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Abstract
Conjugative plasmid transfer is key to the ability of bacteria to rapidly adapt to new environments,
but there is no agreement on a single quantitative measure of the rate of plasmid transfer. Some
studies derive estimates of transfer rates from mass-action differential equation models of plasmid
population biology. The often-used ‘endpoint method’ is such an example. Others report measures
of plasmid transfer efficiency that simply represent ratios of plasmid-bearing and plasmid-free cell
densities and do not correspond to parameters in any mathematical model. Unfortunately, these
quantities do not measure the same thing – sometimes differing by orders of magnitude – and their
use is often clouded by a lack of specificity. Moreover, they do not distinguish between bulk
transfer rates that are only relevant in well-mixed populations and the ‘intrinsic’ rates between
individual cells. This leads to problems for surface-associated populations, which are not well-
mixed but spatially structured. We used simulations of a spatially explicit mathematical model to
evaluate the effectiveness of these various plasmid transfer efficiency measures when they are
applied to surface-associated populations. The simulation results, supported by some experimental
findings, showed that these measures can be affected by initial cell densities, donor-to-recipient
ratios and initial cell cluster size, and are therefore flawed as universal measures of plasmid
transfer efficiency. The simulations also allowed us to formulate some guiding principles on when
these estimates are appropriate for spatially structured populations and how to interpret the results.
While we focus on plasmid transfer, the general lessons of this study should apply to any measures
of horizontal spread (e.g., infection rates in epidemiology) that are based on simple mass-action
models (e.g., SIR models in epidemiology) but applied to spatial settings.
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1. Introduction
Plasmids are extra-chromosomal genetic elements that are common in bacteria and code for
traits such as virulence factors and resistance to antibiotics and heavy metals. There are two
modes of plasmid replication: by propagation along with the bacterial host via cell division
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and by infectious transfer to new host cells (also called horizontal or conjugative transfer or
‘conjugation’). The infectious transfer of plasmids provides a form of bacterial sex when
plasmid DNA is incorporated into the chromosomal DNA of the host cell. In addition to this
role in chromosome evolution, plasmids also lead directly (without integration into the
chromosome) to rapid adaptation of bacteria to changes in environmental conditions, owing
to their ability to transfer among diverse hosts in a wide range of bacterial species (Davies,
1994; Clewell et al., 1995; Scott, 2002).

Just as infection rates are essential for understanding disease dynamics, conjugation rates
play a central role in the population dynamics of bacterial plasmids. Their estimation is
confounded by the fact that plasmid transmission occurs vertically as well as horizontally,
and the fact that conjugation requires contact between plasmid-bearing and plasmid-free
cells. This latter feature becomes especially relevant in surface-associated bacterial
communities because spatial structure imposes limits on the amount of cell–cell contact.
Conjugation rates on surfaces are inherently different from those in traditional liquid-based
measurements due to a lack of spatial homogeneity, restrictions on cell movement, and the
fact that some plasmids transfer more efficiently on solid surfaces than in liquid cultures
(Lawley et al., 2004). Therefore, methods for estimation of plasmid transfer rates on
surfaces are needed. Those most commonly used are typically more appropriate for liquid
cultures and their effectiveness in spatial populations has not been systematically evaluated.

The ‘endpoint method’ has been widely used to estimate plasmid conjugation rates since it
was first proposed (Simonsen et al., 1990). It avoids some of the shortcomings of other
measures of plasmid ‘transfer efficiency’ by providing a fairly robust estimate of
conjugation rate that is insensitive to factors such as initial cell density, initial donor-to-
recipient ratio, and sampling time—at least in well-mixed environments such as liquid
cultures. This estimate is easy to obtain, requiring the total cell density at time 0 and
densities of recipients, donors, and transconjugants at a single sampling time—the endpoint.
Here, ‘recipients’ (R) are plasmid-free cells; ‘donors’ (D) are the original plasmid-bearing
cells, and can either have the same genetic background as the recipient or be a completely
different strain, species, or genus; ‘transconjugants’ (T) are plasmid-bearing cells that arise
either from a recipient cell that receives a copy of the plasmid through conjugation or from
cell division of a transconjugant.

The endpoint estimate, γep, of the conjugation rate is given by

(1)

where ψmax is the estimated maximum per capita growth rate based on total cell densities
during exponential phase; R = R(t1), D = D(t1), T = T(t1) are the densities of recipients,
donors, and transconjugants, respectively, at a given sampling time t1; N = N(t1) is the total
cell density (N=R+D+T) at the sampling time and N0 is the total cell density at time 0
(Simonsen et al., 1990).

To understand the endpoint estimate and its potential limitations, it is helpful to consider the
underlying model assumptions upon which its derivation was based. Start with a simple
mass-action differential equation for the time-dependent densities of recipients,
transconjugants, and donors, and the nutrient concentration (C) in a batch culture
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(2)

where ψ (h−1) and γ (ml cell−1 h−1) denote growth and conjugation rates (with subscripts
corresponding to particular strains), and e (μg) is the resource conversion rate specifying the
amount of resource needed to produce a new cell. The following assumptions were in force
for the derivation of the endpoint estimate by Simonsen et al. (1990): (a) Identical growth
rates for donors, recipients, and transconjugants, with nutrient dependence of the Monod
form ψ(C) = ψmaxC/(C+K). (b) Identical conjugation rates for transconjugants and donors,
including the same Monod form γ(C) = γmaxC/(C +K) as reproduction. It is the maximum
conjugation rate, γmax, that the endpoint method estimates. The assumptions regarding
nutrient dependence, including identical half-saturation constants for growth and
conjugation, were essential in the derivation.

These stringent simplifying assumptions allowed the derivation of an easily calculated
estimate of conjugation rate. Moreover, Simonsen et al. (1990) demonstrated via simulations
of more complicated differential equations, that their estimate was actually quite robust to
changes in some of the simplifying assumptions. For example, they showed that differences
in growth rates for R, D, and T had little effect except when plasmid-bearing cells have a
growth advantage.

Although the endpoint estimate was derived with a well-mixed liquid culture in mind, it has
also been applied to surface-associated bacterial populations (MacDonald et al., 1992;
Normander et al., 1998; Licht et al., 1999; Lilley and Bailey, 2002). An application of the
endpoint method to spatially structured populations amounts to providing an estimate of an
‘effective conjugation rate’ for an ‘ideal liquid culture’ that would produce the observed
global densities of donors, recipients, and transconjugants. There are several potential
problems with such an approach.

First of all, one must keep in mind that plasmid transfer is fundamentally different on
surfaces than in liquids due to the means by which the requisite contact between donors and
recipients is attained. This is reflected in differences of many orders of magnitude between
the ‘intrinsic’ conjugation rates for neighboring cells on a surface and the averaged, or
‘bulk,’ conjugation rates usually described for well-mixed populations (Achtman, 1975;
Freter et al., 1983; Simonsen et al., 1990; Normander et al., 1998; Licht et al., 1999; Lilley
and Bailey, 2002; Krone et al., 2007; Zhong et al., 2010). In contrast to liquid cultures in
which bacterial populations are well mixed and plasmid transmission occurs homogeneously
throughout the population, surface-attached bacterial populations grow as micro-colonies
and plasmid transfer occurs at spatial scales that are much smaller than that of the whole
population (Normander et al., 1998; Licht et al., 1999; Häagensen et al., 2002).

Furthermore, even if one can make some sense of a bulk conjugation rate for a spatial
population, such a quantity is likely to be time dependent and sensitive to initial cell
distributions. This is due to the natural clustering that occurs in spatially distributed, sessile
populations. Simonsen (1990), for example, showed that the extent of plasmid transfer on
surfaces was highly dependent on the initial cell density, while in liquids this dependence
was very slight. Thus, the general appropriateness of applying the endpoint method to
surface bacterial populations needs to be investigated.
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Other measures commonly used to report plasmid transfer efficiency typically involve ratios
of various combinations of T, D, and R. These include T/R, T/D, T/RD, and T/N (Curtiss et
al., 1969; Bale et al., 1987; Pinedo and Smets, 2005; Sorensen et al., 2005). For example, if
one begins with a surplus of recipients, say D/R=0.1 or 0.01, then the measurement T/D
after 20 min will indicate the fraction of donors that were able to undergo a single round of
conjugation before growth dynamics started influencing the densities. Invasion-when-rare
experiments might begin with D/R=10−6 and measure T/N after 24 h to give an indication of
the extent to which the plasmid was able to spread in the population. Here, of course, one
cannot decouple the roles of conjugation and growth. As we discuss below, and was pointed
out in Simonsen et al. (1990), this leads to some of these measures of plasmid transfer being
highly sensitive to sampling time. Thus, while these measures give some indication of the
efficiency of transfer, they do not directly report the rate or frequencies of the conjugative
transfer events and are significantly confounded by growth of T, R, and D during the course
of an experiment (often several hours, or even days for studies in microcosms or the field)
(Simonsen et al., 1990; Hill and Top, 1998; van Elsas and Bailey, 2002).

Our main goal was to determine how well the endpoint estimate and other measures of
plasmid transfer efficiency perform when applied to surface-attached bacterial communities.
We used an individual-based stochastic spatial model to simulate surface-associated plasmid
population dynamics across a variety of conditions, but with a fixed (and known)
conjugation rate. This model, which captures the essential features of plasmid population
dynamics on surfaces (cf. Krone et al., 2007; Fox et al., 2008), was used to generate
simulated time-dependent densities of donors, recipients, and transconjugants. These
densities were used to derive the corresponding bulk conjugation rates (γ, for the endpoint
method) and other measures of plasmid transfer efficiency (T/R, T/D, T/RD, and T/N). The
sensitivity of these estimates to conditions such as initial cell density, initial donor-to-
recipient ratio, and sampling time was then evaluated. Note that, since the actual intrinsic
conjugation rate has the same value in every simulation, any variations in the estimates of
plasmid transfer rate are reflective of problems in applying these estimates to spatially
distributed populations.

2. Materials and methods
2.1. Mathematical model

The model used here is an individual-based lattice model known as an interacting particle
system (IPS). It is similar to the one developed in Krone et al. (2007), and is built on a two-
dimensional square lattice. Each site in the lattice can be either vacant (V) or occupied by a
single bacterial cell with type donor (D), recipient (R), or transconjugant (T). An occupied
site is assumed to reproduce at a rate ψ (with subscripts used later to distinguish growth
rates of different cell types), and deposit its (single) offspring onto a randomly chosen
neighboring site that is vacant. If there are no neighboring vacant sites, the reproduction
event is suppressed providing a kind of local carrying capacity that maintains the 2-
dimensional structure of the model. A plasmid-bearing cell (D or T) can transfer a copy of
its plasmid at a rate γ0 to a nearby recipient that is randomly chosen. We assume identical
conjugation rates for donors and transconjugants and only consider permanently derepressed
plasmids. Furthermore, to keep the model simple, we ignore cell death and segregative
plasmid loss.

When a cell reproduces or conjugates, it initiates a change to one of the neighboring sites,
causing a local change in the current lattice configuration. A ‘local neighborhood’ specifies
which sites are neighbors for the purposes of determining the locations of daughter cells
after cell division or the locations of potential recipient cells for conjugation by a plasmid-
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bearing cell. In our simulations, we took the local neighborhood of a given site to be the 8
adjacent sites surrounding that site.

There is empirical evidence (Lilley et al., 1996; Kroer et al., 1998; Normander et al., 1998;
Hausner and Weurtz, 1999) that – at least for certain plasmid–bacteria combinations – the
dependence of conjugation rate on nutrient concentration is not of the first-order Monod
form (see Section 1) used in Simonsen et al. (1990), but rather exhibiting more of a
threshold dependence with little or no conjugation for low levels of nutrient concentration
and a nearly constant maximum conjugation rate for intermediate and high levels.
(However, see Turner, 2004 for an unusual example of a plasmid whose conjugation rate
appears to decrease at high glucose concentrations.) Thus, a more appropriate dependence is
likely to be given by a ‘second-order Monod’ relation: γ(C) = γmaxC2/(C2+K2). In fact,
Krone et al. (2007) found this threshold-like character of conjugation rate essential in fitting
an IPS model to the aforementioned dependence of transconjugant density on initial cell
density (Simonsen, 1990). Such threshold-type dependence is common in theoretical
biology, arising for example as a Holling type III functional response in ecology and in the
Emax model (with Hill exponent 2) in pharmacodynamics.

Rates of conjugation and reproduction in our model were assumed to be functions of the
local ‘nutrient availability’ C, here equated with the fraction of vacant sites in the 7 × 7
‘nutrient neighborhood’ centered at the ‘focal’ site x (see below)

(3)

and

(4)

These piecewise linear ‘sigmoidal’ functions (Krone et al., 2007) are sketched in Fig. 1.
They provide a simple way of generating approximations to the first and second order
Monod functions described above and in Section 1, and are more appropriate in a discrete
setting with only a limited number of nutrient ‘units’ available at a given site. (A Monod
function reaches its maximum value asymptotically as the nutrient level tends to infinity.)

This modeling approach, controlling growth via a (local) carrying capacity instead of
explicitly modeling nutrient availability, is analogous to that of logistic growth dynamics in
differential equation models (Brauer and Castillo-Chavez, 2001) where one assumes that per
capita growth rates are proportional to the fraction of carrying capacity remaining to be
filled. Indeed, the diffusion and consumption of nutrients and other growth-limiting
quantities in spatially distributed populations can be quite complex and can vary
significantly depending on species and experimental conditions. Not wanting to restrict our
model to a specific case or to impose detailed assumptions that could influence behavior, we
have chosen this more generic approach with fewer parameters. Our goal in the current
study was to use as simple a model as possible in order to not bias the results by inclusion of
too many specifics (which cannot all be measured in the lab) or unduly restrict applicability.

Note that the ‘intrinsic conjugation rate’ γ0(C) in Eq. (3) gives the rate of plasmid transfer
from a specific plasmid-bearing cell to a neighboring recipient cell. This individual-based

Zhong et al. Page 5

J Theor Biol. Author manuscript; available in PMC 2013 February 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



intrinsic conjugation rate differs fundamentally from the bulk conjugation rates of mass-
action models (see Section 1 and Zhong et al., 2010).

2.2. Simulations
We used our spatially explicit IPS model to simulate the dynamics of bacterial growth and
plasmid transfer on surfaces. Our simulations were carried out on a 1000 × 1000 lattice with
wraparound boundaries to eliminate edge effects. With cell dimensions on the order of 1
μm, such a lattice can be thought of as corresponding to an area of approximately 1 mm2;
thus a fully occupied lattice corresponds to 106 cells/mm2 or 108 cells/cm2. Simulations
involve a series of (computer) time steps at each of which a ‘focal’ site is chosen at random
in the lattice (with replacement); according to the rates of various events, it is determined
whether a change will be initiated from that site and, if so, what that change will be.

The simulations began with donors and recipients being seeded on the lattice, with various
levels of cell density, donor-to-recipient ratio, and spatial clustering. We set as a standard
initial condition 106 cells/cm2 for initial cell density, 1:1 for donor-to-recipient ratio, and
random cell placement. Other initial settings were deviations from this standard one: (i)
donor-to-recipient ratio ranging from 1000:1 to 1:1000, (ii) initial cell density from 103 to
107 cells/cm2, and (iii) cluster size (described below) from 5 × 5 to 500 × 500.

The simulations were run until the lattice had 95% of its sites occupied by cells, an
indication that the population density was reaching the carrying capacity of the lattice. These
final cell densities are referred to as ‘stationary phase’ densities below. In addition to
computing the endpoint estimate, γep, and the various other plasmid transfer efficiency
measures, T/R, T/D, T/RD, and T/N, at stationary phase, we also tracked the endpoint
estimates over time to examine the effect of sampling time.

We synchronized the simulation time steps with actual time using 30 min as the doubling
time of the recipient cells during exponential growth. In simulations, it took about 7 × 106

time steps for a recipient population (started with low density) to double. By matching the
two time scales (30 min=7 × 106 time steps), we were able to plot the simulated data on a
scale of hours. For example, with an initial cell density of 106 cells/cm2, the 95% full
stationary phase corresponded to a time of 9 h.

Model parameters used in the simulations were as follows: thresholds θ=0.8, θ1=0.2, θ2=0.3
for growth and conjugation rates, respectively; maximum growth rates

; maximum intrinsic conjugation rate . The choice of 
is similar to the intrinsic conjugation rates that provided the best fit to empirical data in our
previous work (Krone et al., 2007; Fox et al., 2008; Zhong et al., 2010) using similar IPS
models. Since conjugative DNA transfer happens on the order of minutes once contact has
been made, for cell growth and conjugation to occur on similar time scales—matching what
is seen in the lab, these intrinsic rates cannot be too different in the models.

2.3. Scaling for comparison of liquid- and IPS-based densities
Bulk conjugation rates, including estimates via the end-point method, are presented in units
of ml cell−1 h−1. When comparing estimates of bulk conjugation rate for surface cultures or
spatial simulations to these liquid-based quantities, the densities must be scaled so that one
is comparing quantities in similar units. To come up with a scaling that compares lattice-
based densities with liquid densities, we equate the densities at carrying capacity in the two
settings. Suppose we use an L × L lattice and have at most 1 cell per site. This gives a
carrying capacity of L2 cells/lattice (full grid). Suppose the corresponding carrying capacity
in liquid is N̄ cells/ml. Equating these densities, we have L2 cells=lattice = N̄ cells=ml, or
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(5)

In our simulations, we used a 1000 × 1000 lattice. So, based on an assumed liquid carrying
capacity of N̄ = 109 cells=ml, lattice-based cell densities were multiplied by 103 to obtain an
equivalent liquid density. This scaling up by a factor of 1000 all the densities appearing in
the endpoint estimate cancels everywhere except in the denominator, N−N0. This meant that
our IPS-generated end-point estimates of conjugation rate had to be divided by 1000. This,
indeed, produced bulk conjugation rates that are of similar orders to those typically
measured (Freter et al., 1983; Simonsen et al., 1990; Licht et al., 1999) in liquid cultures
(see Section 3).

2.4. Statistical analysis
Statistical analysis, using log-transformed data, was based on two-sided t-tests and the
Pearson correlation test, performed in Matlab (version 7.4).

2.5. Strains and media
E. coli K12 MG1655 (ATCC 47076) was used as the bacterial plasmid host. To be able to
distinguish isogenic donor and recipient strains by selective plating, two antibiotic resistant
mutants of this E. coli strain were used. As a donor we used a rifampicin (Rif) resistant
mutant, designated K12Rif, while a nalidixic acid (Nal) resistant strain, K12Nal, was used as
recipient (Fox et al., 2008). The plasmid was the 64.5 kb broad-host-range IncP-1β plasmid
pB10, which confers resistance to four antibiotics (tetracycline, amoxicillin, streptomycin,
and sulfonamides) and mercury chloride, transfers to various hosts at high rates (Dröge et
al., 2000), and has been completely sequenced (Schlüter et al., 2003). A marked derivative
of pB10 (pB10::rfp) has been constructed previously by insertion of the dsRed gene cassette
(rfp) to visually distinguish between plasmid-bearing (red fluorescent) and plasmid-free
(white) cells (De Gelder et al., 2005). Even though the red fluorescence feature was not used
in this experiment, we used this marked plasmid since it is consistent with what we have
used in other experiments carried out within the research project. Plasmid pB10::rfp was
transferred to K12Rif in plate matings as described previously (Lejeune et al., 1983), with
selection on LB amended with Rif (100 mg/l) and tetracycline (Tc) (10 mg/l).

2.6. Filter mating procedures
Plasmid transfer experiments were performed on 0.45 μm pore, 25 mm diameter filters
(Whatman International Ltd., Maid-stone, England) on top of LB agar plates, essentially as
previously described (Top et al., 1992). The donor strain was K12Rif (pB10::rfp), and the
recipient strain K12Nal. Liquid cultures of donor and recipient strains were grown overnight
at 30 °C in LB broth (with Tc 10 μg/ml for the donor), then centrifuged, rinsed and
resuspended in an equal volume of LB broth. The OD600 of the donor and recipient
suspensions were read to determine if the two strains had equal cell densities. The
suspensions were also diluted and enumerated to determine the viable cell count at time 0.
These suspensions were further diluted to obtain the desired initial densities (approximately
103–107 cfu/ml) of parental strains. Five microliter of first the recipient suspension was
placed in the center of a sterile filter on top of an LB agar plate and allowed to dry; then the
donor suspension was placed in the center of the same sterile filter on top of the LB agar
plate. The droplet of cells dried in less than 1 min, thus limiting the amount of time cells
spent in a liquid environment. Triplicate filters were prepared for each initial density. The
plates were incubated for 30 h at 30 °C. To count the donor, recipient, and transconjugant
populations, the filters were resuspended in 2 ml saline, and the respective population
densities were enumerated by serial dilution in saline and plating appropriate dilutions on
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three different selective media using a spiral plater (Spiral Biotech, Inc.). The colony counts
were determined using a QCount automatic colony counter (Spiral Biotech, Inc.). Colony
forming units of donors were enumerated by plating on LB containing Rif (50 mg/l) and Tc
(10 mg/l), recipients on LB with Nal (30 mg/l), and transconjugants on LB with Nal (30 mg/
l) and Tc (10 mg/l). Appropriate controls of donor and recipient cultures placed separately
on filters were always included, and no significant numbers of resistant colonies were
observed on the transconjugant medium when plating these undiluted control suspensions.
To determine the population densities per cm2, the diameter of the circular droplet after it
had dried was measured and used to calculate the surface area covered by cells.

3. Results
When estimating the rate at which some event takes place in a population, it is important to
understand how this estimate – or the rate itself – depends on various conditions. The
endpoint estimate of plasmid transfer rate is known to be robust to changes in some
experimental conditions for well-mixed liquid cultures. Whether or not this robustness holds
when the estimate is applied to spatial populations has not been previously tested, even
though the endpoint estimate has been applied to spatial data. Indeed, it is not obvious what
such a ‘liquid-appropriate’ estimate would even mean in a spatial context. To address this,
we measured in a spatial model how sensitive the endpoint estimate was to initial conditions
in the parental populations, i.e., ratio and densities of donors and recipients, as well as their
spatial configuration. The spatial simulations were run with prescribed parameters –
including a fixed intrinsic conjugation rate – to produce time-dependent densities of donors,
recipients, and transconjugants under the different scenarios described above. The simulated
cell densities, under each ‘culture’ condition, were then used to compute the endpoint
estimate of the (fictitious) ‘bulk’ conjugation rate γ. Other transfer efficiency measures were
similarly computed. In this way, we were able to determine how various ‘experimental’
conditions in a spatially structured population might affect these estimates of plasmid
transfer efficiency.

3.1. Effect of donor-to-recipient ratio
To assess the effect of initial donor-to-recipient ratios (D:R) on the endpoint estimate, γep,
cells were randomly placed on the lattice at various D:R ratios, with the initial total density
being fixed at 106 cells/cm2 (i.e., 104 cells/lattice). Here and in the treatments below,
densities of R, D, and T were simulated at various time points and used to calculate endpoint
estimates. The stationary phase densities of R, D, and T are shown in Fig. 2A. Although
roughly half of the pairwise comparisons of the endpoint estimates for the data at 9 h
resulted in significant differences (p<0.05), this appears to be mainly due to the small
variances in the simulations at stationary phase. In fact, the endpoint estimates for the 9 h
data were all within a factor of less than 1.5 as the initial densities were varied (see Fig. 2B
or Table 1). The dependence of the endpoint estimates on sampling time is discussed below.

This lack of sensitivity of the endpoint estimate to initial D:R ratio in the spatial model is
similar to what has been observed in liquid cultures and corresponding models of well-
mixed populations (Simonsen et al., 1990). For the spatial simulations, this can be explained
from the final densities used to calculate the endpoint estimates (Fig. 2A). Namely, the
quantities ψmax and N−N0 in Eq. (1) were nearly the same across all simulations. Thus, only
the term TN/RD has the potential to significantly affect estimates of γ. A closer examination
of Fig. 2A shows that TN/RD is approximately one for all the different initial D:R ratios.
When the donor was initially dominant (D:R ratios of 1000:1, 100:1 and 10:1), D was close
to N and T was close to R, thus TN/RD≈1; when recipients dominated initially, again TN/
RD≈1; when D:R=1:1, T, D, R, N are of similar magnitude, thus TN/RD≈1.
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3.2. Effect of initial density
To determine the effect of initial cell densities on the endpoint estimate, donors and
recipients (1:1 ratio) were randomly placed on the lattice with different initial densities.
Densities of R, D, and T were simulated (stationary phase densities shown in Fig. 3A). The
resulting values of γep (Fig. 3B) increased by two orders of magnitude as the initial density
increased and depended very little on the sampling threshold, measured as the fraction of the
lattice that is filled at the time of sampling. Thus, the initial cell density significantly affects
(p=0.0002) the endpoint estimate of conjugation rate in spatial simulations. This is very
different from the situation with well-mixed populations and it illustrates one of the pitfalls
of applying the endpoint method to spatial populations. The above can be explained by
observing (Fig. 3A) that the stationary phase transconjugant density was strongly dependent
on initial density, while the donor and recipient densities were insensitive to initial density.
This dependence of transconjugant density on initial cell density is, in fact, one of the
signatures of plasmid spread on surfaces and is consistent with empirical results of
Simonsen (1990) with the IncF plasmid R1drd19, as well as our own data (Fig. 4) with an
IncP-1 plasmid. Note that the data in Fig. 3B are more easily interpretable, and make more
sense, when presented as a function of sampling threshold –rather than elapsed time – since
these simulations were started with different initial densities and hence take different times
to reach the same density.

This pronounced effect of spatial structure on the dynamics of conjugative plasmid transfer
was demonstrated experimentally for the F-like plasmids R1 and its derepressed derivative
(Simonsen, 1990). We evaluated whether this effect is also present for a very efficiently
transferring broad-host-range plasmid of the IncP-1 group, pB10::rfp. IncP-1 plasmids
behave very differently than F-like plasmids, presumably because their rigid pili allow more
efficient transfer on surfaces than in liquid, while F plasmids with their flexible pili transfer
just as efficiently in liquids as on surfaces (Bradley et al., 1980). Fig. 4A shows the
experimentally derived stationary phase densities, including the characteristic rise in
transconjugant density with increasing initial cell density. As shown in Fig. 4B, this leads to
values of γep that increased as the initial cell density increased, very much similar to the
predicted outcomes shown in Fig. 3. The simulated results are thus validated by two sets of
experimental data obtained with two very different plasmids—a narrow-host-range IncF-II
plasmid and a broad-host-range IncP-1 plasmid.

3.3. Effect of spatial clumping
The effect of initial cell density on the endpoint estimate of bulk conjugation rate is due to
the fact that conjugation only occurs at the interface between plasmid-bearing and plasmid-
free colonies. When cell densities are initially low, conjugation is delayed until reproduction
causes microcolonies to come into contact, and the extent of the resulting interfaces between
donor and recipient colonies governs the amount of conjugation that can take place
(Simonsen, 1990; Krone et al., 2007; Fox et al., 2008). We sought to further explore this
effect by artificially controlling cluster size in a measurable way. Thus, we initialized our
simulations with donors and recipients (1:1 ratio, total density 106 cells/cm2) placed on the
lattice in a ‘checkerboard’ pattern, with alternating sub-squares containing exclusively donor
or recipient cells. The sub-square size (or cluster size) was varied to artificially generate
different degrees of spatial clumping: the larger the size of the clusters, the more the
clumping and the smaller the region of donor-recipient interface. Stationary phase cell
densities are shown Fig. 5A. The γep estimates were calculated at various time points after
initial placement of D and R on the lattice (Fig. 5B). Transconjugant yields and γep
estimates varied by approximately 1.5 to 2 orders of magnitude over the range of cluster
sizes. As with the above results on the effects of initial cell density, the effects of initial
spatial clumping on estimated γep were significant (p<0.0001).
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3.4. Effect of sampling time
The endpoint estimate was tracked over time for all the simulations (Figs. 2, 3 and 5). As
explained above, Fig. 3 had elapsed time measured not in hours, but in the progression of the
lattice space being filled by cells. While the data indicated some correlation of γep with
sampling time (p <0.05 for each case), the scale of the change in γep over time was
relatively small. That is, the difference between the γep calculated during exponential phase
and at stationary phase is within a factor of 5 (or 0.62 in log scale). Most of that variation
can be accounted for at the earliest sampling times when cell densities were lowest. Thus,
the values of γep for the spatial simulations were affected more by sampling time than what
has been observed in liquid cultures (Simonsen et al., 1990), but this dependence was not
nearly as strong as the dependence on initial density and clumping.

3.5. Other measures of transfer efficiency
Other transfer efficiency measures T/D, T/R, T/RD, and T/N were also evaluated (see Table
1) using the same stationary phase cell densities upon which the endpoint estimates were
based. All of these alternative measures except T/RD showed variation across the spectrum
of initial conditions (rows), at least as large as those of the endpoint estimate. The values for
these measures differed from each other by orders of magnitude within each treatment and
tended to be strongly dependent on sampling time. These are consistent with similar issues
in well-mixed populations (Simonsen et al., 1990). The measure T/RD showed behavior
similar to the endpoint estimate. This is not unexpected since (N−N0)−1 ln(1+(TN=DR)) ≈
T=DR when (TN)/(DR) is small and N−N0≈N.

4. Discussion
In surface-associated populations, spatial structure leads to heterogeneities in nutrient
access, interactions between different cell types, etc. These have the potential to affect the
performance of estimates that were designed with well-mixed populations in mind.
Concerns about the limitations of measures of plasmid transfer efficiency and the need for
predictive mathematical studies of plasmid transfer in surface-associated microbial
populations were emphasized in Sorensen et al. (2005). Our simulation study seeks to
address some of these issues.

All of the measures of plasmid transfer efficiency we investigated with our spatial
simulations were sensitive to changes in initial cell density and clustering. This alone makes
their application to surface-associated populations problematic unless care is taken to control
for the natural clustering that is a hallmark of spatial growth. The endpoint method was the
least sensitive to other culture conditions, and this is consistent with its performance in well-
mixed populations. It also has the advantage of being interpretable as a bulk conjugation
rate. The quantity T/RD approximates the endpoint estimate if the conditions mentioned
earlier are satisfied, and so it has similar properties. The other transfer efficiency measures
(T/D, T/R, and T/N), while easy to calculate, are very difficult to interpret in a consistent
manner and by no means represent a ‘rate’ of transfer, but merely a proportion of
transconjugants. These summary statistics can differ by orders of magnitude and are not
useable as conjugation rates in mathematical models. They are sensitive to sampling time
and initial conditions. At the very least, one should always specify clearly which measures
of plasmid transfer efficiency are being used; they are not equivalent.

The endpoint estimate, applied to spatial cultures, can be thought of as providing an
‘effective conjugation rate’ that treats the population as if it were an idealized, perfectly
mixed community with densities changing according to a mass-action differential equation.
This is similar to the use of ‘effective population sizes’ in population genetics, where one
tries to compare a population having some kind of structure or fluctuating population size
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with an ideal Wright–Fisher model of constant size. In both settings, the extent to which the
idealized equations reflect empirical data (or predictions from more realistic models)
depends on how well the effects of any heterogeneities average out or homogenize over the
length and time scales being used.

It was suggested in Simonsen et al. (1990) that the endpoint estimate might also be applied
to surface cultures provided the donor and recipient cells initially form a well-mixed
confluent layer and are in 1:1 ratio. This suggestion was based on their observation that such
a surface mating (using E. coli K12 hosts and the permanently derepressed plasmid
R1drd19) had temporal dynamics that could be fit to a mass-action differential equation
provided the incubation time was short (between 2 and 6 h). It is in restricted cases like this,
for which one can think of an equivalent mass-action model, that the endpoint estimate has
some merit in a spatial setting—provided it is interpreted appropriately. (Our results indicate
that the 1:1 donor-to-recipient ratio is not necessary in the above suggestion from Simonsen
et al. (1990), but having a well-mixed confluent layer is crucial.) In general, while some
studies (e.g., Knudsen et al., 1988; Clewlow et al., 1990; Top et al., 1992) have used mass-
action models to successfully simulate aspects of plasmid transfer in spatially structured
communities such as soils and filter matings on agar plates, one must use care to ensure that
the conditions that are implicit in these settings are not ignored when interpreting results.

Using a spatially explicit mathematical model to simulate plasmid population dynamics on
surfaces, we saw that the endpoint estimate of the (effective bulk) conjugation rate was
fairly stable to changes in sampling time and initial donor-to-recipient ratio, but changed by
up to two orders of magnitude when initial cell densities or the amount of spatial clustering
were varied. Cell density correlates positively with bulk conjugation rate estimates, while
clustering correlates negatively. Both effects indicate that the degree of donor–recipient
mixing is the variable that most affects bulk conjugation in surface-grown cultures. This
strong effect of mixing on the level of plasmid transfer in surface-associated populations
was also demonstrated experimentally in Fox et al. (2008).

We conclude with some recommendations for quantifying plasmid transfer efficiency. The
best way to understand plasmid transfer in surface-associated populations is to estimate the
intrinsic conjugation rate and use a spatially explicit mathematical model to determine the
effects of various experimental conditions. The intrinsic conjugation rate can be estimated
indirectly for a given model by matching the experimental spatial and temporal dynamics of
donors, recipients, and transconjugants under a variety of initial configurations (cf. Krone et
al., 2007). In principle, one can get a more direct estimate by spreading a confluent layer of
donors and recipients – mixed with recipients in surplus – on a plate and measuring the time
at which transconjugants start appearing. This, however, can be made difficult by issues
such as physiological stresses that the cells experience when being transferred from a liquid
culture to a plate environment (Cuny et al., 2007), spurious mating that occurs on selection
plates used to count transconjugants, and other detection problems such as delays or
inconsistent levels of fluorescent protein expression encountered when using fluorescently
labeled plasmids.

If, instead, one uses the bulk estimates we have been discussing to attempt to quantify
plasmid transfer in experimental cultures, the endpoint method provides the least
problematic estimate for both liquid and spatial cultures. Furthermore, we suggest the
following:

1. When applying the endpoint method to well-mixed (liquid) populations, take into
account the restrictions outlined in Section 1 (and in Simonsen et al., 1990). For
example, Simonsen et al. (1990) point out that their assumption of identical first-
order Monod dependence on nutrient concentration for conjugation and growth
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rates means that one must take care when applying the endpoint method that both
growth and conjugation are equally affected by nutrient availability during the
incubation period. In particular, the incubation period should be short enough to
avoid significant decreases in nutrient concentration. Remember also that the
endpoint method is designed to provide an estimate of the maximum conjugation
rate.

2. When applying the endpoint method to spatial populations,

a. Keep in mind that the endpoint estimate only provides an ‘effective
conjugation rate’ by regarding the data as if arising from a well-mixed
population. Applying it to spatially heterogeneous data will provide
numbers, but the relevance and interpretation of those numbers requires
caution. The endpoint estimate should not be confused with the actual
‘intrinsic’ conjugation rate that indicates the rate of plasmid DNA transfer
between nearby (immobile) donor and recipient cells (cf. Zhong et al.,
2010).

b. To minimize the effects of clustering in a spatial endpoint estimate, it is
best to begin with donors and recipients well mixed on the surface with a
high enough density so that the cells are in contact. Sampling (to estimate
the densities required in the endpoint method) should be carried out before
clustering and nutrient consumption lead to spatial heterogeneities and/or
non-parallel changes in growth and conjugation rates. Thus applied, the
endpoint estimate will provide a consistent upper bound on the effective
bulk conjugation rate, keeping in mind that reduced densities and
increased spatial clustering may decrease bulk conjugation in natural
populations. Ultimately, the direction and magnitude of the effects of
limited mixing will define the level of difficulty in (i) comparing
structured populations to well-mixed ones and (ii) using bulk-type
estimates to draw conclusions about structured populations.

3. When applying the transfer efficiency measures T/D, T/R, T/RD, and T/N to spatial
populations, T/RD will be very close in behavior to the endpoint estimate, for
reasons that are explained at the end of Results. In our simulations, all of these
quantities had sensitivity to initial cell density and clustering of donors and
recipients similar to that of the endpoint estimate and hence the afore-mentioned
issues related to limited mixing apply. Unlike the endpoint estimate and T/RD, the
measures T/D, T/R, and T/N are highly sensitive to donor-to-recipient ratios (cf.
Table 1 where these measures differed by 3–4 orders of magnitude over the range
of ratios) and to sampling time (data not shown, but see Simonsen et al. (1990) for
similar effects in well-mixed populations). For these reasons, their use should
always be accompanied by carefully measured indications of sampling times and
donor-to-recipient ratios, and the results should be interpreted in light of these
conditions.
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Fig. 1.
Conjugation rate γ0 (left) and growth rate ψ (right) as sigmoidal functions of resource
concentration C.
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Fig. 2.
Simulated effect of initial donor-to-recipient ratio. (A) T, D, R densities sampled at
stationary phase for different initial D:R ratios. (B) Endpoint estimates of conjugation rate as
a function of sampling time for different initial D:R ratios, with the initial total cell density
being set at 106 cells/cm2. The small scale on the y-axis is used to help distinguish between
the curves. The arrow indicates the sampling time used in (A).
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Fig. 3.
(A) Simulated T, D, R densities sampled at stationary phase for different initial densities.
(B) Endpoint estimates of conjugation rate for different initial densities, as a function of
sampling criterion (sampling time). The arrow indicates the sampling time used in (A).
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Fig. 4.
Stationary phase densities for the experiment with plasmid pB10::rfp in E. coli cells on
filters on top of LB agar. (A) Effect of initial donor and recipient cell densities (in 1:1 ratio)
on stationary densities of T, D, R. Population densities were measured after 30 h of
incubation. ■: Recipient; ●: donor; ▲: transconjugants. Data represent the means of
triplicate mating experiments, with error bars showing standard deviations. (B) Endpoint
estimates of conjugation rate as a function of initial cell density.
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Fig. 5.
(A) Simulated T, D, R densities sampled at stationary phase for different initial cluster sizes.
(B) Endpoint estimates of conjugation rate as a function of sampling time for different initial
cluster sizes. Donors and recipients were initiated in 1:1 ratio with a total density of 106

cells/cm2. The arrow indicates the sampling time used in (A).
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