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Hypersusceptibility (HS) to inhibition by different antiretroviral drugs (ARVs) among diverse HIV-infected individuals may be
a misnomer because clinical response to treatment is evaluated in relation to subtype B infections while drug susceptibility of the
infecting virus, regardless of subtype, is compared to a subtype B HIV-1 laboratory strain (NL4-3 or IIIB). Mounting evidence
suggests that HS to different ARVs may result in better treatment outcome just as drug resistance leads to treatment failure. We
have identified key amino acid polymorphisms in the protease coding region of a non-B HIV-1 subtype linked to protease inhibi-
tor HS, namely, 17E and 64M in CRF02_AG. These HS-linked polymorphisms were introduced in the BD6-15 CRF02_AG molec-
ular clone and tested for inhibition using a panel of protease inhibitors. In general, suspected HS-linked polymorphisms did in-
crease susceptibility to specific protease inhibitors such as amprenavir and atazanavir, but the combination of the 17E/64M
polymorphisms showed greater HS. These two mutations were found at low frequencies but linked in a sequence database of
over 700 protease sequences of CRF02_AG. In direct head-to-head virus competitions, CRF02_AG harboring the 17E/64M poly-
morphisms also had higher replicative fitness than did the 17E or the 64M polymorphism in the CFR02_AG clone. These find-
ings suggest that subtype-specific, linked polymorphisms can result in hypersusceptibility to ARVs. Considering the potential
benefit of HS to treatment outcome, screening for potential HS-linked polymorphisms as well as preexisting drug resistance mu-
tations in treatment-naïve patients may guide the choice of ARVs for the best treatment outcome.

Intense research over the last 2 decades of the HIV/AIDS pan-
demic has contributed to the development of several antiretro-

viral drugs (ARVs) which have significantly reduced HIV/AIDS
morbidity and mortality. These drugs can be divided into six dis-
tinct classes, according to their viral target and mechanism of ac-
tion. The nucleoside reverse transcriptase (RT) inhibitors
(NRTIs), the nonnucleoside reverse transcriptase inhibitors
(NNRTIs), and the protease (PR) inhibitors (PIs) were the first
ARV classes approved by the FDA starting in the late 1980s and
remain the mainstay for first-line highly active antiretroviral ther-
apy (HAART), combining at least three different drugs from two
ARV classes (9).

The vast genetic diversity within the HIV-1 epidemic can be
categorized into four groups (M, N, O, and P), with group M
HIV-1 responsible for the majority of worldwide infections. Ac-
cording to the current classification system (30), HIV-1 group M
is divided into nine “pure” subtypes, at least 48 circulating recom-
binant forms (CRFs), and various unique mosaic strains. Subtype
B is the most prevalent in developed countries (14), and conse-
quently, it is the major target of drug design and resistance studies
(19). Despite initial development to inhibit subtype B HIV-1,
most FDA-approved protease (PR) and reverse transcriptase (RT)
inhibitors are highly effective in blocking virus replication in
treatment-naïve patients infected with HIV-1 non-B subtypes (1,
2, 44). ARV treatment imposes an immediate selective pressure on
the infecting HIV-1 population within a patient and will favor
outgrowth of drug-resistant variants with suboptimal drug levels
(17). HIV-1 non-B subtypes generally acquire the same drug re-
sistance mutations (DRMs) as those described in subtype B infec-
tions, yet quantitative and qualitative disparities have been de-
scribed (11, 19, 35). Furthermore, the genetic diversity in the

HIV-1 genes results in different baseline PR or RT amino acid
sequence that can alter the absolute level of drug resistance con-
ferred by identical drug resistance mutations in these drug-tar-
geted genes (28, 31, 41). Infections with non-B subtype HIV-1 still
represent a challenge for HAART, based on the relative paucity of
treatment outcomes correlated with baseline HIV-1 sequence and
relative levels of virus sensitivity to drug inhibitions. These factors
could impact on the efficacy and durability of treatment during
infection with these non-B HIV-1 variants. It is now well known
that many secondary mutations selected under PI treatment in
subtype B-infected patients are found as natural polymorphisms
or even wild-type sequence in non-subtype B HIV-1 isolates (in
the absence of treatment). In subtype B, these secondary muta-
tions appear to enhance PI resistance levels and/or to compensate
for fitness defects conferred by primary drug resistance mutations
(16–18, 29).

Just as natural polymorphisms can enhance resistance or com-
pensate for fitness loss, it is also possible that these genetic differ-
ences in non-subtype B HIV-1 strains may result in hypersuscep-
tibility (HS) to ARV inhibition compared to subtype B viruses.
Consistent with this hypothesis, Abecasis et al. (1) reported that
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some non-B subtypes demonstrate increased viral susceptibility to
some PIs. For example, CRF02_AG strains presented higher sen-
sitivity to indinavir and to ritonavir than did subtypes B, C, F, and
G. In the present study, we evaluated the proportion of viral iso-
lates with natural HS to PIs from treatment-naïve patients in-
fected with five different genotypes of HIV-1. We also mapped the
genetic polymorphisms in CRF02_AG that are linked to PI HS and
tested them singly or paired in the context of a CRF02_AG infec-
tious molecular clone. We show, for the first time, that specific PR
natural polymorphisms in CRF02_AG confer HS on PIs as well as
increased viral fitness.

MATERIALS AND METHODS
Global data set of HIV-1 drug phenotypes from treatment-naïve pa-
tients. We first analyzed the available phenotypic and genotypic drug
resistance profiles of HIV-1 isolates from treatment-naïve subjects (1, 8,
42–45). The drug susceptibility assay employed the Antivirogram meth-
odology (Virco, Belgium), which involves mammal-based recombination
of a PCR-amplified DNA fragment (encompassing PR codons 1 to 99 and
RT codons 1 to 400) into a proviral clone of HIV-1 subtype B, �PR-TR400
(15). The susceptibility of these chimeric viruses was then measured in
MT-2 cells with increasing concentrations of amprenavir (APV), indina-
vir (IDV), nelfinavir (NFV), lopinavir (LPV), saquinavir (SQV), and
tipranavir (TPV), all PIs. A wild-type (susceptible) virus of HIV-1 subtype
B (IIIb) was used as a control. Phenotypic results were expressed in fold
change (FC), defined as the ratio between the 50% effective concentration
(EC50) value for the recombinant HIV-1 chimeric virus harboring the
patient PR-RT and the EC50 values for the control IIIb. The EC50 value
represents the drug concentration needed to inhibit 50% of viral replica-
tion. Of the 165 viral isolates with phenotyping results, 72 were subtype B,
23 were subtype C, 26 were subsubtype F1, 29 were subtype G, and 34 were
CRF02_AG.

Proportion of HS to PIs in HIV-1 subtypes and HS mapping. A virus
was defined as hypersusceptible (HS) to a drug (PI) when the FC value was
less than 0.4, i.e., the EC50 value for the query virus was at least 2.5� lower
than that of the control IIIb virus. HS was determined for each drug and
for each HIV-1 strain/mutant compared to IIIb. Based on FC values for
each drug and with the HIV-1 isolates of each subtype/CRF, an HS group
(FC, �0.4) and a non-HS group (FC, �0.4) were compared by aligning
the nucleotide sequences and predicted amino acids of the PR coding
region using BioEdit v.7.0 (39). Potential differences in amino acid poly-
morphism between the two groups were then confirmed by two-tailed
Fisher’s exact test, and P values of �0.05 were considered significant.

Generation of mutant CRF02_AG molecular clones. The HIV-1
CRF02_AG infectious molecular clone BD6-15, derived from an X4-
tropic isolate, was used to phenotypically test the CRF02_AG-specific
polymorphisms linked to HS characterized in this study (38). The muta-
tions G16E, G17E, I64M, K70R, and I72V were introduced in the PR
coding region of pBD6-15 by site-directed mutagenesis using the
QuikChange II XL site-directed mutagenesis kit (Stratagene) and the set
of primers listed in Table S1 in the supplemental material. Mutants were
confirmed by PCR amplification and DNA sequencing of the entire PR
region of pBD6-15 (38).

Transfections, virus propagation, and titration. The original and
mutated BD6-15 plasmids were transfected into 293T cells using the Ef-
fectene transfection reagent (Qiagen), with 0.4 �g of plasmid DNA, ac-
cording to the manufacturer’s instructions. After 48 h, aliquots of the
transfection supernatant were tested for RT activity using a radioisotopic
RT assay (24). RT-positive transfection-derived viruses were used to in-
fect five different human cell lines, namely, TZM-bl, U87-CD4-CXCR4,
C8166, MT-2, and MT-4. Propagation of BD6-15 and its derivatives was
best on MT-2 cells based on RT assays conducted on days 3, 6, 8, and 10
postinfection. After viral propagation, infected MT-2 cells were harvested
and genomic DNA was extracted using the QIAamp DNA blood kit

(Qiagen). The entire viral PR region was again PCR amplified and se-
quenced to rule out any reversion or other changes during virus produc-
tion. All viruses generated in this study were titrated on MT-2 cells as
previously described (34).

Protease inhibitor phenotyping assay. In vitro drug sensitivity assays
were performed to determine the EC50 values for six PIs (APV, atazanavir
[ATV], IDV, LPV, NFV, and SQV) and with all viruses generated for this
study. As a control, the phenotypic profiles of the parental wild-type virus
(BD6) and all the derived mutants as well as NL4-3 were tested against
zidovudine (AZT), an NRTI (see Fig. S1 in the supplemental material).
Drug susceptibility was measured by exposing each virus to 5-fold serial
dilutions of each drug, in quadruplicate, in MT-2 cell cultures. On day 5
postinfection, supernatant aliquots were collected and the virus titer was
measured in RT assays. The HIV-1 subtype B infectious molecular clone
pNL4-3 was used as an additional control. The EC50 value of each virus for
each drug was calculated in a logarithmic curve where the y axis repre-
sented the percentage of infectivity, the x axis represented the drug con-
centration (as previously described), and the fold change (FC) repre-
sented the ratio between the EC50 value of the mutant virus and the EC50

value of the parental BD6-15 (to a particular drug). Hypersusceptibility
(HS) was characterized when the FC of the mutant virus was �0.4. The
difference between the mean EC50 value of each mutant CRF02_AG and
that of the original clone was evaluated using two-tailed Student t tests,
and P values of �0.05 were considered significant.

Growth competitions assays and determination of replicative fit-
ness. Viral fitness of CRF02_AG-derivative mutant viruses was deter-
mined by full pairwise dual-infection/competitions between all combina-
tions of viruses. MT-2 cells were infected with equal virus titers
(multiplicity of infection [MOI] of 0.0005) from each of the competing
viruses. Monoinfections were also performed using a similar MOI. All
mono- and dual competitions were conducted in triplicate. On day 5
postinfection, which was the peak of virus growth, RT activity was mon-
itored by an RT assay, and the cells were harvested and genomic DNA was
extracted as described previously (37). The entire viral PR region was PCR
amplified, and the fragments were analyzed by a Luminex-based oligonu-
cleotide ligation assay (OLA) as previously described and validated (20,
37). Briefly, three tagged-fluorescence primers were used: two upstream
primers that discriminate the original and mutant sequences and a uni-
versal downstream primer. A ligation reaction was performed, and the
emission of a double fluorescence (upstream- and downstream-tagged
probes; see Table S2 in the supplemental material) was screened in a
Bioplex 200 apparatus (Bio-Rad), using Luminex xMAP technology. The
relative proportion of each double fluorescence signal was used to deter-
mine the proportion of each virus in the competing culture. The final ratio
of the two viruses produced from each dual infection was determined by
comparing the virus production in the competition to the virus produc-
tion in the monoinfection. The relative fitness of each virus was deter-
mined as described previously (37).

RESULTS
Hypersusceptibility of HIV-1 isolates from treatment-naïve pa-
tients. We analyzed the PR sequence compared to drug suscepti-
bility of 165 HIV-1 isolates from treatment-naïve patients infected
with five distinct HIV-1 subtypes/CRFs (subtypes B, C, F, and G
and CRF02_AG) to verify if PI susceptibilities were different be-
tween HIV-1 subtypes. Hypersusceptibility was most evident
among non-B subtypes with the PI IDV (38%) and the least fre-
quent among all HIV-1 isolates with LPV (6%) (Fig. 1). The
CRF02_AG cluster had the highest proportion of isolates hyper-
susceptible to PIs, namely, APV, IDV, and NFV, compared to
subtype B isolates (P � 0.046, 0.001, and 0.019, respectively).
Other subtypes displayed hypersusceptibilities to PIs that were
more drug dependent, e.g., more subtype C and G isolates than
subtype B isolates were hypersusceptible to IDV (P � 0.001),
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whereas subtypes B, C, and G had the same low proportions of
isolates that were HS to ATV, LPV, and SQV. Subtype F1 was
similar to subtype B in the proportion of HIV-1 isolates hypersus-
ceptible to all PIs. As described below, the genetic distance in the
PR coding region between subtypes F1 and B was similar to that
between subtypes B, C, and G and CRF02_AG. Thus, we suspected
that specific polymorphisms rather than general genetic diver-
gence between these subtypes were responsible for the observed
hypersusceptibility to the PIs.

Mapping polymorphisms that affect HS phenotypes. Hyper-
susceptibility may be linked to natural polymorphisms present in
the PR of different HIV-1 subtypes and recombinant forms. In
silico comparisons of translated PR regions from these virus iso-
lates revealed that HS was associated not with a single polymor-
phism but rather with two or more linked amino acids within the
consensus of a particular subtype. We compared the fold change
in EC50 values conferred by different compositions of mapped PR
polymorphisms for each subtype. Figure 2 shows the FC values of
definite amino acid compositions displaying significant (P �
0.05) comparisons between HS and non-HS phenotypes. Interest-
ingly, in many cases, the same polymorphisms were linked to HS
for two or more PIs in a given HIV-1 subtype or CRF. Examples
included 19L/63L conferring HS to APV and NFV on subtype C
isolates and 17E/64M conferring HS to IDV, NFV, and SQV on
CRF02_AG isolates. We observed that single changes in HS-linked
polymorphisms did not result in hypersusceptibility, which again
emphasizes the linkage of two or more mutations that may have
coevolved within a subtype (Fig. 2B). Moreover, in some cases the
amino acid positions linked to HS with specific drugs were located
in similar PR regions such as amino acid positions 19 and 63 in
subtype C, 17 and 64 in CRF02_AG, and 15 and 72 in subtype F1.

Phenotypic effects conferred by polymorphisms in a
CRF02_AG infectious clone. To determine the effect of various
PR mutations on PI HS in CRF02_AG, we produced eight mutant
clones from a CRF02_AG infectious molecular clone (BD6-15),
five of them with a single mutation (16E, 17E, 64M, 70R, and 72V)
and three of them double mutants (16E/64M, 17E/64M, and 64M/
70R). Only 16E had a weak association with HS in CRF02_AG.

Control experiments with all the mutants, their parental wild-type
virus, and the NL4-3 control virus showed similar sensitivities to
AZT inhibition. This CRF was selected for these mutagenesis anal-
yses and HS studies because of its high prevalence in the world-
wide epidemic (8%) and the availability of an infectious molecular
clone. Moreover, CRF02_AG is the most frequent non-B HIV-1
subtype in the developed world, particularly in Europe.
CRF02_AG is also the fastest-expanding HIV-1 genetic form in
the worldwide epidemic according to the most recent HIV molec-
ular epidemiology survey (14). As described in Fig. 2, it appears
that HS to PIs was specific to a set of polymorphisms and drug.
The 17E polymorphism in HIV-1 BD6-15 showed a modest in-
crease in susceptibility to APV, ATV, and NFV compared to the
parental BD6-15 virus, while the 64M mutant virus displayed
greater HS to APV, NFV, and LPV (Fig. 3). The 70R mutation
conferred HS to APV and IDV, while 72V slightly increased sus-
ceptibility to SQV and LPV. Double mutant viruses provided the
most interesting results. In general, the double mutations showed
the greatest HS but, again, only to specific drugs. For example,
increased HS to ATV, NFV, and SQV was observed with polymor-
phisms 17E and 64M (Fig. 3). However, there was no additive
effect of 17E and 64M on HS to APV, IDV, or LPV (Fig. 3).

Replicative fitness and HS. We measured the impact of HS-
linked polymorphisms on the ex vivo fitness in the BD6-15 back-
bone by performing head-to-head competitions in MT-2 cells.
The relative proportion of each competitor after 5 days in culture
was measured by an oligonucleotide ligation assay as described in
Materials and Methods and as previously published (34, 37). The
BD6 variant with the highest replicative fitness was BD6-17E/
64M, while the least fit was the parental BD6-15 virus (Fig. 4).
With the exception of BD6-72V, all of the BD clones carrying the
HS polymorphisms were more fit than the parental BD6 virus with
a final fitness ranking of 17E/64M � 17E � 64M � BD6-15. As
described below, increased fitness appears to be directly related to
the introduction of polymorphisms that increase susceptibility to
PIs. In contrast, acquired mutations conferring resistance to drugs
generally encode reduced HIV-1 replicative fitness. However, it is
important to note that drug HS is obviously a consequence of
divergent HIV-1 evolution and not related to an exogenous selec-
tive force, considering that these polymorphisms existed long be-
fore the introduction of any drug treatment in West and Central
Africa, i.e., the epicenter of CRF02_AG.

DISCUSSION

Despite the introduction of HAART in many developing coun-
tries, its medium- and long-term impact on control of viremia in
non-B subtype HIV-1 infections remains largely unknown. Ac-
cording to the work of Abecasis et al., subtype C and G and
CRF02_AG isolates are more susceptible to IDV than are subtype
B isolates (1). In the present study, we also observed a higher
sensitivity of CRF02_AG viruses than subtype B viruses to APV
and NFV. In addition, polymorphisms 17E, 64M, and 70R, found
at frequencies of 8, 10, and 13% in CRF02_AG, respectively, can
result in HS to APV, NFV, and IDV within this CRF. CRF02_AG is
the dominant HIV-1 subtype in West Africa and accounts for 8%
of infections worldwide.

Several studies have shown that drug resistance mutations spe-
cific to certain drugs can confer HS to others. A classical example
is M184V in HIV-1 reverse transcriptase, which confers major
resistance to lamivudine (3TC) but increases viral susceptibility to

FIG 1 Proportions of five HIV-1 group M subtypes or CRFs from drug-naïve
subjects with hypersusceptibility to several protease inhibitors. Single asterisks
represent a P value of �0.05, while double asterisks depict P values of �0.001,
for a Fisher exact test comparing the proportions between a non-B subtype and
subtype B. Numbers in parentheses represent the total number of strains an-
alyzed for each HIV-1 subtype/CRF variant.
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thymidine analogs (zidovudine [AZT] and stavudine [d4T]) and
delays the emergence of thymidine analog-associated resistance
mutations (TAMs) (3, 5, 22, 27). In the PR region, the major
resistance mutation to APV, I50L, confers HS to all remaining PIs
(46), while N88S confers resistance to atazanavir (ATV) and NFV
and HS to APV (48). Nonetheless, mapping of natural HS-linked
polymorphisms in HIV-1 isolates from treatment-naïve patients
is rare in the literature. Leigh Brown et al. determined that poly-
morphisms at PR positions 10, 13, 37, and 61 were linked to HS in
subtype B isolates (25), but a subsequent study did not confirm
these results (26). Finally, Abecasis et al. showed a correlation
between PR polymorphisms at positions 35, 37, 57, 70, and 89 and
HS in non-B subtypes (1). Our findings are in partial agreement

with this study, as the polymorphism 35E was linked to HS to APV
and NFV in subtype C isolates and the polymorphism 70R was
linked to HS to IDV in CRF02_AG isolates. Our analysis further
showed, in the majority of cases, that a set of two or more PR
polymorphisms were linked to HS for a given PI. In other in-
stances, we were unable to determine the genetic components
behind the HS phenotype, indicating that a complex pattern of
HS-linked polymorphisms is likely required for this drug hyper-
susceptibility.

It is important to note that mutations in Gag, specifically at the
cleavage site, can also confer reduced susceptibility to PI and have
been described in subtype B (4, 6, 23) but not in CRF02_AG or
other non-subtype B isolates (representing �90% of the infec-

FIG 2 Schematic representation of the main hypersusceptible CRF02_AG genotypes at positions 64 and 70, showing their respective average FC values with
standard deviation (SD) to a given PI. All FC and SD values were derived from triplicate drug susceptibility analyses with each virus and with each drug. Only the
FC of IDV used as an example in this figure is shown. All FC values were derived by comparing the EC50 values to the control virus (HxB2). Numbers in
parentheses at the left of genotypes represent the number of isolates for which the average was calculated. (B) FC relative to the wild-type HIV-1 CRF02_AG,
subtype C, and subtype F1 carrying definite protease polymorphisms or combinations thereof. Bars represent the mean FC of each polymorphism composition
displayed on the y axis with associated standard deviation. Only polymorphism compositions significantly associated with decreased susceptibility to definite PIs
for each subtype are shown. The double asterisk denotes a significant P value of �0.001 in the Student t test. In both panels A and B, dark blue indicates
polymorphisms or combinations associated with increased susceptibility to a PI, while pale green shows nonassociated combinations.
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tions worldwide). Based on subtype B analyses, our infectious
clone BD6-15 may have a compensatory mutation for PI resis-
tance in the Gag region (436R). Upon analysis of the Los Alamos
National Laboratory (LANL) database, we found that approxi-
mately 17% of CRF01_AG isolates carry that polymorphism.
Ghosn et al. (10) tested a large number of Gag polymorphisms

typical of non-B subtypes (including CRF02_AG) with respect to
association with virological failure under PI treatment but failed
to associate this mutation with treatment failure outcome.

This study provides the first evidence for effects of individual
or dual HS-linked polymorphisms on viral susceptibility to ARVs
and on viral fitness. We demonstrated that CRF02_AG viruses

FIG 3 Phenotyping FC values of distinct CRF02_AG BD6 mutant viruses harboring distinct mutations for HS to six different PIs in comparison with the
CRF02_AG wild-type molecular clone BD6. Mutants with distinct PR polymorphism combinations are depicted on the x axis, while boxed polymorphisms
represent those introduced by site-directed mutagenesis. Asterisks above bars represent mutants with statistically significantly reduced susceptibility compared
to the wild-type BD6 clone (double asterisks represent a P value of �0.001). The horizontal bar represents the cutoff used to define hypersusceptibility (FC,
�0.4). The green bars rightmost in each graph represent the FC of a prototypic subtype B clone (NL4-3) for comparison. All FC and SD values were derived from
quadruplicate determinations.
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carrying HS-linked polymorphisms 17E and 64M had higher rep-
licative fitness than did viruses harboring either 17E or 64M and
that these mutant viruses showed a higher fitness than did the
parental virus. These results may indicate that CRF02_AG PR car-
rying HS-linked polymorphisms 17E and/or 64M may have in-
creased PR cleavage activity and/or higher affinity for the
CRF02_AG Gag and Gag-Pol substrates, which may in turn result
in higher binding affinity for PR mimetic inhibitors. Additional
investigation is required to confirm this hypothesis. It is also im-
portant to note that HS to PIs is an unintended by-product of
divergent evolution within these CRF or subtype lineages. In this
case, divergent evolution would likely maintain HIV-1 fitness but
survival or expansion of the virus in the human population would
be dependent on a combination of different factors such as trans-
mission efficiency and virulence, of which replicative fitness may
play only a minor role (36). When analyzing 1,414 viral sequences
of CRF02_AG from treatment-naïve subjects retrieved from the
Los Alamos National Laboratory HIV Database (http://hiv-web
.lanl.gov, accessed in July 2011), we observed low frequencies of
these polymorphisms. The 17E polymorphism was found in only
112 sequences (7.9%), while another 145 (10.3%) harbored 64M.
Both polymorphisms were found together in higher proportion
(31 of 1,414, or 2.2%) than in random distribution (0.6%), sug-
gesting a linkage and/or coevolution. These findings are sup-
ported by the higher fitness of virus harboring 17E/64M than of
virus harboring either 17E or 64M alone (based on head-to-head
competitions). Our fitness results based on direct competition of
replication-competent CRF02_AG viruses are in contrast with
previous studies using a chimeric virus (subtype B backbone with
non-subtype B PR and/or RT coding regions) derived from treat-
ment-naïve patients. These analyses suggest that HS to multiple
PIs was related to a lower replicative capacity (RC). These studies
measured RC from cells transfected with defective proviral DNA

constructs, which are then used in single-cycle, monoinfection
assays (25, 26). Furthermore, these RC values of the chimeric virus
are compared to an NL4-3 laboratory strain. In our study, we
related replicative fitness of the HS-linked polymorphisms in an
HIV-1 clone, derived from the same subtype, and then directly
competed the wild type and the mutated HIV-1 clones to best
approximate the differences in replicative fitness of the
CRF02_AG HIV-1 viruses found in the epidemic.

The clinical benefit of HS has been only recently evaluated in
terms of treatment outcomes. Patients with HIV-1 subtype B in-
fection, exposed to NRTIs and presenting HS to efavirenz, had a
better virologic response during therapeutic salvage that included
NNRTIs (33). Such a benefit was corroborated by other clinical
trials of salvage therapy (7, 12, 13, 40). The PR drug resistance
mutation N88S, which causes resistance to ATV and NFV, also
confers HS to APV. N88S in NFV-experienced patients was cor-
related with a better response to APV-containing salvage therapy,
and the presence of N88S appeared to counteract the resistance
conferred by I50V, the major mutation linked to drug resistance
to APV (21, 47). Another potential benefit of HS-linked polymor-
phisms could be a delay in the emergence of drug resistance mu-
tations. Recent studies by our group have shown differential cor-
relation between the times to appearance of drug resistance
mutations within different HIV-1 subtypes (8, 32, 35), a phenom-
enon likely influenced by the preexistence of HS-linked polymor-
phisms. However, the mechanism by which HS-linked polymor-
phisms counteract, attenuate, and/or delay the emergence of
major drug resistance mutations is poorly understood. One obvi-
ous scenario may relate to the lower levels of drug required for
virus inhibition, and thus, any reductions in trough drug levels
between dosing times (magnified with missed dosing/poor adher-
ence) may be less consequential for HIV-1 isolates with HS-linked
polymorphisms. Based on analyses of CRF02_AG isolates exposed
to NFV, 44% (8/18) of viral isolates without NFV-associated mu-
tations carried 17E and/or 64M, while only 8% (1/12) of those
presenting NFV resistance harbored any of these polymorphisms
(P � 0.049). These findings suggest that maintenance of drug
susceptibility and delay of resistance development are associated
with HS-linked polymorphisms.

According to the UNAIDS, 5.2 million people living in devel-
oping countries by the end of 2009 were receiving treatment (http:
//www.unaids.org) The emergence of drug resistance could have
devastating consequences due in part to poor treatment monitor-
ing and drug resistance screening. In these countries, where HIV-1
non-B subtypes are prevalent, the beneficial impact of HS-linked
polymorphisms could better direct initial and/or salvage therapy.
However, additional studies are needed to evaluate the clinical
impact of these natural HIV polymorphisms.
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