pan 2010). The
fourth and fifth classes include genomic distance-based regression (GDBR) (Wessel and
Schork 2006) and genotype or haplotype similarity-based methods (Tzeng et al 2003ab;
Schaid et al 2005; Yuan et al 2006; Sha et al 2007; Wei et al 2008) respectively. A close
connection between the last two has been elucidated by Lin and Schaid (2009). Furthermore,
since a GDBR method has been shown to empirically perform best among several candidate
tests (Lin and Schaid 2009), we will skip the fifth and focus on the fourth class. Note that,
although a popular class of haplotype-based tests (Schaid et al 2002; Zhao et al 2003a,
2003b) is not included in the above, it is closely related to the first class with logistic
regression (Chapman et al 2003; Clayton et al 2004). Therefore, combining the first four
classes of the tests in a unified framework is desirable, and is a major goal of this article.

There have been some recent attempts to combine multiple types of tests. Song and Elston
(2006) proposed a test statistic that is a weighted sum of two test statistics from the first two
classes respectively, while Wang and Shete (2008) proposed combining the p-values of two
tests, one from each class. Chen and Chatterjee (2007) proposed a test with the use of
information from both allele frequencies and HWE. As a unification of the first and third
classes, Wang et al (2009b) proposed a Normal-based likelihood ratio test (NLRT) to
compare both the mean vectors and covariance matrices of genotype scores between the two
groups, which however depends on the incorrect normality assumption on discrete genotype
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scores and is computationally intensive for its use of permutations to derive p-values. As an
alternative, Pan (2010) proposed a general framework under logistic regression to contrast
both genotype scores and LD patterns simultaneously. Kim et al (2009) considered the use
of information in the HWD, in addition to allele frequencies and LD patterns, for only one-
and two-marker logistic regression models, but other types of the tests (e.g. SSU) were not
discussed. Here we will generalize the approach of Kim et al (2009) by including more than
two markers and other tests.

There has been no attempt to combine the GDBR methods with other existing tests. This has
become an important issue given that a very recent simulation study (Lin and Schaid 2009)
found that a GDBR method (Haplo-match) (Wessel and Schork 2006) worked best among
several methods compared, though unfortunately, some competitive tests, the SSU and
UminP tests based on a main-effects logistic regression model (Chapman and Whittaker
2008; Pan 2009), were not included. Here we aim to reformulate GDBR into a unified
framework of logistic regression. In particular, we show that the F-test in GDBR is either
exactly or approximately equivalent to the SSU test for a corresponding logistic regression
model. Significant benefits of reformulating GDBR as logistic regression include its
immediate extensions with the use of other (e.g. score or UminP) tests that may be more
powerful in some situations, the availability of the asymptotic distributions (in contrast to
the use of computing-intensive permutations), the applicability to test combination and test
selection procedures (Pan et al 2010), and ready adjustments for covariates, e.g. for
population stratification and gene-gene interactions. Importantly, under this unified
framework, it becomes feasible to simultaneously assess various aspects of the distributional
differences of genotypes between the case and control groups.

2. METHODS
2.1 Review: Logistic regression and its associated tests

Given n independent observations (Yi, Xi) with Yi = 0 or 1 as disease status and Xi = (Xi1,
…,Xik)′ as genotype scores at k SNPs for subject i = 1, …, n, we would like to test for any
possible association between the disease and genotypes. We assume that there are n1 cases
and n0 controls. The k SNPs are possibly in LD, as drawn from a candidate region or an LD
block. Unless specified otherwise, we use the dosage coding for Xij under an additive
genetic model: Xij = 0, 1 or 2, representing the number of the copies of a specific allele
present in SNP j of subject i, though other genetic models can be adopted. Many multi-
marker association tests are based on fitting a logistic regression model

(1)

A global test of any possible association between the disease and SNPs can be formulated as
jointly testing on the multiple parameters βj ’s with the null hypothesis H0: β = (β1, …, βk)′
= 0, typically by one of the three asymptotically equivalent tests, the likelihood ratio test
(LRT), Wald test and score test. Under H0, any of the three test statistics has an asymptotic
chi-squared distribution with degrees of freedom DF=k. The generalized Hotelling’s T2 test
(Fan and Knapp 2003; Xiong et al 2002) is closely related to the above score test (Clayton et
al 2004). Other tests, such as the SSU and UminP tests may be more powerful and can be
also applied (Pan 2009). A potential problem with the above tests is that the logistic model
includes only main-effects while ignoring other high-order terms. For example, if there is
little marginal effects but substantial epistatic effects, ignoring interaction terms may lead to
reduced power.
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Since the derivations will be similar regardless of the terms included in a logistic regression
model, below we derive the score vector and its covariance matrix based on model (1):

(2)

where . Three representative tests are

(3)

where Uj is the jth element of U and vj is the (j, j)th diagonal element of V. Under H0, the
score statistic has an asymptotic chi-squared distribution with DF=rank(U), the SSU has an
approximate chi-squared distribution (Pan 2009), while the distribution of TUminP can be
numerically obtained (Conneely and Boehnke 2007).

The SSU test is equivalent to the permutation-based version of the empirical Bayes score
test proposed by Goeman et al (2006) for high-dimensional microarray data (Pan 2009).
Ballard et al (2009) commented that Goeman’s test gives the same result as a variance
component-based score test of Tzeng and Zhang (2007).

2.2 Review: Genomic distance-based regression (GDBR)
A distinguishing feature of the class of GDBR methods is the use of a similarity measure to
compare any two subjects in a study. The similarity measure can be for genotypes based on
identity-by-state (IBS), or for diplotypes based on counting measure or matching measure
(Lin and Schaid 2009). A GDBR method can be summarized as the following:

1. Calculate an n × n distance matrix for all pairs of subjects by D = (Dij) = (1 − Sij)
with 0 ≤ Sij ≤ 1 as a similarity measure between subjects i and j;

2. Calculate ;

3. Center A to get G = (I − 11′/n)A(I − 11′/n);

4. Code the n × 1 outcome vector y with elements yi = −1 or 1;

5. Calculate the projection matrix H = y(y′y)−1y′;

6. Calculate the pseudo-F statistic as

where tr(A) is the trace of matrix A.

To obtain a p-value, permutations (by shuffling y) are used. If G is an outer product matrix,
e.g. when the distance is Euclidean, the above F-test reduces to the usual F-test in
multivariate analysis of variance (MANOVA) (McArdle and Anderson 2001).

Three similarity measures were found to work well by Lin and Schaid (2009). The first is a

similarity measure of genotypes, called geno-sim or simply G. Suppose that  are the
genotypes of the lth locus for subjects i and j respectively, then the similarity between the
two subjects is the average of IBS for the k loci:
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where , is the IBS at locus l for subjects i and j.  is the similarity
matrix called geno-sim.

The next two similarity matrices are based on inferred haplotypes from genotypes. Suppose
that hiu = (hiu1/hiu2) is the uth possible diplotype for subject i, where u = 1, …, nhi, and nhi is
the number of possible diplotypes for subject i. Given the unphased genotype data, suppose
P(hiu|gi) is the posterior probability that subject i has the uth diplotype. A similarity measure
given by Wessel and Schork (2006) is

where  is the allele at locus l on chromosome c = 1 or 2 for the uth diplotype of subject i.

The score  otherwise.  gives the expected
haplotype-similarity over the posterior distribution of the haplotype pairs given the observed
genotypes, and max() ensures that the similarity does not depend on the order of the two

haplotypes in each haplotype pair. The resulting similarity matrix  is called haplo-
sim or simply H1.

Another haplotype-based measure is

where s(hiu1, hjv1) = 1 if all alleles in the two haplotypes are equal, and s(hiu1, hjv1) = 0
otherwise. Hence, rather than counting the number of equal alleles between two haplotypes

as in , it counts the number of equal haplotypes in ; the two similarity measures
correspond to the “counting measure” and “matching measure” of Tzeng et al (2003a). The

resulting similarity matrix  is called haplo-match or simply H2.

Given unphased genotype data, an EM algorithm can be used to infer haplotypes, as
implemented in R package haplo.stats (Schaid et al 2002).

2.3. New formulation of GDBR as logistic regression
The above F-test was developed as an extension of MANOVA (McArdle and Anderson
2001) with only a distance matrix D available. If G is an outer product matrix, say G = ZZ′

with an n × p matrix Z, the above F-test is simply testing  in a multivariate linear
model

(4)

where y is an n × 1 vector of elements 1 and −1 for cases and controls respectively, B is a 1
× p vector of unknown regression coefficients, and ε is an n × p matrix of random errors.
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To assess possible association between Z and group memberships y (or equivalently, Y),
rather than regressing Z on y as in GDBR, we regress Y on Z via a logistic regression
model:

(5)

where the assessment of possible association can be accomplished by testing on the
unknown p × 1 vector of unknown regression coefficients in null hypothesis H0 : β = 0, for
which we can apply any of the score, SSU and UminP tests. Importantly, the null
distribution of each test can be easily obtained, making it possible to combine them with
other tests.

In general, G may not be an outer product matrix. Nevertheless, we can approximate G ≈ ZZ
′ with an n × (n − 1) matrix Z found by Gower’s (1966) principle coordinates analysis. We
simply applied the classical multi-dimensional scaling as implemented in R package
cmdscale. Practically we should not include all the derived coordinates into a logistic
regression model. As in principle components analysis, we could select just the first few
coordinates with the largest eigenvalues; in the simulations, we only included the
components with the absolute values of eigenvalues larger than 10−8, and excluded any
column of Z with too small elements whose absolute values had a mean less than 10−5.

We regard Z as representing some complex high-order interactions among the SNPs. The
reformulation of GDBR as logistic regression opens a new venue to constructing other novel
powerful tests: for example, to test the same H0 in the logistic regression model (5), one can
use a variety of tests, as discussed before. In particular, we prove in Appendix that, under
the conditions that the distance matrix G is an outer product matrix and that we have an
equal number of cases and controls (n1 = n0), the permutation-based F-test in GDBR is
equivalent to the SSU test in the corresponding logistic regression; more generally, they are
expected to be close if G ≈ ZZ′ and n1 ≈ n0. Furthermore, formulating GDBR as logistic
regression makes it possible to derive asymptotic distributions and to combine GDBR with
other tests that incorporate various types of information drawn from the data.

2.4 Unification of GDBR and logistic regression
We aim to incorporate genotype scores, HWD parameters, LD measurements, and
dissimilarity-derived scores as covariates into a logistic model, then characterize its Type I
error and power properties. In particular, we would like to assess whether such an expanded
model and its associated tests can maintain high power by combining multiple types of
information in genotypic distributional differences between the case and control groups.

Suppose that X is an n × k genotype matrix with the dosage coding; that is, Xij = 0, 1 or 2
represents the number of the copies of an allele in locus j for subject i. We denote XX as the
n × (k(k + 1)/2) cross-product matrix with the ith row as

. Suppose ZG, ZH1 and ZH2 are the
matrices derived from similarity matrices SG, SH1 and SH2 respectively. We will consider
the following logistic regression models:

L1: Logit Pr(Y = 1) = β0 + Xβ1,

L2: Logit Pr(Y = 1) = β0 + Xβ1 + XXβ2,

L3: Logit Pr(Y = 1) = β0 + Xβ1 + XXβ2 + ZGβ3 + ZH1β4 + ZH2β5,

corresponding to three null hypotheses:

H0,1: β1 = 0,

Han and Pan Page 6

Genet Epidemiol. Author manuscript; available in PMC 2012 May 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



H0,2: β1 = 0 and β2 = 0,

H0,3: β1 = 0, β2 = 0, β3 = 0, β4 = 0, and β5 = 0.

Model L1, perhaps the most popular main-effects model in use, aims to detect the mean
difference between the genotypes scores of the case and control groups. In addition to the
mean difference in genotype scores, model L2 incorporates the possible differences in HWD
parameters (through the squared terms of the genotype scores) and in LD patterns (through
the pairwise cross-products or interactions of the SNPs) (Kim et al 2009). Model L3 is our
proposed new one, aiming to capitalize on all four types of information: mean genotype
scores, HWD parameters, pairwise genotype score interactions, and other high-order
interactions. Since different dissimilarity matrices may capture different aspects of complex
high-order interactions among the SNPs, we use all three types of dissimilarity matrices in
model L3, though other simplified models can be also considered (see Supplementary
Materials).

To test H0,1 in model L1, we can simply apply the SSU, score and UminP tests as discussed
in section 2.1. To test the null hypothesis for either L2 and L3, we apply Fisher’s (1932)
method, though other methods can be also utilized (see Supplementary Materials). For
example, to test H0,2, we first apply the SSU to test its two components β1 = 0 and β2 = 0
separately, obtaining twp p-values p1 and p2; then we apply Fisher’s method to combine the
two p-values to obtain a final p-value. Specifically, given L = 2 or 5 p-values, p1, …,pL,
obtained from L SSU tests on individual components of H0,2 or H0,3, Fisher’s method
combines the p-values as

To obtain a final p-value, we propose using a simulation based approach. First, we note that
each individual test is based on a component of the whole score vector U. Second, because
of the asymptotic null distribution of U is known as U ~ N(0, V), we can simulate B iid
copies of Ub’s from N(0, V) with b = 1, 2…,B. Based on each Ub, we can calculate

individual p-values as , and thus . Third, the final p-value for TF(p1,

…, pL) is simply . We used B = 103 for simulated
data and B = 106 for the ALS data.

2.5 Simulations
We followed the simulation set-ups of Lin and Schaid (2009). To mimic real human LD
structures, they used the genotypes of the 60 unrelated CEU samples (i.e. parents of the 30
trios) in the HapMap data (Thorisson et al 2005). They considered 13 regions from 12
chromosomes: eight 4-SNP regions on eight chromesomes, four 8-SNPs regions on four
chromesomes, and a region of 25 SNPs on chromosome 17. These regions represented a
wide spectrum of LD patterns and allele frequencies: the pairwise r2 and minor allele
frequencies within each region ranged from 0.002 to 1, and from 0.05 to 0.45, respectively;
for more details, see Table 1 of Lin and Schaid (2009). In each region, each SNP was
sequentially treated as disease-causal. Conditional on the copy number of the minor allele in
each causal SNP as 0, 1 and 2, the disease probabilities were assigned as 0.029, 0.076 and
0.214, respectively. These conditional probabilities mimic the penetrances of Alzheimer’s
disease for the APOE-4 genotype. In each region, the non-causal SNPs were used to detect
possible association with disease.
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For each scenario, we simulated 1000 datasets; in each dataset, the sample size was n = 100
with n1 = 50 cases and n0 = 50 controls. Similar results (not shown) were obtained for a
larger sample size with 100 cases and 100 controls.

For each statistical test, its overall power was calculated by averaging its power over all
scenarios (i.e. over each causal SNP across the 13 regions). In addition, the power was
stratified on a few factors: i) marker informativity: whether the average of MAFs of markers
was above 0.215; ii) number of markers being used in the region (3, 7 or 24) after the causal
SNP was excluded; iii) causal allele frequency; iv) preponderance of the most common
high-risk haplotype: whether the relative frequency of the most common high-risk haplotype
over other high-risk haplotypes was above 0.8; v) LD pattern: whether the squared
correlation coefficient r2 between the causal SNP and its adjacent makers was above 0.6
(“high”), between 0.15 and 0.6 (“moderate”), or below 0.15 (“low”).

2.6 ALS data
We applied the methods to a data set drawn from a genome-wide association study on
amyotrophic lateral sclerosis (ALS) (Schymick et al 2007). ALS is a fatal neurodegenerative
disease leading to paralysis and death. Despite persistent efforts in elucidating the genetic
components of ALS, little is known. The original study assayed 555352 unique SNPs for
each of the n1 = 276 patients with sporadic ALS and n0 = 268 controls. Schymick et al
(2007) took a single-marker approach by testing SNP by SNP with either a 2-DF or 1-DF
chi-squared test, and identified 34 most significant SNPs, none of which however reached a
genome-wide significance level after a Bonferroni adjustment. A 1-DF test is based on the
dosage coding of a SNP, while a 2-DF test creates 2 dummy indicators for the three alleles
of the SNP. For this dataset, since a 2-DF test seemed to give more significant p-values, we
adopted the 2-DF coding of SNPs by default.

We randomly picked up 9 SNPs from the list of the 34 most significant common SNPs of
Schymick et al (2007). For each of the 9 SNPs, we extracted 10 neighboring SNPs upstream
and another 10 downstream, then applied the default LD blocking algorithm implemented in
Haploview (v4.1) (Barrett et al 2005) to each 21-SNP region for the control group. The
number of the SNPs inside each LD block surrounding each of the nine SNPs ranged from 2
to 19.

3. RESULTS
3.1 Simulations: Type I errors

By removing each of the four SNPs and using the remaining 3 SNPs as markers in a region
of chromosome 6, we simulated a null case, in which disease probability did not depend on
any SNP. Figure 1 shows the Type I error rates of various methods. It is clear that all the
tests had their Type I error rates well controlled below the nominal level of 0.05. As
discussed by Lin and Schaid (2009), the lower Type I error rates could be due to the
discreteness of the data resulting from the small pool of the CEU samples.

3.2 Simulations: Comparing GDBR and logistic regression
Figure 1 shows that the permutation-based F-test in GDBR with any similarity matrix (G or
H1 or H2) had almost the same overall power as the SSU test in the corresponding logistic
regression model (i.e. with the corresponding decomposed G or H1 or H2 matrix as
predictors). The slight reduction in power in logistic regression was due to possible
information loss in extracting a few major components from a distance matrix.
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An advantage of formulating GDBR as logistic regression is that it opens door to applying
other tests based on logistic models, such as the multivariate score test or UminP test, in
addition to the SSU test. Although on average, the score and UminP tests were not as
powerful as SSU (or GDBR) test for these data, in some situations they could be more
powerful. For example, Table 1 shows the power of the tests applied to a region on
chromosome 6 with 4 SNPs; each SNP was treated as causal and removed from the test data.
It can be seen that, for a given similarity matrix, the UminP test sometimes had higher
power than the SSU test or GDBR F-test. Similarly, when the causal SNP0 is the first or
second one, among the three distance metrics, although on average the GDBR with H2 (or
the corresponding SSU test) was the most powerful, the GDBR (or SSU) with similarity
matrix G1 or H1 could be more powerful than that with H2.

3.3 Simulations: Incorporating GDBR into logistic regression
In terms of the overall power, it is clear from Figure 1 that Fisher’s method in model L3 was
most powerful among all the tests, showing the power gain by combining multiple types of
information. Fisher’s method in model L2 performed second best. The SSU test in model L1
had power close to that of the F-test in GDBR with distance matrix H2.

We also conducted stratified power analysis and reached the same conclusion; these and
other results are available in the Supplementary Materials.

3.4 ALS data
We applied both single-marker tests and various multi-marker tests to the nine SNPs and
their LD blocks, respectively. In Table 2 we only show the results for three SNPs while
those for other ones are in the Supplementary Materials. For the univariate tests applied to
each individual SNP, we included both a 2-DF score test and a 1-DF score test in logistic
regression. For the GDBR tests, we used 103 permutations for the GDBR tests, and used B =
106 simulations for combining p-values, while asymptotic distributions were used to obtain
p-values for other tests. Since each of the three types of the similarity matrices might have
many small eigenvalues, we decided to include only those first few components with the
largest positive eigenvalues so that their sum is at least 95% of the total sum of all positive
eigenvalues; including those components with negative eigenvalues yielded similar results
(not shown).

It is clear that the GDBR tests gave p-values in close agreement with those of the SSU tests
in the corresponding logistic regression models, but the latter could give significance levels
beyond that of the former based on only 1000 permutations. Importantly, for each logistic
regression model, in addition to the SSU test, we could also apply the score test and UminP
test, which, for example, for both the similarity matrices G and H1, gave more significant p-
values than those of the SSU test (and hence the GDBR F-test) for SNP rs7976059. It is
noted that, in most cases, Fisher’s method gave most significant p-values, showing possible
power gains by incorporating the use of multiple types of information across multiple
markers.

4. DISCUSSION
Here we have presented an approach to utilizing distributional differences in allele
frequencies, HWD parameters, LD patterns and some complex high-order interactions
among multiple markers. We regard that the effectiveness of a GDBR method comes from
its ability to capture some complex high-order interactions among SNPs through its genomic
distance metric. A key technical advance is to reformulate GDBR as logistic regression,
which not only sheds light on the close connection between the class of the GDBR methods
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and the majority of existing association tests based on logistic regression, but also opens a
new and potentially productive venue to constructing novel and powerful association tests
under the unified and general framework of logistic regression. In addition to facilitating
combining GDBR with many existing logistic regression-based approaches, our formulation
of GDBR as logistic regression offered additional advantages. For example, rather than
depending on permutations to derive p-values for GDBR, which may be just too time-
consuming to achieve a stringent significance level as in GWAS, we can recourse to well-
known asymptotic results. In addition, it is straightforward to incorporate covariates,
including principle components or eigenvectors in adjustment for population stratification
(Price et al 2006; Li and Yu 2008; Lee et al 2009). Furthermore, we can also detect SNP-
disease association in a logistic regression model in the presence of gene-gene or gene-
environment interactions (Pan 2010b).

In general, there does not exist a uniformly most powerful test on multiple parameters as in
the current situation with multi-marker association testing (Cox and Hinkley 1974). There is
always a trade-off between targeting more aspects of possible distributional differences by
including more terms in a logistic regression model versus possible loss of power due to the
increasing DF in the model. More research is needed to develop adaptive tests that can
determine what terms to be included based on the given data, as illustrated by test selection
as studied by Pan et al (2010).

Finally, we comment on an implication of our result to high-dimensional data analysis.
Since both GDBR (Zapala and Schork 2006) and Goeman’s test (2006) have been
successfully applied to high-dimensional microarray data and the two approaches appear
quite different, it may give an impression that two approaches are distinct competitors to
each other. In light of our new result on the connection between the F-test in GDBR and the
SSU test in logistic regression (see Appendix) and the known result of the equivalence
between Goeman’s test and the SSU test (Pan 2009), the two approaches are closely related.

Software in R implementing the proposed new tests will be posted on our web site
http://www.biostat.umn.edu/_weip/prog.html.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX Relationship between the F-test in GDBR and the SSU test in
logistic regression

We first consider the situation that G is an outer product matrix, say G = ZZ′. In GDBR, the

F-test tests  in multivariate linear model (4). The least squares estimate of B is

where n0 and n1 are the numbers of the cases and controls, respectively, n = n0 + n1, and Z̄1
and Z̄0 are the sample means of Z for the case and control groups respectively. With the
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corresponding fitted values Ẑ = yB̂ and residuals R = Z − Ẑ = (I − H)Z, the total sum of
squares and cross-product (SSCP) matrix can be partitioned into: Z′Z = Ẑ′Ẑ + R′R. Then it
is easy to verify that

Under permutations, tr(Z′Z) is fixed as a constant, hence F-statistic is equivalent to

(6)

On the other hand, to test H0: β = 0 in logistic regression model (5), the score vector, as
shown by Clayton et al (2004), is

and thus the SSU test statistic

(7)

Comparing (6) and (7), we see that the F-statistic and SSU-statistic are equivalent if n1 = n0.
More generally, if G ≈ ZZ′ and n1 ≈ n0, the two statistics are expected to be close (up to a
constant).
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Figure 1.
Empirical Type I error and average power of various tests at the nominal level of 0.05 for
simulated data.
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