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Abstract

Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP
spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain
rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine
Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent
the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of
neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary
somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then
we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs.
The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated
by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized
the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that
both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike
patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction
accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both
spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e.
on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the
LFP response variability, play a dominant role.
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Introduction

Local Field Potentials (LFPs) and spikes represent two aspects of

neural signalling, tightly combined in complex causal relations

[1,2]. A better comprehension of their dynamical interactions is

fundamental to provide a multi-scale picture of local sensory

processing, ranging from multiple sub-threshold events to spikes.

So far, since the first LFP-spike analyses, it has been possible to

elucidate the spatial and temporal scales of synaptic input

integration [3,4], to improve the readout of sensory stimuli [5,6]

and to hypothesize efficient modalities of neuron-to-neuron

communication between distant brain areas [7,8]. However, the

LFP-spike relation requires further clarification. In particular, only

few attempts have been made to predict spike occurrence from

LFP oscillations [9,10].

In this context, our aim was to investigate the LFP-spike relation

in tactile sensory system and to find simple analytical relations to

predict spikes from LFPs. To carry out our investigation we

performed extracellular recordings in the rat primary somatosen-

sory cortex (S-I) in ongoing and stimulated regimes. Neurons in S-I

are known to integrate a complex signal packet of temporal and

modal features with millisecond precision [11–13].

We divided our computational analyses into two successive

steps. First we quantified the accuracy of spikes and LFPs in

coding for the stimulus occurrence and how they relate to each

other. Then we estimated a predictive model to infer spike

occurrences from simultaneous LFP recordings. Because the LFP-

spike relation is highly nonlinear, the estimation of a predictive

model represents a demanding computational task. To deal with

this problem we developed a novel multi-objective framework

based on the NSGAII algorithm [14].

We observed that the majority of spiking activity was

predictable from LFPs but for a minority of cases. Crucially, we

found that spike occurrence could be predicted above chance only

when both LFP and spike recordings were responsive to stimuli.

Results

Coding for the Stimulus Occurrence: Relation Between
Spike and LFP Responsiveness

In the attempt to recognize a relation between the local network

level (LFPs) and the single neuron activity (spikes), we first

determined stimulus responsiveness of spikes and LFPs.
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We define spike responsiveness in terms of spike counts, i.e. a

neuron is responsive when its spike count (number of spikes within

a time window) after the stimulus onset is different from that

before the stimulus. To quantify spike responsiveness by compar-

ing the spike counts collected before and after the stimulus

occurrence we used the Shannon’s Mutual Information (MI) (see

Methods). MI quantifies the uncertainty reduction, about whether

or not a stimulus was presented, provided by the observation of the

spike response. The MI reaches its highest attainable value of 1 bit,

when the spike count reduces to zero the uncertainty about

stimulus occurrence.

In Fig.1A we show a neuron that responds to repetitions of

five different stimuli (the five fingertips). The MI rises above 0

after 15–20 ms, peaks between 20 and 30 ms and then

decreases (Fig.1B). The decrease can be related to a stimulus

dependent inhibition that partially cancels out the increase in

firing rate [15].

LFPs are continuous signals and their discretization, necessary

for MI estimation, poses non trivial problems [2]. We thus decided

a different characterization of LFP responsiveness; namely the

ratio of stimulus-dependent to stimulus-independent oscillation

amplitudes (LFPSNR, see Methods). LFP responsiveness rises after

15–20 ms and constantly increases in the considered time window

of 50 ms (Fig.1C,D). Moreover not only the raw LFP but also its

derivative and the phase of its derivative (see Methods) were

responsive to stimulus (Fig.2A).

In the whole dataset, both LFP and spike responsiveness were

highly variable, ranging between 0.17–1.58 (LFPSNR) and 0.01–

0.61 bits respectively. As shown in Fig.2B, the two measures were

positively correlated (p = 0.003, ranksum test).

To understand if the spontaneous LFPs could provide a hint on

their responsivity to stimuli, we recorded 5 minutes of spontaneous

LFP activity antecedent to the stimuli. Then we computed the LFP

spectrum during spontaneous and stimulated conditions and their

Spectral Ratio (SR, see Methods). SR is larger (smaller) than 1

when the stimulus increases (decreases) the LFP oscillation

frequency power. In two cases the stimulus increased the LFP

oscillations by 5 orders of magnitude (SR = 7.36*105, 7.48*105). In

all the other recordings but one the oscillations were always slightly

increased (SR interval = 1.05 3.51, Fig.2C). Furthermore, SR was

positively correlated to spike responsiveness (p = 0.006, ranksum

test, see Fig.2D).

Our results show that LFPs respond to stimuli with comparable

variability to neuronal spiking, positively co-varying with them.

Figure 1. Coding for stimulus occurrence: spike and LFP responsiveness. A) Raster Plot for a single cell response to fingertip stimulation (big
toe at the top and V at the bottom). Different fingertips are separated by black lines, the vertical red line indicates the time of stimulus onset. B)
Mutual Information about stimulus onset for cell in (A). C) LFP response recorded simultaneously and from the same electrode of (A). D) LFP
responsiveness, computed as LFPSNR.
doi:10.1371/journal.pone.0035850.g001
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We hypothesize that spiking variability is mainly due to a local

responsive/unresponsive cortical state (see below).

LFP-Spike Coupling Depends on Responsive/
Unresponsive Cortical States

The second aim of this work is to investigate the possibility of

spike prediction from simultaneous LFP recordings. The LFP-

spike coupling has been shown to covary with several physiological

parameters [16,17]. Our analyses could shade light on the

necessary conditions for a significant LFP-Spike coupling during

tactile processing.

We reported in the previous paragraph that neuronal spikes and

LFPs have correlated responsiveness. In addition to raw LFP

responses we identified two other relevant signals: the LFP

derivative and its phase (Fig.2A). Thus we used these three signals

to predict spike occurrence.

To evaluate the goodness of prediction we selected two criteria

associated with two different cost functions: a local one, based on

trial-to-trial comparisons, and a global one, based on the average

response. For the local cost, called Spike Match (SM ), it was

required that the number of incorrectly predicted 1’s and 0’s was

the smallest possible. For the global cost, called PSTH Fit (PF ), it

was required that the PSTH of the model approximated that of

the true neuron with the least root mean squared error (see

Methods). The costs were normalized between 0 and 1 indicating

respectively the best (‘‘cheapest’’) and the worst (‘‘most expensive’’)

model. A cost equal to 0 implies that the model exactly matches

the true neuron for that criterion. A cost equal to 1 implies that the

model does not perform above chance level. Because these criteria

were to some extent conflicting we obtained two set of models, one

optimal for the local criterion, the other for the global one.

We found that the local criterion was harder to achieve. On

average, in our dataset the optimal models for the global cost could

perform 0:29+0:17 (respectively mean and standard deviation)

for PF (but only 0:93+0:07 for SM ), while optimal models for the

global cost achieved 0:85+0:11 for SM (but only 0:63+0:29 for

PF ). This means that models optimized for the global and the

local costs could predict, respectively, 70% and 15% above

chance; however, in both model sets, the best performances in one

criterion came at the price of a significant worsening in the other.

Overall 18 neurons (75%) were predicted above chance.

To evaluate if spike or LFP responsiveness could modulate the

prediction outcomes, we first computed the correlation between

the spike responsiveness and the SM values of the optimal models

Figure 2. Characterization of the LFP-spike relations. A) PSTH (histogram), average LFP response (blue line), average LFP derivative (red line),
average phase of the LFP derivative (green line). All these responses are normalized (mean subtracted and divided by the standard deviation). B)
Positive correlation between LFPSNR and Imax. C) Power Spectrum for the spontaneous and evoked activity in three different recordings. Note that
the onset of evoked activity does not impact substantially on the LFP frequency content. D) Positive correlation between SR and Imax.
doi:10.1371/journal.pone.0035850.g002
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for the local cost (Fig.3A). The SM values were significantly

correlated with spike responsiveness (p = 0.0006, ranksum test).

Significant correlations were also revealed for LFPSNR and SR
(p = 0.01, 0.04, ranksum test) as shown in Fig.3B,C. No significant

correlations were found by repeating the tests with the global score

PF (p,0.05).

The correlation between MI/LFPSNR/SR and prediction

outcomes (at least for SM) provided further support for the

hypothesis that a cortical responsive/unresponsive state could

significantly modulate the LFP-spike coupling.

Along our hypothesis, the cortical state was characterized by a

different level of basal firing rate which positively correlated with

MI and LFPSNR (respectively p = 0.0008 and p = 0.0084). The

basal firing rate also positively (negatively) correlated with the

smallest achievable SM (PF ) values (p = 0.0030 and p = 0.0037).

The positive relationship between basal firing rate and respon-

siveness suggests that a cortical responsive state could emerge from

a high input regime and maximize the coupling between LFPs and

spikes.

A Multi-objective Framework for the Estimation of
Predictive Models

From our results on LFP-to-spike prediction we found that

different evalution criteria return diverse optimal models that,

interestingly, capture different aspects of the complex LFP-spike

dependence. In order to reconcile these extremes we show here, by

using a multi-objective strategy, that it is possible to obtain a set of

models perfoming at intermediate levels in both criteria.

We used a modified version of the NSGAII algorithm [14] to

optimize the prediction outcomes and find the Pareto optimal

predictive models. Given the defined cost functions, these models

are an estimate of the best attainable trade-off predictions

[18,19]. For each pair of Pareto optimal models if the first is

‘‘cheaper’’ for one criterion then, by definition, it has to be more

‘‘expensive’’ in at least one of the other criteria (see also

Methods). In comparison with single objective strategies, multi-

objective ones have the advantage to provide, together with

models optimal for a specific cost, a continuum of alternative

models with intermediate performances in all the diverse and

potentially conflicting costs.

As representative case we report (Fig.4A) the binarized response

of the neuron in Fig.1A. We show, in Fig.4B,C, the predictions

from two Pareto optimal models, the first minimising the

composite cost 0:75SMz0:25PF , the second minimising the

local cost SM. Although the latter scored the largest number of

correct 1’s and 0’s predictions (SM = 0.72), it largely failed to

capture the PSTH of the true neuron (PF = 0.61, Fig.4D). The

best model for the composite index represented a trade-off

Figure 3. Relation between spike predictability and neuronal responsiveness. Spike predictability, quantified here with (1{SM), positively
correlates with Imax (A), LFPSNR (B) and SR (C).
doi:10.1371/journal.pone.0035850.g003
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between the local and the global criteria (SM = 0.78, PF = 0.34).

The optimal model for the PSTH prediction (PF = 0.20, not

shown) was achieved at the price of a substantial worsening in 1’s

and 0’s prediction (SM = 0.84). A different neuron, whose models

have similar prediction outcomes, is reported in Fig.4E–H (model

performaces are reported in captions).

The mathematical laws associated with the different models are

reported at the top of each panel (Fig.4B,C,F,G), where x,y,z
represent respectively the LFP signal, its derivative and the phase

of its derivative. To the best of our knowledge this is the first time

the LFP-to-spike trasformation is formalized into simple deter-

ministic laws derived from experimantal data.

Discussion

LFPs are signals integrating a number of variable electrical

events, the population synaptic activity in the first place [1,20,21],

while spikes account for selected and stereotyped occurrences.

This mapping of ‘‘many to ones’’ is a supposedly finely regulated

registry granting for tuned signal encoding and decoding. How this

LFP-to-spike transition takes place is, however, largely unknown

[16] and deserves further investigation.

In this perspective, we analysed the cortical neuronal responses

to non-noxious light tactile stimuli, trying to inspect simple rules

for the LFP-to-spike transition during cortical input processing.

We thus chose a mechano-vibrating stimulus (see Methods), likely

to recruit deep skin receptors (e.g. Pacinian bodies [22,23]) with

high temporal and poor spatial resolution and cortical neurons

with large receptive fields in laminae II to IV.

We first showed that spikes and LFPs code for the stimulus

occurrence, although both with variable levels of reliability. Then

we found that, by estimating a simple analytical model, spikes can

be predicted significantly in 75% neurons. Only in the presence of

jointly responsive LFPs and spikes could we estimate sufficiently

accurate analytical rules for their dependence.

The LFP-spike relation typically reflects local functional

connectivity, as shown e.g. for the visual stimuli in different

cortical areas [3,46]. Our findings corroborates the increasingly

accumulating evidence that the modulation of local functional

connectivity, reflected in a variable LFP-spike relation, critically

affects the spike response. A network whose spike responses are

modulated by functional connectivity has at least two great

advantages: it can create dynamical associations (e.g. for multi-

sensory integration) and it is more robust to network failures.

Figure 4. Multi-objective model optimization: extreme solutions and trade-offs. A) Binarized response for the neuron in Fig.1A. B)
Predicted response for a model belonging to the optimal Pareto front. The predictive performances of this model represent a suitable trade-off
between SM and PF . C) Predicted response for a model belonging to the optimal Pareto front. This model has the best predictive performances for
SM at the expense of a significant worsening in PF . D) Average response for the true neuron (blue) and the model in (B) and (C) (respectively red
and green lines). E-H) Same as (A-D) for a different cell. For the model in (F) SM and PF are respectively 0.70 and 0.41. For the model in (G) SM = 0.64
and PF = 0.61. The smallest PF achievable was 0.36 (but for SM = 0.74).
doi:10.1371/journal.pone.0035850.g004
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At present experimental evidences reported a composite picture

of the LFP-spike relations associated with the coding of sensory

information. Single neurons have been found capable of locking

their spikes both to local and to distant LFPs [8]. Low frequency

LFPs and spikes have been shown to convey non redundant

sensory information [5] and spike probability seems to be

influenced by the local LFP phase [6,7] and by LFP amplitudes.

The strenght of LFP-spike relation also reflects the level of surplus

(non-poissonian) spike synchrony [16,17]. Coherently with this

complex scenario, we observed, in S-I cortex, that spike

occurrence is influenced at least by three different LFP features:

the LFP amplitude, the LFP derivative and its phase.

Several works have reported a high variability in the level of

regional coupling between LFPs and spikes [16,24]. We also found

that the strenght of their relation was largely variable. LFPs also

correlate with the neuronal membrane potential [1]. Simultaneous

intra- and extracellular recordings reported that the LFP couplings

with spikes and membrane potentials positively covary [25].

We observed that both spike responsiveness and spike predict-

ability were significantly correlated with the basal firing rates. To

the extent the firing rates we recorded were proportional to the

number of synaptic inputs (this relation was not necessary

monotonic [26,27]), elevated basal rates could be associated with

a high input regime. This cortical condition was proposed to be

optimal for stable information propagation within the cortex [28].

Our results may suggest that a cortical responsive state could

emerge from a high input regime and maximize the coupling

between LFPs and spikes.

LFP responses are likely to mainly represent recurrent cortical

activity (thalamic inputs represent only a small fraction of synapses

in layer IV cortex [29]). Cortical amplification through recurrency

is a well known mechanism, at least in visual cortex [30,31], and

could play a key role in LFP-spike coupling.

Few attempts have been made so far to predict spikes from LFPs

[9,10]. For the first time we propose a computational framework

that returns a relatively simple, although flexible and nonlinear,

analytical model. For the estimation of the structure and the

parameters of our model we relied on a slightly modified version of

the NSGAII algorithm [14]. NSGAII has been successfully used

for a variety of purposes, ranging from optimal parameter

estimation of Proportional Integral Derivative (PID) controllers,

to laser tuning in quantum optimization, robot design and

trajectory planning. [32–37]. At the best of our knowledge, this

is the first time that this is used for predictive modelling of

neuronal responses.

The estimation of a predictive model for spikes implies the

implicit assumption of a spike metric, i.e. a distance measure to

compare true and predicted spike patterns. The calculation of a

spike metric has been proved a computational demanding task and

relies on a priori hypotheses about the most salient features of a

spike pattern [38]. Most predictive models avoided this complicacy

assuming that a single cost function based on the average response

could return the best model (e.g. [39,40]). We show that this is not

necessary the case and the joint evaluation of the average response

and of a local measure, based on trial-to-trial comparisons, could

return a more complete set of models that capture diverse aspects

of the true responses.

The analytical relations we estimated with our predictive

framework do not directly imply a causal relation between LFP

and spikes. The direction of the LFP-spike interaction was

investigated for V1 cortex in a recent work [2] and the authors

unveiled a complex scenario of both symmetric and asymmetric

dependences.

We asked how and to what extent the occurrence of a stimulus

modified the LFP activity. We found that the stimulation had a

small but significant effect and LFP oscillations were slightly

enhanced. The size of this effect was positively correlated with LFP

and spike responsiveness and spike predictability.

In conclusion, our results suggest that the LFP-spike relation

could shed light on the functional states (e.g. responsiveness/

unresponsiveness) of cortical circuits. Indeed, we showed that LFPs

are good predictors for spikes whenever neurons are responsive to

stimuli. Our results on prediction, besides the theoretical interest,

could also potentially improve the current strategies for program-

ming efficient neuroprosthetics [41].

Methods

Ethical Statement
To study how sensory stimuli are represented by neuronal

activity there is no alternative to the use of animals and the use of

an in vivo approach. The animals were maintained with regulated

16 hrs light- 8 hrs dark cycles, food and water ad libitum. All the

animals have been treated according to the Italian and European

Laws on animal treatment in Scientific Research (Italian

Bioethical Committee, Law Decree on the Treatment of Animals

in Research, 27 Jan 1992, No. 116).

The National Research Council, where the experiments have

been performed, adheres to the International Committee on

Laboratory Animal Science (ICLAS) on behalf of the United

Nations Educational, Scientific and Cultural Organizations

(UNESCO), the Council for International Organizations of

Medical Sciences (CIOMS) and the International Union of

Biological Sciences (IUBS). As such, no protocol-specific approval

was required.

Electrophysiological Recordings
Fifteen male rats (Sprague-Dawley, Charles River, Calco, LC,

Italy) weighing 300–400 g were used. The neuronal electrophys-

iological recordings were taken from the side contralateral to the

stimulated paw. A 3 mm2 hole was drilled on the skull to gain

access to the Somatosensory Primary (S1) cortex. The neuronal

recordings were obtained by a vertical multitrode with 8 gold

contacts, 7 located on a linear array (125 mm contact spacing) and

one on the tip (tip-first array distance was 370 mm). The average

impedence was 1.8 MV (Thomas RECORDING GmbH, Gies-

sen, Germany). Brush light tactile stimuli were delivered onto the

plantar aspect of the left hindlimb to assess the somatotopic

correspondance with the sciatic innervation field.

The rats underwent preliminary barbiturate anesthesia for the

surgical experimental preparation. The jugular vein and the

trachea were cannulated to gain, respectively, a drug delivery

pathway and the respiratory connection to the anaesthesia-

ventilation device. After the preparatory stage, the rats were

mounted on a stereotaxic apparatus (Narishige, Tokyo, Japan) and

a bone tile was excised on the hindlimb cortical representation

area. An electronically regulated thermal bed maintained the rat

temperature at 37.5 Celsius degrees. After drilling a bone tile on

the skull giving access to the posterior paw somatosensory

projection area [42], the dura mater was delicately removed and

the cortical electrode inserted.

Before its placement, the rats were paralyzed by intravenous

gallamine thriethiodide (20 mg/kg/h) injection and connected to

an automatic respiratory device delivering (1stroke/s) Isoflurane

2.5% 0.4 to 0.8 l/min and Oxygen 0.15–0.2 l/min gaseous

mixture. Curarization was maintained stable throughout the

whole experiment by Gallamine refracted injections. During the
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experiment the anaesthesia level was continuously monitored by 4

EEG channels. The EEG electrodes were placed controlaterally to

the cortical electrode, along a fronto-occipital sequence.

For signal amplification and data recordings, we used a 32

channel Cheetah Data Acquisition Hardware (Neuralynx, MT,

USA) at 32 kHz sampling frequency. Electrophysiological signals

were acquired between 1 Hz and 6 kHz. The data were stored for

offline analyses. A histological confirmation of the placement of

the electrodes was then obtained on brain coronal sections stained

with cresyl violet.

Stimulation Protocol and Preliminary Analyses
Brush light tactile stimuli were delivered onto the plantar aspect

of the left hind limb to assess the correct somatotopy by cortical

responsiveness to the sciatic innervation field. The repetitive and

preserved responses to stimuli were the anatomo-functional

acceptance criteria for data acquisition. Controlled stimulation

was delivered through a blunted cactus tip. The tip was mounted

on the dust cap of a speaker and driven through a microcontroller

board (Arduino [43]). At the beginning of each stimulation epoch

the tip was lightly placed over the skin. Fast 5 ms pressure pulses

were applied following a semi-random sequence. Pulses occurred

in couplets. The delay between every first pulse of each couplet

was equal to 500 ms. Every second pulse followed the first by a

random delay extracted uniformly in the range between 50 and

250 ms.

The extracellular recordings were numerically filtered in the

band 1–100 Hz and 300–6000 Hz to obtain respectively Local

Field Potentials (LFPs) and spikes. LFPs were then downsampled

to 0.5 KHz. We used the same techniques for filtering as described

in [6]. After filtering and downsampling the spike contamination

of LFP signal was null, so no further spike removal techniques [44]

were needed. The spikes were extracted and sorted by using

internally developed software. Time bins, to compute the match

between observed and predicted neuronal responses, were set at

2 ms. The LFP signal was convolved with the spike-triggered

average. From the latter we extracted two additional signals: the

LFP derivative and the phase of the LFP derivative. The LFP

phase was computed by using the Hilbert transform (implemented

in Matlab by the function hilbert.m).

Evaluation of Spike Responses
The stimulus responsiveness for single units was computed by

using the Shannon’s Mutual Information (MI). The conditional

response probability p(rjs) was estimated from the neuronal

response, s representing the stimulus category, r the number of

spikes emitted within a fixed time window (i.e. the spike count).

The stimulus category was either 1 (stimulus) or 0 (no stimulus).

Because the two categories were equiprobable the largest value for

MI was 1 bit. The distribution p(rj1) was obtained from the spike

counts in time window starting, in each trial, at the time of

stimulus deliverance. The distribution p(rj0) was obtained from

the spike counts in a time window of equal duration and ending at

the time of the stimulus deliverance. To characterize the neuronal

responsiveness in each location we used the following definition of

MI:

MI~
X

r

X

s

p(r,s)log2
p(rjs)

p(r)
ð1Þ

In order to find the optimal time window we repeated the measure

with time windows of increasing size (from 5 to 50 ms at steps of

5 ms). The search for the optimal time window was motivated by

the fact that neuronal responses typically exhibited a complex two-

phases behaviour: the firing rate initially increased over the basal

level and, after 20–40 ms, decreased under the basal level. The

timing of phase switch was unit-dependent. The stimulation was

applied in 5 different locations on the hindpaw and for each

location 200 stimulus repetitions were delivered. After evalution

across the different stimulus locations and time windows we took

the largest MI value obtained.

To obtain unbiased estimates of the Mutual Information we

used a procedure described in [45]. Following the authors

prescriptions the plug in estimate of 1 was corrected by using

two additional terms: the shuffled entropy H(R; S)shu and the

independent entropy H(R; S)ind . The resulting corrected estima-

tor has been shown to converge to the correct value much faster

than the associated plug in estimator [45].

As the corrected estimator is obtained by using a shuffling

procedure its value is slightly different every time the estimation is

repeated. To counterbalance for those random fluctuations we

took the average of 100 repetitions, its standard deviation

representing the level of intrinsic noise in the measure. Accord-

ingly the MI was considered reliable only if its noise was less than

5% of the smallest marginal entropy. For all the reported MI

estimates the noise level was under this threshold.

Evaluation of LFP Responses
The stimulus responsiveness for LFPs was evaluated by using a

measure of the signal-to-noise ratio. To this aim we defined a

response matrix LFPi,j . LFPi,: is a single trial response sampled at

different times from the stimulus onset. LFP:,j collects the

responses to all trials sampled at a specific delay from the stimulus

onset. We called mLFPj the mean of LFP:,j and MLFP the mean

of mLFPs over all possible delays. We also defined Nbin the

number of response samples in a trial and Ntrial the overall

number of trials. Then the LFP responsiveness, LFPSNR, was

measured as

LFPSNR~Ntrial

P
j

(mLFPj{MLFP)2

P
j

P
i

(LFPi,j{mLFPj)
2

ð2Þ

where Nbin cancels out in the division. The numerator quantifies

the mean stimulus-evoked response after removal of the intrinsic,

stimulus-independent fluctuations while the denominator quanti-

fies the size of such fluctuations. When trial-to-trial fluctuations are

much larger than the evoked response, then the LFP responsive-

ness tends to 0. Conversely, when the evoked response dominates,

LFPSNR tends to a large value.

A different measure of LFP responsiveness was based on the

spectral content of the spontaneous and the stimulated LFP. In

order to quantify the frequency-wise distance, we used an index

called Spectral Ratio (SR)

SR~v

PSDEA(f )

PSDSA(f )
wf ð3Þ

where PSD represents the Power Spectral Density. The spectral

frequency f was evaluated in the interval 1–39.9 Hz with steps of

0.3 Hz.

Model Design
We defined a class of models that took as input different LFP

features returning a binary output, 1 for spike 0 otherwise. From
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the LFP (convolved with the spike-triggered average) we extracted

two additional features: the LFP derivative and the phase of the

LFP derivative (see Fig.2A). Then the LFP, the LFP derivative and

its phase were normalized (subtracted by the mean and divided by

the standard deviation) and used as model inputs.

Let us call x1, . . . ,x3 these inputs. We define a weight sequence

Gi~fg1, . . . ,g3g (0ƒgiƒ1 for any i~1, . . . ,3 and
P

i gi~1) and

a set of unary operators f ~ff1, . . . ,f3g, where fi belongs to an

operator set O~fO1, . . . ,ONf
g. We define the model structure F

as a 3-ary operator

F (x1,x2,x3)~
X3

i~1

gifi(xi) ð4Þ

A combination of the 3 unary operators is chosen among the N3
f

possible ones. The F operator defines, through the operators fi

and the weights gi, respectively the structure and the parameters of

the predictive model. We convert a neuronal signal into a binary

one, where 1 occurs at the time of spike emission and 0 otherwise.

Let r and rest, respectively, the binary signals associated with a real

neuron and its predicted activity. To convert F into a binary signal

we applied a threshold TH so that the full LFP-spike transforma-

tion can be expressed as

rest~H(F (x1,x2,xM )) ð5Þ

and H represents the Heavyside function (equal to 1 when the

argument is positive, zero otherwise) with threshold TH. As we chose

O~f(:),{(:),(:)2,{(:)2g, the model structure was evaluated within

a set of cardinality jOj3~43~64. To clarify with an example, if we

selectanoperatorcombinationf(:),{(:),(:)2gandaweight sequence

f0:2,0:2,0:6g, thenwedefine themodelasF~0:2x1{0:2x2z0:6x2
3

and the LFP-to-spike transformation as rest~H(F ).

The TH value was set so that the number of spikes emitted by

the model response rest was equal to that detected for the true

response r. We called the latter Nsp. Given the three inputs x1, x2,

x3 the full search space for the model structure is represented by

the following expression

H(+ ax6

1 +bx6

2 +cx6

3 ) ð6Þ

where we set +[fz,{g and 6[f1,2g.

Model Optimization Criteria
To evaluate the goodness of a model we need to quantify the

error in prediction represented by the distance between predicted

and true spike trains. The definition of an appropriate distance

measure for spike patterns, i.e. of a spike metric, needs to

incorporates different pattern features like the timing and the

number of spike occurrences [38]. Given the multidimensional

aspects of the optimization task we decided to take into

consideration two main criteria to evaluate model predictions.

The first was local and based on trial-to-trial measurements, the

second was global and based on the distance between the true and

the average response. The local objective was called Spike Match

(SM ) and computed with the following expression.

SM~

PNr

n~1

jrest(n){r(n)j

2Nsp(Nr{Nsp)=Nr

ð7Þ

where Nr represents the length of the response vectors. The

denominator was purposedly added in order to obtain SM~1 for

predictions at chance level. Its derivation can be found in

Supplementary Information S1. The response distance SM
represents the local objective to minimize.

The global objective was called PSTH Fit (PF ). It was

computed as follows

PF~

PNresp

n~1

jPSTH(n){PSTHest(n)j

PNresp

n~1

jPSTH(n)j
ð8Þ

We used this criterion to test whether a neuron response was

predicted above chance. We counted as above chance

prediction any neurons whose average PF value subtracted

by the standard deviation (in the first Pareto Front) was less

than unity. The best predictions would be obtained by

minimising both SM and PF (ideally SM~PF~0, although,

for our experimental data, this never happens). Note that there

is no guarantee that models with PF~0 will also have SM~0.

However if SM~0 (i.e. the model can predict all spike/non

spike occurrences), then PF~0. If SM~1 there is no rule on

PF values.

According to Ockham’s Razor principle we used a third objective

function to incorporate a measure of complexity within the

optimization process. We elected as simplest possible a model with

gi~1, the others being all zeros. Operatively, we tried to minimize

a third objective, the Complexity Order (CO), expressed as

CO~

(1{
PM

i~1

g2
i )M

M{1
ð9Þ

In the most complex case (CO~1) gi~1=M for each weight.

Optimization Algorithm
In most practical situations multiple objective frameworks

may be preferable [18], [19] over single objective ones. To find

the best solutions, we used the framework of Pareto non-

dominated sorting. Given two candidate solutions F1, F2 and

their objective functions OB1 and OB2, we say that F1

dominates F2 when OB1(k)ƒOB2(k) for any kth objective

and at least one of those comparisons returns a strict

inequality. If both F1 does not dominate F2 and vice versa,

we say that F1 and F2 belong to the same front of non-

dominated solutions.

Among the wide family of algorithms based on Pareto front

evaluation, we chose the well known Non-Dominated Sorting

Genetic Algorithm II (NSGAII) [14]. The initial population was

generated by randomly sampling from structure and parameter

space. The population size was chosen equal to 320 so that each

structure was represented, on average, by 5 individuals. Two

parents were mated only when they exhibited the same structure.

This condition (restricted mating, not present in the original

NSGAII) allows for the generation of offspring only through

parents sharing the same structure.

When mating occurs, crossover is implemented on parameters

and each weight gi is extracted with equal probability from one of

the parents. Weights from the selected parent are copied into the

child genotype. Then, they are modified in order to constrain the

weight sum to equal unity. Mutations occur with probability 0.1

Predicting Spike Occurrence from LFPs

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e35850



both on the structure and on the parameters, respectively by

switching an operator or by adding a Gaussian (m~0,s~0:001)
variation to the selected weight.

The algorithm exhibited no substantial improvement after 10–

20 iterations. Accordingly, we fixed 50 iterations as stop criterion.

At the end of a run, the algorithm always selected few structures

and, for each, they converged onto 1–2 regions of parameter

combinations.

Each dataset was divided into two subsets of equal size, the first

was used for the training phase, the second for the cross-validation.

The Pareto optimal solutions, extracted from the training set, were

then evaluated on the cross-validation set. All non-dominated

solutions in the latter set were finally selected.
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