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Abstract

The flavonoid-derived proanthocyanidins (PAs) are one class of the major defence phenolics in poplar leaves.
Transcriptional activation of PA biosynthetic genes, resulting in PA accumulation in leaves, was detected following
infection by the fungal Marssonina brunnea f.sp. multigermtubi using digital gene expression analysis. In order to
study PA biosynthesis and its induction by fungi, a putative leucoanthocyanidin reductase gene, PirLAR3, was
isolated from Populus trichocarpa. Sequence comparison of PtrLAR3 with other known leucoanthocyanidin
reductase proteins revealed high amino acid sequence similarity. Semi-quantitative reverse-transcription (RT) PCR
and quantitative real-time PCR analysis demonstrated that PtrLAR3 was expressed in various tissues and the
highest level of expression was observed in roots. Overexpression of PtrLAR3 in Chinese white poplar (Populus
tomentosa Carr.) led to a significant plant-wide increase in PA levels. In vitro assays showed that crude leaf extracts
from 35S:PtrLAR3 transformants were able to inhibit significantly the hyphal growth of M. brunnea f.sp.
multigermtubi compared to the extracts from control plants. The transgenic 35S:PtrLAR3 poplar plants displayed
a significant (P < 0.05) reduction in their disease symptoms compared with the control. RT-PCR analysis showed that
PtrLAR3 expression was up-regulated in all transformants. These results suggested that constitutive expression of
endogenous PirLAR3 could be exploited to improve resistance to fungal pathogens in poplar.
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Introduction

Proanthocyanidins (PAs), also known as condensed tan-
nins, are the polyphenolic compounds synthesized via the
flavonoid biosynthetic pathway. They occur in many plant
species and play an important role in defence against
herbivores and pathogens (Harborne and Grayer, 1993;
Peters and Constabel, 2002; Tanner et al, 2003). The
increase in PA concentration in forage crops can protect
ruminants against pasture bloat (Dixon er al, 1996;
Douglas et al., 1999; McMahon et al., 2000). PAs also act
as potential antioxidants with beneficial effects for human
health by protecting against free radical-mediated injury

and cardiovascular diseases (Bagchi er al., 2000; Lin et al.,
2002; Cos et al., 2004). Additionally, PAs also contribute to
the taste of numerous fruits and beverages, such as fruit
juices, tea, and wine (Dixon er al, 2005). Thus, it is
important to understand the mechanisms of biosynthesis
and regulation of PA polymers in planta.

PA biosynthesis is one branch of the flavonoid bio-
synthetic pathway that also produces anthocyanins and
flavonols. The flavonoid pathway has been characterized
both genetically and biochemically in several plant species
(Shirley et al., 1992; Boss et al., 1996; Winkel-Shirley, 2001).
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The biosynthesis of PAs and anthocyanins shares the same
up-stream flavonoid pathway, leading to the production of
flavan-3,4-diols which are utilized as co-precursors for
anthocyanin and PA polymer synthesis (Stafford, 1990;
Springob et al., 2003). Biosynthesis of PA polymers is
considered to be catalysed by leucoanthocyanidin reductase
(LAR), converting leucocyanidin to catechin (Stafford,
1990). Leucoanthocyanidin is also the substrate for antho-
cyanidin synthase (ANS) to produce anthocyanidin, which
is then converted to the other PA precursors, epicatechins,
by the catalysation of anthocyanidin reductase (ANR). To
date, LAR genes have been isolated from several plant
species and the activity correlated with PA accumulation
has been characterized (Stafford, 1990; Joseph et al., 1998;
Marles et al., 2003; Pang et al., 2007; Paolocci et al., 2007).
Tanner et al (2003) purified firstly an LAR gene from
Desmodium uncinatum and the recombinant protein was
shown to catalyse the conversion of leucocyanidin, leuco-
delphinidin, or leucopelargonidin to the corresponding
2,3-trans-flavan-3-ol. This finding clearly established the
role of LAR in PA biosynthesis. In Arabidopsis thaliana, the
PA biosynthetic pathway has been best characterized, but
this species accumulates only epicatechin-based starter units
and lacks any obvious LAR orthologue (Abrahams et al.,
2003). Two LAR orthologues from grapevine (Vitis vinifera
L. cv. Shiraz) have been reported and they have different
patterns of expression in skin and seeds (Bogs ez al., 2005).
Only VvLARI has been functionally characterized by
enzymic assay of the recombinant protein and has been
shown to possess LAR enzyme activity, but data have still
to be provided for VvLAR2. In Medicago truncatula, there
is an apparent lack of catechin in the PAs, but a single LAR
gene has been cloned and characterized. Transgenic tobacco
expressing MtLAR showed the lack of catechin or PA
production, raising questions as to the actual role of LAR
in M. truncatula (Pang et al., 2007). More recently, two
LAR genes were reported in Lotus corniculatus, but only
one of them, LcLARI, was shown to encode a protein with
demonstrable LAR activity (Paolocci et al., 2007).

Poplar (Populus spp.) is a widespread forest tree with
significant economic and ecological importance worldwide,
but the species is susceptible to different fungal diseases.
Toxicity of PAs, usually estimated by the measurement of
the reduction of in vitro mycelial growth, is well docu-
mented for several filamentous fungi, such as Aspergillus
niger, Colletotrichum graminicola, Gloeophyllum trabeum,
and Trichoderma viride (Harborne, 1980; Scalbert, 1991).
The transcriptional response of hybrid poplar (Populus
trichocarpa X Populus deltoides) to poplar leaf rust
(Melampsora medusae) infection has been analysed using
the Populus cDNA microarray and the genes encoding
enzymes required for PA biosynthesis were up-regulated
dramatically (Miranda ez al., 2007). Phytochemical analysis
has confirmed that PA levels increase in infected leaves late
in infection, linking this pathway for the first time to the
pathogen-defence response in poplar (Miranda et al., 2007).

With the completion of the P. trichocarpa genome
sequence, a wide range of genomic and genetic resources

are now available for this species (Tuskan er al, 20006);
thus Populus has been selected as a model legume for
biochemical, genetic, and genomic studies (Jansson and
Douglas, 2007). In a previous study, Tsai ez al. (2006) found
that three LAR genes in Populus occurred in two distinct
phylogenetic lineages, but showed little difference in their
tissue distribution. During the PA increase, the transcript
abundance of PwrLARI and PtrLAR3 was wound-
stimulated by two- and ten-fold, pointing to differential
regulation (Tsai et al., 2006).

The current report describes experiments to profile the
transcriptional response of poplar leaves in a compatible
interaction with the black spot fungus Marssonina brunnea
f.sp. multigermtubi using Illumina’s digital gene expression
(DGE) platform. A cDNA fragment encoding PtrLAR3
was isolated from P. trichocarpa by reverse-transcription
PCR (RT-PCR). The PA content and PtrLAR3 transcrip-
tion level in the different tissues were measured and the
function of PtrLAR3 was determined, for which a chimeric
PtrLAR3 gene was constitutively expressed under the
control of the cauliflower mosaic virus 35S promoter.
Transgenic plants were further evaluated for resistance to
infection by the pathogenic fungus M. brunnea f.sp. multi-
germtubi. The results indicated that PA biosynthesis is
mediated by overexpression of PtrLAR3 and leads to
enhanced resistance to fungal pathogens in transgenic
poplar plants.

Materials and methods

Plant materials and bacterial strains

Poplar plants were grown in the greenhouse at 25 °C under a 14/10
light/dark cycle with supplemental light (4500 lux). All tested
tissues, including leaf, stem, root, and petiole, were harvested from
greenhouse material, separated, and frozen in liquid nitrogen until
further processing. To determine the defence mechanisms of
triploid Populus tomentosa Carr. against black spot disease,
a susceptible P. tomentosa Carr. clone (clone 51) was inoculated
with M. brunnea f.sp. multigermtubi. Infected and control leaves
were harvested at 3 days post inoculation (dpi) for RNA isolation
and cDNA synthesis.

Escherichia coli DHSa was used as the host strain for trans-
formation, genetic manipulation, and nucleotide sequencing.
Agrobacterium tumefaciens EHA105 was used for the transforma-
tion of P. trichocarpa. Carr. (clone 73).

Cloning of PtrLAR3

Total RNA was isolated from frozen tissues of poplar plants using
a RNA RNeasy Plant Mini Kit (Qiagen, Germany) following the
manufacturer’s instructions. Leaves and petioles were excised from
stems, including the fourth (young) and fifth (mature) internodes
from the top of the stems (height 1 m). First-strand cDNA was
synthesized from 2 pg DNase-treated RNA with RT-AMV
transcriptase (TaKaRa, Dalian, China) in a total volume of 20 pl
using oligo d(T);g at 42 °C for 30 min.

The full open reading frame of PtrL.AR3 was amplified with gene-
specific primers (LAR3-F: 5'-ACATGAATGGTCATTCTCCA-3';
LAR3-R: 5'-TCATGCTGTAATAAATAAAG- 3’; Joint Genome
Institute, http:/genome.jgi-psf.org/poplar/poplar.info.html) by RT-
PCR with 2 pl ¢cDNA from roots. The PCR reaction was carried
out with Pfu DNA polymerase (TaKaRa) in a total volume of 50 pl
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with an initial denaturing step at 94 °C for 3 min, 34 cycles of 94 °C
for 45 s, 58 °C for 30 s, and 72 °C for 90s and a final extension step
at 72 °C for 10 min. The amplification products were cloned into the
plant binary vector pCXSN, which is a zero-background TA
cloning system that provides simple and high-efficiency direct
cloning of PCR-amplified DNA fragments (Chen et al., 2009). The
resulting vector 35S:PtrLAR3, containing the PtrLAR3 open
reading frame down-stream of the caulifiower mosaic virus 35S
promoter and the hygromycin phosphotransferase gene (Hpt) as
a plant-selectable marker conferring hygromycin resistance was
transferred into 4. tumefaciens EHA105 by the freeze—thaw method.

Transformation of P. tomentosa Carr. plants

Transgenic Chinese white poplar (P. tomentosa Carr.) plants were
generated by Agrobacterium-mediated transformation as described
previously (Jia et al., 2010). Recombinant Agrobacterium was used
to infect poplar leaf discs and putative transgenic plants were
selected on woody plant medium (WPM) (Lloyd and McCown,
1980) supplemented with 10 mg/l hygromycin. Rooted plantlets
were acclimatized in pots at 25 °C in a 14/10 light/dark cycle and
then transferred to the greenhouse for further studies.

DNA extraction and PCR analysis

Genomic DNA was extracted from leaves (300 mg) of untrans-
formed control and hygromcyin-resistant plants using the modified
cetyltrimethylammonium bromide extraction method as previously
described (Jia et al., 2010). To determine the presence of trans-
genes, putative transgenic plants were screened preliminarily by
PCR analysis (Luo er al, 2006). The following primers were
designed for Hpt: forward: 5'-ATCGGACGATTGCGTCGTCG-
CATC-3’; reverse: 5'-GTGTCACGTTG CAAGACCTG-3'. The
PCR conditions were an initial denaturing step at 94 °C for 3 min
and 35 cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 1 min.
The amplification products were resolved on a 1% (w/v) agarose
gel and visualized after ethidium bromide staining.

Semi-quantitative RT-PCR and quantitative real-time PCR analysis

Total RNA was extracted from leaves, roots, stems, and petioles of
poplar plants and treated with DNase I (TaKaRa) according to
the manufacturer’s instructions. All RNA was purified and first-
strand cDNA was synthesized as described above. The reverse-
transcribed ¢cDNA samples were used for quantitative real-time
PCR, which was performed on a TaKaRa real-time-PCR detection
system. 18S rRNA was used as an internal control. The RT-PCR
conditions were an initial denaturation step at 94 °C for 3 min, 28
cycles of 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 1 min, and an
extension step at 72 °C for 10 min. The amplification products
were resolved by 1% (w/v) agarose gel electrophoresis and
visualized with ethidium bromide under UV light.

Quantitative real-time PCR analysis was performed as described
Tsai et al. (2006) in a 20-pl reaction volume containing 10 pl of
SYBR Green master mix reagent (TaKaRa). The primers were
designed using Primer 5.0 software: forward and reverse primers for
PtrLAR3 amplification were PtrLAR3-F (5'-CGGTGATGGGA-
CAGTTAAAG-3') and PtrLAR3-R (5'-CATGGCAACAAAGCT
CTCAA-3’). Each reaction was performed in duplicate and with
three biological replicates along with no-template controls. The
gene-quantification method was based on the relative expression of
the target gene versus the reference gene (Actin) (Tsai et al., 2006).

Sequence comparisons and phylogenetic analysis

The deduced amino acid sequences were analysed using the program
DNAMAN and the software MAGE version 4.0(Lynnonon
Biosoft, Quebec, Canada). Alignment of the deduced amino acid
sequences was performed using DNAMAN. The phylogenetic
relationships of LARs were analysed with the neighbour-joining
method using MAGE version 4.0.

Extraction and quantification of proanthocyanidins

For extraction of PAs, tissues were ground in liquid nitrogen and
1.0 g batches were extracted with 5 ml extraction solution (70%
acetone and 0.5% acetic acid) by vortexing followed by sonication
at 30 °C for 30 min. Following centrifugation at 2500 g for 10 min,
residues were re-extracted twice, as above. Supernatants were
pooled and then extracted with 3 ml chloroform, and the aqueous
supernatant was re-extracted twice with chloroform and three times
with hexane. Samples were freeze dried, resuspended in extraction
solution to a final concentration of 3 g original sample ml™',
spun briefly, and transferred to another tube, and then the soluble
PA content was determined using dimethylaminocinnamaldehyde
(DMACA) reagent with catechin standards (Pang ez al., 2007).

The insoluble PA content was tested using the butanol/HCI
method (Porter er al., 1986). The residues from the above tissue
extractions were dried in air for 2 days, and then 1 ml butanol/HCI
reagent was added and the mixture was sonicated at room
temperature for 60 min and centrifuged at 2500 g for 10 min.
Supernatants were transferred to cuvettes for determination of
absorption at 550 nm and were then boiled for 1 h. After cooling
to room temperature, the Asso was recorded again and the first
value subtracted from the second. Absorbance values were
converted into PA equivalents using a standard curve (2.5, 5, 10,
20, and 40 mg) of procyanidin Bl (Indofine). Three independent
experiments were performed for each sample.

Histochemical staining with DMACA

Histochemical analysis of PA accumulation in various tissues was
performed as described by Li ez al. (1996). In brief, plant tissues
were decolourized in 5 ml of 30% acetic acid in ethanol for 12 h
and washed with 75% ethanol. PAs were detected by staining
tissues for 3 h with 1% (w/v) DMACA in ethanol and 6 M HCI
(1:1, v/v). Images of stem and petiole sections were recorded using
a Nikon microscope.

DGE library construction and sequencing

DGE experiments were performed as described by Zhang er al.
(2010). Total RNA isolated from five M. brunnea f.sp.
multigermtubi-infected and control leaves was pooled by treatment,
respectively. Beads with oligo d(T),s were used to isolate poly(A)
mRNA. The first-strand cDNA was synthesized using a random
hexamer-primer and reverse transcriptase (Invitrogen). The sec-
ond-strand cDNA was synthesized using RNase H (Invitrogen)
and DNA polymerase I (New England BioLabs). Then the cDNA
libraries were prepared according to Illumina’s protocols. Briefly,
one individual single-end cDNA library was constructed for each
sample. Libraries were prepared from a 150-200-bp size-selected
fraction following adapter ligation and agarose gel separation. The
libraries were sequenced on the Illumina GA platform for 35
cycles. The paired-end libraries were sequenced for 44-75 bp.

Mapping short reads to the Populus genome and annotated gene
set

The P. trichocarpa genome and annotated gene set were down-
loaded from the Populus public database (Joint Genome Institute)
and 17,273 P. trichocarpa full-length cDNAs were collected from
the reference genome sequence of Populus (Phytozome version
2.0). The cDNAs were aligned to the P. trichocarpa genome and
those with identities higher than 80% were retained for further
analysis. A nonredundant gene set of P. trichocarpa was created by
merging the sequences of the Beijing Genomics Institute Gene
Finder predicted genes and cDNAs and then removing the smaller
one if two transcripts had at least 100 bp overlapping. After
removing reads containing sequencing adapters and reads of low
quality (reads containing >5 ambiguous residues), reads were
aligned to the P. trichocarpa genome using Short Oligonucleotide



2516 | Yuan et al.

Alignment Program (SOAP) (Li et al., 2008) allowing up to two
mismatches. Reads that failed to be mapped progressively had one
base trimmed off from the 39-end and mapped to the genome
again until a match was found. For paired-ends reads, insert size
between paired reads was set at 1 bp-10 kb to allow reads
spanning introns of different sizes. A similar strategy was used to
align reads to the nonredundant gene set, but the insert length
range was restricted to 1 kb for paired-end read mapping.

In vitro assays for antifungal activity

To prepare a crude leaf extract, fresh poplar leaves (10 g) were
homogenized under liquid N, and extracted with 10 ml extraction
buffer (pH 7.0) containing a mixture of protease inhibitors (1 mM
PMSF, 1 mM N-ethylmaleimide, 5 mM EDTA, and 0.02 mM
pepstatin A). Ground tissues were then centrifuged at 9000 g for
10 min at room temperature and extracts were collected from each
sample. The supernatant was referred to as the crude leaf extract. In
vitro antifungal activity assay was performed as described by Wu
(1988). The pathogenic fungus M. brunnea f.sp. multigermtubi was
employed for the assay of antifungal activity on potato/dextrose/
agar (PDA). In brief, the assay used Petri dishes (90 mm diameter)
containing 20 ml PDA to which 500 pl crude leaf extract was added
when the medium had cooled to 50 °C. The plates were inoculated
in the centre and incubated in the dark at 28 °C for 72 h, during
which the hyphae grew outwards from the centre. Hyphal inhibition
was checked daily and the hyphal growth was photographed using
microscopy (Nikon) at 72 h.

Evaluation of transgenic plants for resistance against M. brunnea
f.sp. multigermtubi

To test the resistance of transgenic poplar against fungal infec-
tions, the in vivo test was performed with M. brunnea f.sp.
multigermtubi. Transgenic poplar plants were grown in a 14/10
light/dark and 25/23 °C cycle in the greenhouse. Hyphal fragments
and spores were harvested and placed on the leaves of 3-month-old
plants. The inoculated plants were incubated in a growth chamber
for 4 d and the infected leaves were digitally photographed. Adobe
Photoshop was used to calculate lesion area. Each experiment was
performed twice, with at least three replicates per treatment, and
contained wild-type controls.

Results

M. brunnea f.sp. multigermtubi infection induces PA
biosynthesis in poplar leaves

In hybrid poplar, Melampsora medusae rust infection
strongly induced genes for enzymes involved in flavonoid
and proanthocyanidin biosynthesis late in the infection
process (Miranda et al, 2007). To investigate the defence
mechanisms of Chinese white poplar (P. tomentosa Carr.)
for infection with black spot disease, total RNA was
isolated from five plants infected with M. brunnea f.sp.
multigermtubi and pooled together for the construction of
DGE libraries as well as sequencing. In total, approximately
5.9 million filtered, high-quality reads with average length
of 40 bp were sequenced from each sample and more than
20,000 contigs exhibited high similarity to a gene in the
reference genome sequence of Populus (Phytozome version
2.0).

The expression patterns of flavonoid pathway up-stream
genes (PtrPALs and PtrC4Hs) and structural genes in-
volved in the biosynthesis of PAs (PtrCHSs, PtrCHI,

PtrF3H, PtrDFRs, PtrANS, PtrANR, and PtrLARs) were
examined in infected and control leaves. Almost all enzymes
involved in the PA biosynthesis pathway are represented
by more than one gene in poplar (Tsai ez al, 2006). In the
current study, at least one gene in each enzymic step was up-
regulated, with the exception of cinnamate 4-hydroxylase
(C4H); however, the PtrPAL paralogues PtrPALI1, PtrPAL3
and the PtrCHS paralogues PtrCHS1 were down-regulated.
(Fig. 1 and Supplementary Table S1, available at JXB
online).

To correlate the gene expression data with PA accumula-
tion, PA concentrations were examined in various tissues of
P. tomentosa Carr (Fig. 2). The highest levels of soluble PAs
(approximately 1.1 mg catechin equivalents (g fresh
weight) ') were detected in roots and much lower levels
were found in stems, petioles, and leaves (Fig. 2A).
Insoluble PAs were also extracted from the residues left
after extraction of soluble PAs by repeated sonication in
butanol/HCI (Porter et al., 1986), followed by heating to
generate coloured anthocyanin from degradation of the PAs
(Fig. 2C). The highest levels of insoluble PAs were detected
in roots: about 11.4 mg procyanidin Bl equivalents (g fresh
weight) ™. Insoluble PAs were also relatively high in leaves
(young or mature), but very low in stems and petioles. This
study then determined whether PAs accumulated in Chinese
white poplar leaves following M. brunnea f.sp. multigerm-
tubi infection. PAs were extracted from the leaves at various
time points after inoculation. The results showed that
a strong and statistically significant increase (P > 0.05) in
PA levels in infected leaves at 4 days post inoculation (dpi)
as compared with control leaves (Fig. 2B, D), which was
consistent with the induction of PtrLARs and PtrANR, the
genes specific to the PA biosynthesis pathway.

Isolation of PtrLAR3 cDNA encoding
leucoanthocyanidin reductase from P. trichocarpa

The final step of the PA biosynthesis pathway in poplar is
catalysed by PtrLAR and PtrANR. The DGE analysis
showed that, of the genes specific to the PA pathway,
PtrLAR3 showed greater increase in expression level than
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Fig. 1. Quantitative analysis of changes in transcript levels of
flavonoid pathway genes in response to infection of poplar leaves
with Marssonina brunnea f.sp. multigermtubi using digital gene
expression analysis.
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PtrLARI or PtrANR in infected leaves (Fig. 1), indicating
that PtrLAR3 may play major role in the accumulation of
polymeric PAs against M. brunnea f.sp. multigermtubi
infection. The isolation of a full-length PtrLAR3 cDNA
would provide an important tool for analysing induction of
PA synthesis at the molecular level. Based on the sequences
deposited in the Populus genome database, the PtrLAR3
cDNA clone was cloned by RT-PCR from total RNA of
P. trichocarpa leaves using gene-specific primers. The
nucleotide sequence of PtrLAR3 was 1447-bp long and was
predicted to encode a protein of 349 amino acid residues
(Fig. 3A). Comparison of the PtrLAR3 sequence with
databases showed high identity with LAR proteins from
Vitis vinifera (VWLAR1, 59.49%; VVLAR?2, 64.09%), Lotus
uliginosus (LuLAR, 58.31%), and Desmodium uncinatum
(DuLAR, 53.26%). The LAR-specific amino acid motifs
RFLP, ICCN, and THD, as described previously (Tanner
et al., 2003; Bogs et al., 2005), were found in the deduced
PtrLAR3 protein, located at amino acid positions 113-123,
158-168, and 274-283, respectively. The conserved sequen-
ces of these motifs were identical in both LuLAR and
DuLAR, with only two amino acid substitutions in
VvLARI1 and one in VVLAR2 (Fig. 3A). The calculated
isoelectric point and molecular mass of PtrLAR3 were 5.94
and 38.67 kD, respectively.

The neighbour-joining phylogenetic tree using the pre-
dicted amino acid sequences of LARs (Fig. 3B) showed that
these proteins were clustered into two distinct groups, in
which only PeLAR, from the gymnosperm Pinus taeda,

belonged to one group, whereas LARs from angiosperm
species belonged to another group. Of the angiosperm
LARs, HVLAR (Hordeum vulgare) and OsLAR (Oryza
sativa), of monocot species, formed a subgroup distinct
from the dicot species. Among the dicotyledonous branches,
the branch distribution revealed that PtrLAR3 formed an
independent lineage in a cluster containing GsLAR2 from
Gossypium arboretum and TcLAR from Theobroma cacao,
suggesting that these proteins belonging to woody plants
may have a close evolutionary relationship.

Tissue-specific expression of PtrLAR3

This study examined the expression of PtrLAR3 by semi-
quantitative RT-PCR with total RNA from various tissues
of P. trichocarpa (Fig. 4A). The highest mRNA level was
observed in the roots, and relatively low but unambiguous
expression was evident in the stems, leaves, and petioles.
Quantitative real-time PCR analysis with different tissues
further showed that the relative levels of the PtrLAR3
transcripts in the roots were more than twice as abundant as
in the stems and were 3-fold higher than in the petioles
(Fig. 4B). These results are consistent with those obtained
for PA accumulation in different tissues of P. trichocarpa.

Molecular functional characterization of transgenic
P. tomentosa Carr. plants overexpressing PtrLAR3

To investigate the function of PtrLAR3, the PtrLAR3 open
reading frame under the control of the cauliflower mosaic
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acids are indicated by black letters on a white background, conservative amino acids by black on a dark gray background, and similar
amino acids by black on a light gray background. Asterisks indicate the RFLP, ICCN, and THD motifs. Peptide sequences were aligned
with the DNAMAN program. (B) Phylogenetic relationships of LAR proteins from P. fomentosa Carr. and selected species. Phylogenetic
analysis was performed by the neighbour-joining method using MEGA version 4. Bar , 0.05 substitutions per site. GenBank accession
numbers are: GrLAR1 (Gossypium raimondii, CAI56319); GrLAR2 (G. raimondii, CAI56325); HVLAR (Hordeum vulgare, CAI56320);
LcLAR1 (Lotus corniculatus, ABC71326); LcLAR2 (L. corniculatus, ABC71328); LULAR (Lotus uliginosus, AAU45392); MdLAR1 (Malus x
domestica, AAX12185); MdLAR2 (Malus x domestica, AAX12186); MtLAR (Medicago truncatula, CAI56327); OsLAR (Oryza sativa,
CAI56328); PcLAR (Phaseolus coccineus, CAI56322); PeLAR (Pinus taeda, CAI56321); PsLAR1 (Pyrus communis, ABB77696); PsLAR2
(Pyrus communis, ABB77697); PtrLAR1 (P. tomentosa, EEE89746); PtrLAR2 (P. tomentosa, EEFO1056); PtrLARS3 (P. tomentosa,
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Fig. 4. PtrLAR3 expression in Populus trichocarpa tissues.

(A) Semi-quantitative RT-PCR analysis of PirLAR3 expression in
various tissues of P. trichocarpa. (B) Quantitative real-time PCR
analysis of PirLAR3 transcript levels in various tissues of

P. trichocarpa. Poplar 18S expression was used as a control. Total
RNA was isolated from roots (R), stems (S), petioles (P), mature
leaves (ML), and young leaves (YL).

R S P

virus 35S promoter was introduced into Chinese white
poplar by A. tumefaciens-mediated transformation for
constitutive expression. A total of 16 hygromycin-resistant
putative transformants were obtained and grown in the
greenhouse. None of the generated transgenic plants
showed any phenotypic changes compared with wild-type
plants (Supplementary Fig. S1). PCR analysis using gene-
specific primers showed that an expected amplification
product specific for Hpt was obtained from all transgenic
lines tested, whereas no signal was detected from wild-type
plants (Supplementary Fig. S2), confirming the integration
of the transgene into the poplar genome. From all of the
independent hygromycin-resistant transgenic lines harbour-
ing the 35S:PtrLAR3 construct, three independent lines
(2, 5, and 6) with high PtrLAR3 transcript levels were
selected for further analysis.

To determine PA localization in 35S:PtrLAR3 and
control poplar plants, leaves, roots, petiole and stem
sections were stained with DMACA, which reacts specifi-
cally with PAs and flavan-3-ols to form a blue chromophore
(Li et al., 1996). As expected, DMACA stained the tissues
of the empty-vector control lines (Fig. SA-D) less intensely
than the 35S:PtrLAR3 tissues (Fig. 5SE-H). In stem sections,
PAs were observed in the epidermis of control plants
(Fig. 5A), while much higher concentration of PAs was
detected in the epidermis in the PtrLAR3-overexpressing
plants (Fig. SE). In 35S:PtrLAR3 leaves, PAs were present
at much higher concentrations compared with the control
leaves (Fig. 5B and F). In petioles, staining was observed
only in the epidermal cells in the controls (Fig. 5C), while in
35S:PtrLAR3 plants, strong staining was observed in the
epidermal, cortex, phloem, and xylem cells (Fig. 5G). Most
notably, DMACA staining was very abundant in the roots

of both the control and the 35S:PtrLAR3 plants (Fig. 5D
and H).

To further confirm that PA biosynthesis can indeed be
enhanced by PtrLAR3 overexpression, PA levels in various
tissues of control and 35S:PtrLAR3 plants were determined.
Three transgenic lines (2, 5, and 6) showed significantly
increased contents (P < 0.05) of both soluble and insoluble
PAs in their roots and petioles compared with those in
the empty-vector controls (Fig. 5I, J). The increases of
soluble PAs in the stems and leaves of all 35S:PtrLAR3
lines were significant (P < 0.05) but the increases of
insoluble PAs were not (Fig. 51, J), which was consistent
with the results of DMACA staining. Taken together, in
PtrLAR3-overexpressing plants, many of the same cell types
that are competent in producing PAs are stimulated to
produce much higher PA levels.

Overexpression of PtrLAR3 in P. tomentosa Carr.
enhanced resistance to M. brunnea f.sp. multigermtubi

It is well established that PAs inhibit the in vitro growth of
several filamentous fungi, thus preventing their rapid de-
velopment in planta (Swain and Hillis, 1959). To determine
whether the constitutive expression of PtrLAR3 conferred
resistance to fungal pathogens, the antifungal activity of crude
leaf extracts from transgenic poplar plants was tested against
M. brunnea f.sp. multigermtubi. As shown in Fig. 6, in vitro
mycelial growth of the pathogens was inhibited by crude
extracts from transgenic 35S:PtrLARS3 plants, whereas no
inhibition zone was found with the use of extracts from the
empty-vector control line. Quantitative measurement revealed
that leaf crude extracts from transgenic 35S:PtrLAR3 plants
inhibited hyphal growth of M. brunnea f.sp. multigermtubi by
up to 45% (Fig. 6E). Furthermore, the inhibition by PAs
against M. brunnea f.sp. multigermtubi was evaluated micro-
scopically: the crude extracts from the 35S:PtrLAR3 lines
caused abnormal hyphal growth of M. brumnea f.sp. multi-
germtubi, seen as short hyphae, swollen tips, and less hyphal
branches, in comparison to the controls (Fig. 6C, D).

To assess the resistance of transgenic poplar plants over-
expressing PtrLAR3 against black spot disease, excised leaves
of transgenic and control lines were inoculated with agar plugs
containing hyphae of M. brunnea f.sp. multigermtubi. Com-
pared with the severe disease symptoms seen on the control
leaves at 4 dpi (Fig. 7A), only slight necrotic lesions appeared
on the leaves of all of the transgenic 35S:PtrLAR3 lines tested
(Fig. 7B). Further quantification assays showed that lesions
were significantly larger in the control plants (P < 0.05) than
in 358:PtrLAR3 lines (Fig. 7C), indicating that the transgenic
lines constitutively expressing PtrLAR3 had increased re-
sistance to fungal pathogens. RT-PCR analysis showed that
PtrLAR3 was expressed in the transgenic plants at various
levels (Fig. 7D). Further, quantitative experiments revealed
that high-level transgene expression was found in the selected
transgenic lines (Fig. 7E), compared to the empty-vector
control line, suggesting that the level of disease resistance in
transgenic plants could be positively correlated to PtrLAR3
mRNA levels.
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Fig. 5. PA accumulation in different tissues of transgenic lines constitutively expressing PtrLAR3. PAs were localized by staining different
tissues of control and PtrLAR3-overexpressor plants with the PA-specific stain dimethylaminocinnamaldehyde (DMACA; blue). (A-D)
Control stem, leaf, petiole, and root, respectively. (E-H) PtrLAR3-overexpressing stem, leaf, petiole, and root, respectively. (I) Soluble PA
levels in different tissues as determined by extraction and reaction with DMACA reagent. (J) Insoluble PA levels in different tissues. CK,

empty-vector control; 2, 5, and 6, PirLAR3-overexpressing lines. Asterisks indicate significant differences using Student’s t-test
(P < 0.05).

Discussion diseases have increased. Marssonina leaf spot is one of the
Worldwide, Populus is of increasing importance as commer- most common and devastating diseases of poplar, caused by
cial sources of fibre and fuel (Stettler ez al., 1996). With the the coelomycetous genus Marssonina (O’Riordain and
rapid development of artificial poplar forests, poplar Kavanagh, 1965; Li, 1984; Newcombe and Callan, 1998;
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Fig. 6. /n vitro antifungal activity of crude extracts from transgenic 35S:PtrLAR3 plants. (A, B) Inhibition of hyphal growth of Marssonina

brunnea f.sp. multigermtubi on the plate supplied with crude leaf extracts from control plants (A) and PtrLAR3-overexpressing plants (B).
(C, D) Microscopic observation of hyphal growth of M. brunnea f.sp. multigermtubi on plates without (C) and with (B) crude leaf extracts.
Photomicrographs were taken after 72 h of incubation of M. brunnea f.sp. multigermtubi; bars, 100 pm. (E) Quantitative measurement of
the inhibition of fungal growth of M. brunnea f.sp. multigermtubi with crude leaf extracts from control and PirLAR3-overexpressing plants.
CK, empty-vector control; 2, 5, and 6, PirLAR3-overexpressing lines. Values are means of at least three replications. Error bars indicate
standard deviations.
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Fig. 7. Resistance of transgenic poplar plants inoculated with Marssonina brunnea f.sp. muiltigermtubi. Poplar leaves infected with

M. brunnea f.sp. multigermtubi were photographed 4 days after inoculation. (A) Empty-vector control leaves. (B) Transgenic leaves from
35S:PtrLAR3 line 2. (C) Mean infected area of transgenic lines to the fungal pathogen; Ptr AR3 confers resistance to M. brunnea f.sp.
multigermtubi in transgenic poplar plants. (D) Semi-quantitative reverse-transcription PCR analysis of PirL AR3 expression in leaves of
transgenic poplar plants; ethidium bromide-stained products amplified with PirL AR3-specific primers from transgenic poplar cDNA and
control cDNA. (E) Quantitative real-time PCR analysis of PtrLARS3 transcript levels in leaves of transgenic poplar plants. CK, empty-vector
control; 2, 5, and 6, PtrLAR3-overexpressing lines. Values are means of three replications. Error bars indicate standard deviation.
Asterisks indicate a statistically significant difference between control and transgenic plants (P < 0.05 by Student’s t-test).

Spiers, 1998). Marssonina causes very small, dark brown M. brunnea (e.g. M. brunnea f.sp. multigermtubi) has been
spots on leaves, petioles, and young green capsules and considered the most important pathogen and occurs in most
infected poplar trees exhibit premature leaf fall and re- regions of China, resulting in serious economic losses in
duction in photosynthetic capacity and growth. The fungus poplar plantations.
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In poplar trees, PAs accumulate in leaves, roots, and
a variety of other tissues, with levels as high as 35% dry
weight (Salminen er «al, 2004). In the present study, the
higher PA contents were found in roots and leaves of
P. tomentosa Carr., compared to stems and petioles
(Fig. 2A, C). The flavonoid-derived PAs are considered as
the major defence phenolics produced in poplar leaves.
Damage to leaves by insect herbivory causes a rapid
accumulation of PAs, both at the site of damage and
distally in undamaged leaves (Peters and Constabel, 2002),
suggesting that these compounds function in herbivore
defence. The present study also found that PA accumula-
tion was stimulated in leaves of Chinese white poplar by
M. brunnea f.sp. multigermtubi at 3 dpi (Fig. 2B, D). This
rapid PA accumulation is mediated by the activation of
genes encoding enzymes involved in PA synthesis (Tsai
et al., 2006). Therefore, the present study further de-
termined the transcriptional response of P. tomentosa Carr.
to infection by M. brunnea f.sp. multigermtubi using a DGE
analysis. The results showed that flavonoid pathway genes
were strongly induced, leading to PA accumulation in
response to M. brunnea f.sp. multigermtubi (Fig. 1). The
accumulation of PAs following mechanical wounding,
fungal infection, or herbivore attack has been observed in
previous studies. For instance, mechanical wounding, insect
herbivory, and methyl jasmonate treatment all induced
expression of dihydrofavonol-4-reductase, a key enzyme for
PA synthesis, in aspen leaves resulting in PA accumulation
(Peters and Constabel, 2002). In a hybrid cottonwood
(Populus fremontii X angustifolia), transcript abundance of
leaf-expressed flavonoid genes essential for synthesis of the
PA precursor proanthocyanidin was wound stimulated
(Tsai et al., 2006), and the most strongly wound-induced
gene family members in P. fremontii X angustifolia also
correspond to those genes identified in this study as being
most highly induced by M. brunnea f.sp. multigermtubi in
P. tomentosa Carr. leaves.

To date, genetic evidence for LAR function in late
flavonoid biosynthetic pathway has been obtained for
several plants (Tanner et al, 2003; Bogs et al, 2005;
Routaboul et al., 2006; Pang et al., 2007; Paolocci et al.,
2007). Interestingly, Arabidopsis does not possess an obvious
LAR orthologue and has a PA composed of only epicate-
chin (Abrahams et al., 2003; Tanner et al., 2003). Further-
more, LAR expression is found in non-seed tissues of some
species, such as L. corniculatus (Paolocci et al., 2007) and
grape (Bogs et al., 2005), and these tissues accumulate high
levels of PAs. PAs may play a multifunctional role in
plants, including defence against microbes, protection from
photo-damage, and storage of excess carbon (Hemming and
Lindroth, 1995; Close and McArthur, 2002; Dixon,
2005). In the present study, the flavonoid structural gene
family members (including CHS, CHI, F3H, DFR, and
ANS) analysed in the DGE experiments were up-regulated
within 72 h of pathogen infection in poplar, as were the PA-
specific ANR and LAR, which participate in two separate
pathways to PA biosynthesis in most species (Dixon ez al.,
2005).

A high level of accumulation of PtrLLAR3 transcripts was
observed in poplar leaves infected by M. brunnea f.sp.
multigermtubi, indicating this gene may play an important
role in pathogen defence in poplar. In order to investigate
further, the present study overexpressed PtrLLAR3 in poplar.
As expected, PAs were present at much higher concentra-
tions in roots as compared with leaves of control plants
(Fig. 5). The quantitative assay using DMACA/HCI to
detect soluble PAs and butanol/HCI to detect insoluble PAs
revealed a significant increase in soluble PA concentrations
(P < 0.05) in all tissues analysed, whereas insoluble PAs
accumulated to higher levels in the roots and petioles of all
transgenic lines, compared to the stems and leaves (Fig. 5).
Interestingly, in a previous study, Desmodium LAR was
ectopically expressed in tobacco but catechin was not
accumulated (Tanner ef «l, 2003). Recently, transgenic
tobacco plants constitutively overexpressing M¢LAR from
M. truncatula showed reduced anthocyanin content, but no
catechin or increased levels of PAs were detected either in
leaves or in flowers (Pang et al., 2007). The precise function
of PtrLAR3 in PA biosynthesis in poplar requires further
investigation through in vitro biochemical analysis.

Plants encounter numerous pathogens in the natural
environment. Most plants produce a broad range of
secondary metabolites that are toxic to pathogens and
herbivores. PAs are important molecules for plant adapta-
tion to the environment. In poplar leaves, the transcrip-
tional activation of the PA biosynthetic genes leading to PA
accumulation in leaves occurs after herbivore damage and
mechanical wounding as well as after infection by the fungal
biotroph Melampsora medusae (Peters and Constabel, 2002;
Stevens and Lindroth, 2005; Miranda et al., 2007; Mellway
et al, 2009). The present data demonstrated that PtrLAR3
overexpression resulted in PA accumulation in poplar leaves
(Fig. 5), therefore, it was speculated that transgenic plants
overexpressing PtrLAR3 would display increased resistance
to fungal pathogens. In vitro assays using crude leaf extracts
from transgenic 35:PtrLAR3 plants showed that hyphal
growth of M. brunnea f.sp. multigermtubi was inhibited
significantly, while no inhibition of hyphal growth was
found with the use of extracts isolated from the empty-
vector control plants (Fig. 6). This finding is agreement with
PA toxicity to several filamentous fungi (Harborne, 1980;
Scalbert, 1991). In vivo assays (detached leaves) showed
that, after infection with M. brunnea f.sp. multigermtubi,
there was a significant reduction in disease symptoms in
transgenic leaves compared with the control (Fig. 7A-C),
indicating that overexpression of PtrLAR3 in poplar
significantly enhanced resistance to fungal pathogens.

Supplementary material

Supplementary data are available at JXB online.

Supplementary Table S1. Comparison of changes in
expression levels of PA biosynthetic genes leading to PA
accumulation following Marssonina brunnea f.sp. multi-
germtubi infection using DGE analysis.
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Supplementary Fig. S1. Photographs of PtrLAR3-over-
expressing Populus tomentosa Carr. after 4 weeks of growth.

Supplementary Fig. S2. PCR analysis of transgenic poplar
plants.
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