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Although priming with replicating adenovirus type 5 host range mutant (Ad5hr)-human immunodeficiency virus (HIV)/simian
immunodeficiency virus (SIV) recombinants, followed by HIV/SIV envelope boosting, has proven highly immunogenic, result-
ing in protection from SIV/simian-human immunodeficiency virus (SHIV) challenges, Ad5hr recombinant distribution, replica-
tion, and persistence have not been examined comprehensively in nonhuman primates. We utilized Ad5hr-green fluorescent
protein and Ad5hr-SIV recombinants to track biodistribution and immunogenicity following mucosal priming of rhesus ma-
caques by the intranasal/intratracheal, sublingual, vaginal, or rectal route. Ad recombinants administered by all routes initially
targeted macrophages in bronchoalveolar lavage (BAL) fluid and rectal tissue, later extending to myeloid dendritic cells in BAL
fluid with persistent expression in rectal mucosa 25 weeks after the last Ad immunization. Comparable SIV-specific immunity,
including cellular responses, serum binding antibody, and mucosal secretory IgA, was elicited among all groups. The ability of
the vector to replicate in multiple mucosal sites irrespective of delivery route, together with the targeting of macrophages and
professional antigen-presenting cells, which provide potent immunogenicity at localized sites of virus entry, warrants continued
use of replicating Ad vectors.

Mucosally administered, replication-competent adenovirus
type 5 host range mutant (Ad5hr)-human immunodefi-

ciency virus (HIV)/simian immunodeficiency virus (SIV) recom-
binants, coupled with HIV/SIV envelope boosting, mimic live vi-
ral vaccines by engaging all components of the immune system,
eliciting cellular, humoral, innate, and mucosal immune re-
sponses. This replicating Ad recombinant prime-boost approach
elicits potent T cell immunity (35) and functional systemic and
mucosal antibodies mediating neutralization (2, 43), antibody-
dependent cellular cytotoxicity, antibody-dependent cell-medi-
ated viral inhibition, and transcytosis inhibition (13, 15, 16, 20,
40). Memory B cells that recall functional antibody activity de-
velop (3) along with increased antibody avidity (40), indicative of
maturation. The vaccine strategy elicits strong protective efficacy
in nonhuman primates (33, 35).

Despite this history of immunogenicity and protective efficacy,
we know little about Ad5hr biodistribution and replication in mu-
cosally immunized nonhuman primates. In chimpanzees, follow-
ing intranasal (IN) priming, human Ad is shed from the gut for 8
to 13 days, suggesting active replication, while less shedding into
nasal or pharyngeal secretions occurs (28, 29). In contrast, IN/oral
priming of rhesus macaques with Ad5hr recombinants results in
greater shedding into nasal secretions (mean, 30 days) compared
to that in the gut (4 to 8 days) (5, 34). We postulate that this
persistent virus expression primes the immune system efficiently
and works in concert with protein boosting to broaden protective
immunity.

Our vaccine regimen, using sequential IN plus oral and then
intratracheal (IT) priming, is based on the preferential replication
of Ad5hr in the upper respiratory tract (URT). IN immunization

can induce T and B cell immunity in the genital tract, a key site of
HIV entry (6, 11). However, other mucosal routes of replicating
Ad delivery may lead to broader in vivo distribution and enhanced
local immunity. An alternative to nasal administration, the sub-
lingual (SL) route, is as effective as IN administration in inducing
mucosal and systemic T cell responses and antibodies to cholera
toxin in mice (9). Vaccine, administered under the tongue in a
small volume, becomes available to a dense network of dendritic
cells in the SL mucosa. SL delivery is also as effective in inducing
cytotoxic T lymphocytes and antibody-secreting cells in the geni-
tal mucosa as IN or intravaginal (IVag) immunization and is bet-
ter than intragastric delivery (8). Moreover, SL immunization
with human papillomavirus (HPV)-like particles in cholera toxin
adjuvant resulted in protection of mice from HPV challenge (8).
Further, mice administered tetanus toxoid in mucosal adjuvant
(32) or HIV gp41 and reverse transcriptase peptide coupled to
cholera B subunit (18) by the SL route developed antibodies and
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cytotoxic T cells in the female genital tract and systemic compart-
ments.

Although HIV is transmitted principally across rectal/genital
mucosae, few studies have investigated IVag or intrarectal (IR)
delivery of HIV vaccines. Drawbacks to IVag immunization in-
clude effects of hormonal fluctuations and the menstrual cycle on
induction of reproducible immunity. Moreover, IR immuniza-
tion may not be readily or widely acceptable. Nevertheless, vacci-
nation at both sites might elicit strong local immunity. HPV pseu-
dovirions encapsidating a respiratory syncytial virus (RSV) DNA
vaccine induced RSV-specific systemic and mucosal immunity in
mice after IVag vaccination (17). Further, a trimeric HIV gp140
protein delivered vaginally in a stabilizing polymeric gel to guinea
pigs elicited genital tract IgG and IgA and serum IgG (10). IR
priming of rhesus macaques with a simian-human immunodefi-
ciency virus (SHIV) DNA followed by vector and envelope boost-
ing elicited transient SIV-specific IgA in rectal secretions and sys-
temic cellular and humoral immunity, although protection
against SHIV89.6P acquisition was not obtained (38).

Here we compared the biodistribution and persistence of replica-
tion-competent Ad5hr recombinants delivered by i.n./IT, SL, IVag,
and IR routes. Additionally, we compared the systemic and mucosal
immunity elicited by the four priming regimens followed by boosts
with SIV envelope protein. We show that unlike replication-defective
vectors which maintain localized anatomic distribution (22), replica-
tion-competent Ads are distributed throughout the macaque regard-
less of immunization route, target tissue macrophages and myeloid
dendritic cells (mDCs), and persist in rectal tissue macrophages.
Consequently, cellular and humoral immune responses are compa-
rable across immunization routes. Our results strengthen the utility
of replicating vectors for vaccine design, showing that they are distrib-

uted throughout the body, overcoming restrictions on immunization
route. Further, their targeting of antigen-presenting cells (APCs) and
persistence at rectal sites allow long-term induction of mucosal anti-
body, known to be capable of blocking HIV/SIV transmission in an-
imal models.

MATERIALS AND METHODS
Immunogens and study design. An Ad5hr recombinant expressing green
fluorescent protein (GFP) was constructed by subcloning the GFP gene
from the Stratagene pShuttle-IRES-hrGFP-1 vector along with a down-
stream bovine growth hormone poly(A) (BGHpA) signal sequence
(pCDNA3.1 plasmid; Invitrogen) into a plasmid containing the Ad5 tri-
partite leader (pAd5tpl-18RD2; Wyeth Lederle Vaccines). The resultant
plasmid, pAd5tpl-GFP-BGHpA, was digested with XbaI, and the se-
quence was inserted into the Ad5 shuttle vector with an E3 deletion as
described previously (19). Replication-competent virus was generated by
homologous recombination. After 4 rounds of plaque purification, the
insert was confirmed by DNA sequencing, and GFP expression was con-
firmed by fluorescence microscopy and flow cytometry of Ad-GFP-trans-
duced 293 cells.

Ten female and 20 male rhesus macaques, negative for SIV, simian
retrovirus type D, and simian T cell leukemia virus, were housed accord-
ing to NIH animal care guidelines at Bioqual, Inc., Rockville, MD. Prim-
ing immunizations (Fig. 1) for experimental macaques included Ad5hr-
GFP, Ad5hr-SIVSMH4 env/rev, and Ad5hr-SIV239 gag (42) (5 � 108 PFU of
each recombinant; total, 1.5 � 109 PFU/immunization). Control ma-
caques received Ad5-GFP (5 � 108 PFU) plus Ad5hr empty vector (1 �
109 PFU). Ad recombinant mixtures in phosphate-buffered saline (PBS)
were administered SL under the tongue in 0.25 ml; IN (0.25 ml/nostril);
and IT, IVag, and IR in 0.5 ml. IVag vaccinations were administered at
midfollicular phase, avoiding menstruation and the postovulation period,
when innate and adaptive immunity are depressed in preparation for
pregnancy (39). SIVmac251 gp120 protein, 100 �g/macaque, was given

FIG 1 Immunization, sampling, and study design. Two priming immunizations with an equal mixture of the 3 separate Ad5hr recombinants listed were given
to the experimental macaque groups at weeks 0 and 12. Groups were defined by the route of Ad immunizations, either intranasal at week 0/intratracheal at week
12 (i.n./IT) or SL, Ivag, or IR at both weeks 0 and 12. The total number of animals in each group is shown in parentheses. Control animals receiving empty vector
plus Ad5hr-GFP priming were divided among all four route groups. Experimental macaques received SIV gp120 in MPL-SE intramuscularly (IM) at weeks 24
and 36. Controls received adjuvant only. Biopsy, necropsy, and immunogenicity time points are listed, with the total number of animals sampled indicated in
parentheses. Tissues sampled for each time point are listed. Arrows, time of immunizations; solid lines, time of biopsies; heavy dashed lines, time of necropsies;
long dashed lines, time of immunogenicity measurements; Mes LN, mesenteric lymph node; Ing LN, inguinal lymph node.
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intramuscularly in a 1:10 final dilution of monophosphoryl lipid A-stable
emulsion (MPL-SE; Corixa).

Tissue processing and cell isolation. Mononuclear lymphocytes were
isolated from EDTA blood by centrifugation over Ficoll-Paque Plus (GE)
as described previously (20, 33). Viable cells in 40 to 50 ml of bronchoal-
veolar lavage (BAL) fluid were isolated after centrifugation over 35%/65%
Percoll gradients. The middle whitish layer was directly stained for flow
analysis. Rectal and jejunal tissues (biopsy specimens, 10 to 12 pinches;
necropsy specimens, 30 to 40 pinches) were teased apart with 23-gauge
needles and then digested with shaking at 37°C with RPMI 1640 supple-
mented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, and pen-
icillin-streptomycin (R10) plus collagenase II (1 mg/ml; Sigma) for 1 h,
changing to fresh R10 plus collagenase after 30 min. Digested tissue was
pressed through a 70-�m-pore-size filter. The cells in the resultant single-
cell suspension were counted in trypan blue and stained for flow cyto-
metry (1 � 106 to 2 � 106 cells/tube).

GFP expression. GFP expression among CD4� and CD8� T cells,
monocytes/macrophages, mDCs, plasmacytoid dendritic cells (pDCs), B
cells, and epithelial cells was assessed for each tissue and each macaque.
Viable cells were washed twice with PBS and stained with 5 �l Aqua
live/dead amine-reactive dye (Invitrogen) at a 1:40 dilution in PBS. After
10 min, cells were washed once in PBS, resuspended in fluorescence-
activated cell sorter (FACS) buffer (PBS plus 1% FBS), and surface stained
with antibodies (all from BD BioSciences, unless noted) to CD4 (Qdot
605, custom conjugation; Invitrogen), CD8 (Qdot 655, custom conjuga-
tion; Invitrogen), CD14 (Texas Red-phycoerythrin [TR-PE]; Caltag, In-
vitrogen), CD123 (peridinin chlorophyll protein [PerCP]-Cy5.5), CD20
(PE-Cy7; Biolegend), CD11c (allophycocyanin [APC]), and HLA-DR
(APC-Cy7) for 20 min at room temperature. Cells were washed twice with
FACS buffer, and 250 �l of fix/perm solution (BD) was added for 20 min
at 4°C. After 2 washes with 1� BD wash buffer, intracellular staining with
antibodies to CD3 (Alexa-700) and cytokeratin (Pan-reactive, PE; Ab-
cam) was performed for 20 min at 4°C, followed by acquisition on an
LSRII flow cytometer (BD Biosciences), compensated with similarly
stained beads using FACS DIVA (version 6.0) software. Data were ana-
lyzed using FlowJo software (TreeStar).

Ad5-specific T cell activation. Fresh peripheral blood mononuclear
cells (PBMCs; 1 � 106 to 2 � 106) were stimulated for 6 h with an Ad5
fiber peptide pool (142 15-mers overlapping by 11 amino acids; final
concentration, 2 �g/ml) and stained with fluorescent antibodies (all from
BD Biosciences, unless noted), including CD3 (Alexa-700), CD4 (PerCP-
Cy5.5), CD8 (APC-Cy7), CD28 (TR-PE; Invitrogen), CD95 (APC), CCR7
(PE-Cy7), CCR5 (fluorescein isothiocyanate), and Ki67 (PE). Samples
were acquired on an LSRII flow cytometer, and data were analyzed using
FACS DIVA software.

In situ hybridization. GFP RNA was detected in formalin-fixed and
paraffin-embedded tissues as described previously (25). Briefly, 6- to
8-mm sections were cut and adhered to silanized slides. After deparaf-
finization in xylene, rehydration in PBS, and permeabilization by treating
the sections with HCl, digitonin, and proteinase K, the sections were
acetylated and hybridized to 35S-labeled SIV-specific riboprobes. After
washing and digestion with RNases, sections were coated with nuclear
track emulsion, exposed, and developed.

Ad5 neutralization assay. Ad5-specific serum neutralization titers
were measured as described previously (23). Titer was defined as the re-
ciprocal of the serum dilution at which a 50% reduction in luciferase
activity was obtained relative to that of preimmunization serum diluted
1:20.

ELISPOT and CFSE proliferation assays. SIV-specific gamma inter-
feron (IFN-�)-secreting cells were measured in fresh PBMCs after stimu-
lation with pools of SIV239 Gag or SIVsmH4 Env peptides (15-mers over-
lapping by 11 amino acids) using enzyme-linked immunosorbent spot
(ELISPOT) assay kits as described previously (30). Gag peptides (total,
125) were obtained from the NIH AIDS Research and Reference Reagent
Program, and Env peptides (total, 214) were obtained from Advanced

BioScience Laboratories, Inc. (ABL), Gaithersburg, MD. Assays were car-
ried out in triplicate. After subtraction of spots in medium-only wells, the
mean numbers of spot-forming cells (SFC) per million PBMCs were re-
corded.

T cell proliferative responses were assessed by carboxyfluorescein di-
acetate succinimidyl ester (CFSE) assay as described previously (31).
Briefly, fresh PBMCs (1 � 106/ml) were labeled with 1 �M CFSE (Invit-
rogen) for 10 min in the dark, washed three times with PBS, and cultured
for 6 days in medium alone or with native SIVmac251 gp120 (21) or p27
protein (both from ABL) at a 2-�g/ml final concentration. Cells were
stained with anti-CD3 PE, anti-CD4 APC, and anti-CD8 PE-Cy7 (all BD
antibodies), fixed in 1% paraformaldehyde, and acquired and analyzed
using FACSCalibur flow cytometry and CellQuest-Pro software (BD Bio-
sciences). Antigen-specific proliferation was calculated by subtracting the
proportion of proliferating cells in unstimulated samples from the prolif-
erating fraction in stimulated samples.

Antibody responses. SIV gp120-specific binding antibody titers in
sera were assayed by enzyme-linked immunosorbent assay (ELISA) (5).
Titer was defined as the reciprocal of the serum dilution at which absor-
bance was equivalent to twice the absorbance of normal rhesus macaque
serum diluted 1:50.

SIV gp120-specific secretory IgA (sIgA) titers were determined by
ELISA using anti-monkey secretory component for detection. Briefly,
mucosal samples were 2-fold serially diluted, applied to a half-area 96-well
plate (Greiner Bio-One) coated with 1 �g/ml SIVmac251 gp120 protein,
and incubated at 4°C overnight. Horseradish peroxidase (HRP)-conju-
gated goat anti-monkey secretory component (Nordic) and tetramethyl-
benzidine substrate were used sequentially, followed by reading of the
absorbance at 450 nm. Endpoint titer was defined as the reciprocal of the
dilution at which the absorbance of the test sample was equal to twice
the mean background.

Ad5hr recombinant shedding. Ad5hr recombinant shedding in rectal
and nasal swabs and in saliva was evaluated 4 and 10 weeks after the first
and second Ad5hr-SIV recombinant priming immunizations. Secretions
were clarified by low-speed centrifugation and were scored positive or
negative using a nested PCR assay with primers specific for the Ad5 fiber
gene (5).

Statistical analysis. Comparison of Ad-GFP expression and antibody
titers between immunization groups used the exact Kruskal-Wallis test.
Comparison of Ad-GFP expression between different time points made
use of the Wilcoxon signed-rank test. Frequency differences seen among
tissues were analyzed by the Mann-Whitney U test.

RESULTS
Ad-GFP expression after Ad priming. Our primary goals were to
examine Ad-GFP biodistribution and SIV Env- and Gag-specific
immune responses in the i.n./IT and SL immunization groups (7
macaques/group; Fig. 1). IVag and IR priming immunizations (4
macaques/group) were included to determine if i.n./IT and SL
delivery would target rectal/genital sites as readily as local admin-
istration and elicit immune responses as potent. Ad-GFP expres-
sion was evaluated (Fig. 2). After singlet gating and exclusion of
dead cells, forward scatter (FSC) versus side scatter (SSC) distin-
guished cells on the basis of size and granularity (Fig. 2A). A tight
gate was applied to analyze lymphocytes. A slightly larger one was
used for monocytes/macrophages and DCs. Larger epithelial cells,
discerned using the epithelial BSC-1 cell line, appeared in the top
half of the graph. Representative GFP expression among CD3�

CD14� monocytes/macrophages in PBMCs is shown in Fig. 2B.
For DC gating, lineage-negative CD3�, CD14�, and CD20� cells,
followed by HLA-DR-positive cells, were selected. Subsequently,
CD123 versus CD11c distinguished mDCs (CD11c�) from pDCs
(CD123�) in both PBMCs (Fig. 2C, top) and BAL fluid (Fig. 2C,
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bottom). GFP-positive epithelial cells were detected with a pancy-
tokeratin antibody.

Ad-GFP expression in biopsy and necropsy tissue specimens
was assessed 1 and 2 weeks, respectively, after each Ad immuniza-
tion. Although Ad shedding in macaques can last as long as 30 days
(5, 34), peak replication occurs within the first week (37). Here,
Ad-GFP expression in biopsy samples was seen after each Ad im-
munization, with lesser or no expression seen in necropsy tissue
specimens (data not shown). Only results from the biopsy samples
are reported below.

One week after the first Ad immunization, Ad-GFP expression
was detectable only in BAL fluid and rectal tissue macrophages of
each immunization group (Fig. 3), with no differences in expres-
sion frequency detected between groups. Overall, expression fre-
quency was higher in BAL fluid (4 to �20% of macrophages) than
rectal tissue (2 to 6%) (P � 0.031).

One week after the second Ad immunization, Ad-GFP expres-
sion exhibited an expanded distribution, including PBMC mono-
cytes and BAL fluid mDCs (Fig. 3). Expression frequency in
PBMCs was low (�5% of total monocytes), with no differences
seen between groups. The detection of GFP-positive peripheral
blood monocytes suggested the potential for continued Ad spread
in vivo. GFP expression in BAL fluid macrophages across the 4

groups (	2%) was significantly lower than that in BAL fluid mac-
rophages after the first Ad immunization (P � 0.0032) and that in
BAL fluid mDCs (15 to 25%) after the second Ad immunization
(P � 	0.0001). The first Ad priming of BAL fluid macrophages
may have facilitated the expanded distribution to BAL fluid mDCs
due to persistent virus. In the URT, uptake of virus by professional
APCs such as mDCs might enhance immune system priming. GFP
expression in mDCs was seen only in BAL fluid samples over the
course of immunization, irrespective of Ad immunization route.
Notably, Ad-GFP expression persisted in rectal tissue macro-
phages of all groups at the same frequency seen after the first Ad
administration (Fig. 3).

As Ad infects epithelial cells lining mucosal surfaces, we ex-
pected that they would exhibit a high frequency of Ad-GFP ex-
pression. However, in 24 of 27 animals, 	2% of epithelial cells
expressed GFP, with no differences between routes. However, ep-
ithelial cell viability was low, suggesting that the isolation and
preservation methods may not have been optimal. Further, the
window of peak Ad-GFP expression was perhaps missed.

Ad-GFP expression in cells and tissues after envelope boost-
ing. One week after the first protein boost, GFP expression in BAL
fluid and rectal tissue macrophages persisted, with no differences
among immunization routes. The expression frequency in BAL

FIG 2 General gating strategy. (A) Representative initial cell size gating, including DCs/macrophages, lymphocytes, and epithelial cells, used for all tissues, shown
here for a PBMC sample. (B) Determination of GFP expression in the monocyte/macrophage gate within a representative PBMC sample. (C) Gating for
GFP-positive cells in the dendritic cell gate in PBMCs (top) and BAL fluid (bottom). Lin, lineage. Final positive GFP expression only among gated mDCs in BAL
fluid is shown, since no positive GFP expression was observed in PBMCs.
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fluid across all groups was higher than that seen after the second
Ad immunization (P 	 0.0001), possibly due to diminished an-
ti-Ad cellular immunity, which declines over time (36). Com-
pared to BAL fluid, GFP expression frequency in rectal tissue mac-
rophages was significantly elevated (20 to 25%; P 	 0.0001) (Fig.
3). Ongoing Ad expansion and persistence were noted in BAL
fluid mDCs, with higher GFP expression compared to that for the
time point after the second Ad immunization (P � 0.027) (Fig. 3).
Overall, the mean fluorescent intensity (MFI) of GFP expression
on both BAL fluid and rectal tissue macrophages was elevated in
all immunization groups (20,000 to 25,000) at all time points
tested (data not shown) compared to that on PBMC monocytes
(mean MFI, 1,000) after the second Ad immunization.

One week after the second protein boost, 25 weeks after the
second Ad immunization, high, persistent GFP expression was
again observed in 20 to 25% of rectal tissue macrophages and
continued low-level expression was observed in BAL fluid (Fig. 3),
with no differences in frequency or MFI seen among immuniza-
tion groups.

GFP expression by in situ hybridization. Multiple necropsy

tissue specimens were collected 2 weeks after the second Ad im-
munization for in situ hybridization. Consistent with the failure to
detect Ad-GFP expression by flow cytometry in necropsy samples
obtained after the first immunization, GFP-positive cells were not
readily detected. Ad replication was likely declining, and the tissue
sections examined may have missed small foci of Ad-infected cells.
GFP-positive mRNA staining was detected in only one jejunal
tissue specimen (Fig. 4). The positive cells are most likely macro-
phages, given their distribution, although macrophage staining
was not performed.

Ad recombinant replication. To evaluate Ad recombinant
replication and persistence, we monitored viral shedding in vari-
ous secretions. Ad was detected by nested PCR most readily in
nasal secretions (Table 1). The majority of i.n./IT-immunized ma-
caques shed Ad into nasal secretions following each administra-
tion. However, Ad was also regularly detected at this site in the
other immunization groups, indicating the wide biodistribution
of the replicating virus. Ad was detected with much less frequency
in rectal swabs and saliva, suggestive of the preference for Ad to
replicate in the URT. Whereas Ad can be detected in stool samples,

FIG 3 Frequency of GFP expression among total live cells in multiple tissues over time. For PBMCs and BAL fluid, average expression 
 SEM for all macaques
is shown for each group at biopsy time points after the 1st Ad immunization (n � 18), after the 2nd Ad immunization (n � 28), and after the 1st and 2nd boosts
(n � 24). At some time points, fewer rectal tissue biopsy specimens were obtained. Shown are results for after the 1st (n � 8) and 2nd (n � 28) Ad immunizations
and after the 1st (n � 16) and 2nd (n � 24) protein boosts. NEG, negative for GFP expression (	0.1% GFP positivity). Significant differences between BAL fluid
and rectal tissue macrophages after the first Ad immunization, between BAL fluid macrophages after the first and second Ad immunizations, and between BAL
fluid macrophages and mDCs after the second Ad immunization were obtained as shown across all immunization groups. Significant differences across all
immunization groups were seen for BAL fluid and rectal tissue macrophages and BAL fluid mDCs between the second Ad immunization and first protein boost.
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here we collected rectal secretions rather than stool for immuno-
logic studies. This may explain the lower frequency of viral detec-
tion at this site. Further, since secretions were routinely collected
at 4 and 10 weeks postimmunization, peak virus replication most
likely was missed.

We also evaluated Ad5-specific neutralizing antibody titers as
an indirect measure of Ad expression (Table 1). The highest titers
were in sera of i.n./IT-immunized macaques, implicating ex-
panded viral replication in the URT. However, neutralizing anti-
bodies developed in all immunization groups, indicating that the
viral load was sufficient to elicit a systemic antivector response.

Finally, we investigated Ad-specific T cell activation in PBMCs
(Fig. 5). Compared to preimmunization levels, after the second
Ad immunization CD4� CCR5� Ki67� T cells were elevated in all
immunization groups and CD8� CCR5� Ki67� cells were ele-
vated to a lesser extent in the IVag and IR groups. Both declined to
baseline levels after the second protein boost.

SIV-specific cellular immune responses. To determine if the
immunization routes impacted development of cellular immu-
nity, we examined PBMCs for SIV-specific IFN-�-secreting cells
by ELISPOT assay. Low-level responses to Gag were detected after
the first Ad immunization and were enhanced over the immuni-
zation course (Fig. 6A). Env-specific responses were low or unde-

tectable until after the second envelope boost. SL priming elicited
the lowest responses, but overall, there were no significant differ-
ences in ELISPOT assay levels across experimental groups.

SIV Gag- and Env-specific CD4� and CD8� T cell proliferative
response patterns resembled the ELISPOT assay results (Fig. 6B
and C). The predominant responses were to SIV Gag and were
enhanced over the course of immunization. SIV Env-specific pro-
liferation was clearly enhanced by the gp120 boosts. By week 40,
there were no significant differences in levels of CD4 or CD8 pro-
liferative T cell responses across the immunization groups.

SIV-specific humoral immune responses. We also investigated
induction of SIV-specific antibodies. Following the second protein
boost, all macaques showed high titers of SIV gp120-specific binding
antibody (Table 2). The titers were not equivalent across groups (P �
0.037) due to lower titers in the SL group and higher titers in the IR
group. SIV Env-specific IgA was observed in BAL fluid, and again, the
levels were not equivalent over the immunization groups (P � 0.011)
due to significantly lower levels in the IVag group (P � 0.0098). Env-
specific sIgA was elicited in rectal and vaginal secretions in all immu-
nization groups. SIV-specific sIgA levels in rectal secretions exhibited
no differences across immunization groups. Statistical analysis of
vaginal sIgA was not possible due to the small number of female
macaques studied.

FIG 4 In situ hybridization for GFP in jejunal tissue 2 weeks after the 2nd Ad immunization. (Left) GFP RNA-positive signals appear as whitish dots in
transmitted light, located mostly in lamina propria. (Right) Negative-control staining.

TABLE 1 Ad5hr recombinant replication and specific neutralizing antibody responsea

Group

Ad5hr shedding (no. positive/no. tested)
Geometric mean Ad5
neutralizing antibody titerNasal secretion Rectal swab Saliva

After 1st
Ad

After 2nd
Ad

After 1st
Ad

After 2nd
Ad

After 1st
Ad

After 2nd
Ad

After 1st
Ad

After 2nd
Ad

SL 4/9 3/8 0/9 1/8 1/9 0/8 19 26
i.n./IT 9/10 7/8 0/10 0/8 3/10 0/8 150 3444
IVag 3/5 1/4 1/5 1/4 0/5 0/4 28 256
IR 1/5 1/4 1/5 0/4 1/5 0/4 13 36
a Ad5hr shedding was assessed at weeks 4 and 10 after the first and second Ad immunizations. Results reflect shedding at either time point. Ad5 neutralizing antibody titers in
serum were determined 4 weeks after each Ad administration.
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DISCUSSION

The potent immunogenicity and protective efficacy of replicating
Ad5hr-HIV/SIV prime-protein boost regimens in nonhuman pri-
mates are well documented (2, 3, 13, 20, 28, 33–35, 40). Despite
this history, we know little about the replication kinetics, distri-
bution, and persistence of replicating Ad5hr vectors in rhesus ma-
caques. The ability of Ad5hr to prime durable immunity may be

due to properties different from those of nonreplicating viral or
DNA vaccines. As serial sacrifice of many macaques was not fea-
sible, we simultaneously examined biodistribution and immuno-
genicity after Ad5hr recombinant administration by various mu-
cosal routes.

Regardless of immunization route, Ad-GFP expression was de-
tected at all sites in the mucosa but was mainly detected in BAL

FIG 5 Ad5-specific T cell activation among PBMCs during immunization. PBMCs obtained preimmunization, after the 2nd Ad prime (week 20), and after the
2nd boost (week 40) were stimulated with Ad5 fiber peptides. The percentage of total CD4� and CD8� cells expressing CCR5� Ki67� staining is shown for each
immunization group. Mean values 
 SEMs are shown.

FIG 6 Induction of SIV-specific cellular immunity by the prime-boost immunization regimens. (A) IFN-� ELISPOT assay responses after peptide stimulation
of PBMCs with SIV239 Gag or SIVSMH4 envelope peptide pools over the immunization course for each immunization group. Arrows indicate priming (dotted)
or boosting (solid) time points. Means 
 SEMs for each stimulation condition are shown. (B and C) Proliferative responses (mean 
 SEM) among CD4 and CD8
T cells, respectively, after stimulation with SIVmac251 p27 (open boxes) or SIVmac251 gp120 (solid boxes) protein at the same time points as in panel A.
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fluid and rectal tissue, whereas expression in peripheral blood was
observed only transiently. Ad did not infect T or B cells but tar-
geted monocytes/macrophages and, in the lung, mDCs. Macro-
phages, due to their phagocytic potential, repeatedly exhibited a
high GFP expression frequency which persisted up to 25 weeks
after immunization with replicating Ad recombinants, hinting at a
potential reservoir and source of continual antigen presentation.
Analysis of total cell (not just GFP-expressing cell) numbers after
Ad administration showed significant increases in the percentage
of macrophages in rectal tissue in all animals after the 1st (P �
0.021) and 2nd (P � 0.011) Ad immunizations, with a concomi-
tant decrease in mDCs after the 1st one (P � 0.011) (data not
shown). The influx of macrophages into rectal mucosa, the pri-
mary site of HIV/SIV exposure, is potentially important. A cause
for the decreased mDC numbers might be localized mDC death.
More interestingly, if mDCs migrate out of rectal tissue, they may
traffic back to draining lymph nodes, present antigen, and con-
tribute to effective priming.

mDC are highly efficient APCs and are necessary for CD4� T
cell activation at mucosal sites, which contributes to induction of
mucosal IgA (12). mDCs also stimulate CD8� T cell responses
following immunization with nonreplicating Ad5 vectors (26).
Replication-defective Ad5 and Ad35 vectors encoding cytomega-
lovirus (CMV) pp65 preferentially infect mDCs, induce differen-
tiation, and activate CMV-specific polyfunctional CD4/8 T cell
responses (27). Here, replicating Ad recombinants effectively
primed mDCs in the lung, illustrating the targeting of critical
APCs.

With induction of Ad5-specific neutralizing antibodies, Ad
shedding, a surrogate for replication, was decreased after a second
Ad immunization. However, no diminution of Ad-GFP expres-
sion frequency was observed in rectal tissue macrophages. If Ad is
sequestered within tissue macrophages and is spread only locally,
Ad-specific serum antibodies may cause only limited dampening
of virus priming by the vaccine vector. Ad type C serotypes (in-
cluding Ad5) can establish latent infections with intermittent re-
activation in tonsils and adenoids, as modeled in human cell lines
(41). However, we saw no GFP expression in lymphocytes from
PBMCs or lymph nodes at any time point of biopsy or necropsy
specimen collection for any macaque.

The broad Ad biodistribution regardless of immunization

route and uniform targeting of particular cell types were mirrored
by the induction of similar SIV-specific cellular immunity and
Env-specific serum antibodies across all immunization groups.
Slightly lower antibody titers developed in the SL group and
slightly higher titers developed in the IR group. Whether this re-
flects the small number of macaques per group or a real difference
will await further study. Notably, all groups developed gp120-
specific mucosal IgA responses. Although the IVag group devel-
oped less SIV-specific IgA in BAL fluid, all immunization groups
exhibited similar levels of gp120-specific sIgA in rectal secretions.
The results suggest that replicating Ad vaccines may be adminis-
tered by the easiest and safest route with the expectation that ef-
fective immunity will result.

With regard to safety, the Step trial raised concerns that immu-
nization of Ad-immune individuals with Ad vectors might lead to
activation of CD4� T cells, targets of HIV infection, thereby en-
hancing HIV infection (4). We observed only transient activation
of CD4� CCR5� cells in vitro in all immunization groups, al-
though the vector persisted. Samples were not sufficient to exam-
ine activation of mucosal CD4� T cells, more relevant to potential
enhancement. Further studies designed to examine mucosal cells
may clarify this question.

The SL route was found to be as effective as the i.n./IT route in
eliciting SIV-specific immune responses. The efficacy of this route
might be improved if the vaccine is formulated in a gel-like sub-
stance. Here it was administered in liquid form, which may have
allowed quick dispersal of the Ad recombinants. Use of SL delivery
in an improved formulation could preclude concerns about the IN
route regarding potential trafficking of the vector to the olfactory
bulb (24). Replicating wild-type oral Ad4 and Ad7 vaccines are
fully licensed and have been administered to over 10 million peo-
ple over a 25-year period (14). However, the oral route is not as
immunogenic as the IN route, and the oral vaccine is more diffi-
cult to manufacture.

Our study demonstrates that there is no restriction for repli-
cating Ad administration dependent on route. Mucosal cells are
targeted, especially in the lung and rectum, and importantly for
vaccine design and induction of comprehensive immunity, they
persist in professional APCs. Continued development of these
vectors is warranted. Future studies will draw on these results and
seek to further optimize induction of systemic and mucosal im-
munity.
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