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Abstract
Perceptual learning often shows substantial and long-lasting changes in the ability to classify
relevant perceptual stimuli due to practice. Specificity to trained stimuli and tasks is a key
characteristic of visual perceptual learning, but little is known about whether specificity depends
upon the extent of initial training. Using an orientation discrimination task, we demonstrate that
specificity follows after extensive training, while the earliest stages of perceptual learning exhibit
substantial transfer to a new location and an opposite orientation. Brief training shows the best
performance at the point of transfer. These results for orientation-location transfer have both
theoretical and practical implications for understanding perceptual expertise.
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1. Introduction
Visual perceptual learning refers to improvements that develop expertise, through practice,
in distinguishing differences in visual sensory features, such as contrast (Yu, Klein, & Levi,
2004), orientation (Dosher & Lu, 1998, 1999; Jeter, Dosher, Lu, & Petrov, 2009) or position
(Ahissar & Hochstein, 1997; Karni & Sagi, 1991), see Fahle & Poggio, 2002, for a review).
Perceptual learning differs in magnitude depending upon the task (Fine & Jacobs, 2002) and
may be most useful as a training or therapeutic tool if it generalizes or transfers to other
similar visual tasks or attributes, such as spatial position, orientation and spatial frequency
(Huang, Zhou, & Lu, 2008; Li, Polat, Makous, & Bavelier, 2009, Polat, 2010). More often,
however, specificity (failure of transfer) to trained stimulus attributes or tasks is cited,
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although partial specificity and partial transfer (Ahissar & Hochstein, 1997; Ramachandran
& Braddick, 1973) are often observed. The specificity of visual perceptual learning is the
trademark finding that has led many researchers to infer that experience-dependent training
alters representations in early visual cortex in areas with small receptive fields that are
selective for orientation and position (Fahle & Poggio, 2002; Karni & Sagi, 1991, Gilbert,
Sigman, & Christ, 2001).

What determines the extent of (partial) transfer or specificity? Knowing how specificity
develops may greatly improve our understanding of perceptual learning. Specificity has
typically been assessed only after the initial training approaches asymptotic level. Here we
ask, does specificity develop over training, and if so, how? We hypothesized that the amount
of training on the initial task can be a critical factor determining the specificity of perceptual
learning. To our knowledge, there are no prior studies that have manipulated the amount of
initial training and measured subsequent specificity of visual perceptual learning. In this
study, we manipulate the number of blocks of training over sessions (and not the number of
trials in block, i.e., Censor & Sagi, 2009). Using a high precision orientation discrimination
task, and transfer of learning to a new orientation and location, we show that specificity is a
dynamic property, and that the extent and nature of specificity depends critically upon the
extent of initial training.

1.1 Specificity and transfer
Early reports of the extraordinary specificity of visual perceptual learning to the trained
stimuli, for example in a texture search task (Karni & Sagi, 1991), led to the conclusion that
learning in different locations or for different stimuli occurs in independent representations,
perhaps corresponding with V1 cells that code relatively precisely for retinal position and
orientation (Fiorentini & Berardi, 1981; Gilbert, Sigman, & Crist, 2001). One classic study
of orientation discrimination (Schoups, Vogels, & Orban, 1995) found specificity to
different retinal positions, following some transfer from an initial training at fovea. Other
studies (Crist, Kapadia, Westheimer, & Gilbert, 1997; Shiu & Pashler, 1992) found
specificity to trained orientations. A number of these cases showed partial specificity and
partial transfer (Beard, Levi, & Reich, 1995; Fahle & Poggio, 2002). Other studies of
perceptual learning in visual search, motion direction discrimination, and orientation
judgments (Ahissar & Hochstein, 1997; Jeter et al., 2009; Liu & Weinshall, 2000) found that
specificity was a property of more demanding, high precision tasks (i.e. discrimination
between very similar orientations), while transfer occurs more readily for low precision
tasks. Recent studies also suggest that transfer may be greater if the tasks retain common
judgment properties (Webb, Roach, & McGraw, 2007), or if a location has been previously
trained in another task (Xiao, Zhang, Wang, Klein, Levi, Yu, 2008).

Transfer is the improvement in performance – here contrast threshold – in a new task at the
point of the task switch, relative to an untrained baseline1 (see Dill, 2002, for a general
discussion). Full transfer occurs when performance after the task switch continues at the
trained level of the initial task. Specificity is the return towards untrained baseline
performance at the point of task switch. If initial performance after the task switch is exactly
what it would have been without the initial training, then there is no transfer, and complete
specificity. Figure 1 schematically illustrates full specificity (no transfer), full transfer (no
specificity), and a mixed condition of partial specificity and partial transfer. Transfer, or the
difference in performance level from an untrained baseline, is marked by vertical blue lines
and specificity, or the difference from a fully trained level, is marked by vertical red lines. A
specificity index (i.e., Ahissar & Hochstein, 1997) often is defined as the proportion of total

1See later in the Introduction for a consideration of baseline issues in the current matched-task paradigm.
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improvement in the first training stage that is not transferred to the new task at the point of
the task switch (see Methods). By analogy, a complementary measure of transfer can also be
expressed as the amount (blocks) of training that would have led to the improved
performance on the new task (see Jeter et al., 2009), illustrated in the green lines dropped to
the practice axis.

In this paper, the effects of extended practice on transfer are studied for high precision
orientation discrimination for a task switch that changes both the reference angle of the
discrimination and the visual location of the test. This relatively high precision task and
transfer condition (Jeter, Dosher, Lu & Petrov, 2009) is known to lead to partial transfer and
partial specificity after an intermediate level of training. This allows for the measurement of
either less or more specificity (or transfer) after different amounts of training.

1.2 Possible frameworks for specificity and transfer
The vast majority of perceptual learning studies train for many sessions and many trials per
session, i.e., to asymptotic levels, before testing for transfer to different positions,
orientations, or stimuli (Fahle & Poggio, 2002). In this study, we manipulate the extent of
training prior to a task switch from very preliminary training to near-asymptotic levels of
training over different groups of observers, and observe the extent of transfer to the new
task, or extent of specificity of learning to the initial training task.

There are at least four frameworks for understanding specificity, or conversely transfer, in
perceptual learning that make predictions for the effect of varying the extent of training:

The dominant framework for understanding specificity is separate neural representations
(Karni & Sagi, 1991, Gilbert, Sigman, & Christ, 2001). If the specificity of learning is due to
plasticity in early visual cortex for tasks whose different retinal positions or orientations
drive relatively independent representations, then specificity should be a consequence of
training different cell populations regardless of the amount of training. Specificity occurs
because the transfer task uses a new set of previously untrained representations. Under this
view, two tasks, say in different locations, will recruit distinct populations in early visual
system (i.e. V1) and will show no transfer, or 100% specificity. In this view, specificity is
the default, and it is transfer that requires explanation. A modified version could allow a
small and constant amount of transfer between the tasks as a consequence of task
familiarization2. Although this framework is often taken to imply modification of early
sensory representations, in fact studies examining transfer between plausibly distinct cortical
representations are consistent with either changing sensory representations or reweighting
(see below) (see Petrov, Dosher, & Lu, 2005; Dosher & Lu, 2009, for a task analysis and
review).

An incremental transfer framework reasons that something must be learned before it can be
transferred, so additional training might lend itself to more transfer of a perceptual skill. One
can transfer only what is learned, and the incremental transfer is one reasonable corollary. If
even some of the improvement during a session transfers, then each added block of training
should lead to more improvement – measured as better (absolute) performance on the new
task at the point of the task switch. Indeed, at every stage of practice, if any of what is
learned in the next block of training is transferred, then performance at the point of transfer
should still improve with every incremental block of training. Partial transfer and partial
specificity after extensive training is a very common, and perhaps the dominant observation
in perceptual learning studies (Crist et al., 1997; Schoups et al., 1995) (see Dosher & Lu,

2However, in this experiment the early stages of learning are not easily associated with such factors as learning the key presses or the
general experimental environment due to removal of early trials in threshold staircases.
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2009 for a review). The ubiquity of partial transfer in the experimental literature is
compatible with, but does not directly test, the incremental transfer framework. The
incremental transfer prediction is phrased in terms of absolute levels of performance, in
which transfer refers to any improvement in second task relative to baseline at the point of
the task switch; specific predictions about specificity indexes must be computed for each
case.

Another possible framework is the reverse hierarchy theory (RHT) of Ahissar & Hochstein
(1997, 2004). RHT states that “easy” tasks are learned at higher levels of the visual
hierarchy and therefore are transferrable, while “difficult” tasks require learning at lower
levels of the visual hierarchy, and are specific to spatial location and for features such as
orientation or spatial frequency. More recently, we (Jeter, Dosher, Lu, & Petrov, 2009)
showed that the operational factor is not task difficulty (in the sense of how accurately a task
can be performed), but task precision (i.e., the similarity of to-be-discriminated items). The
RHT could make one of two predictions about practice of a high precision task (a “difficult”
task in their labeling), such as the task used in the current experiment. One prediction of the
RHT might be that learning in the “difficult” task in the current experiment is entirely at a
low and specific level of the visual hierarchy, and so shows full specificity. Another possible
prediction of the RHT is that early improvements reflect changes at high and transferrable
levels in the visual hierarchy, while subsequent improvements reflect changes at lower, fully
specific, levels. So, the RHT yields the same predictions as the independent neural
representation framework, namely, complete specificity with the possible exception of a
constant transfer benefit due to the small amount of early and high level learning across all
levels of training.

Finally, the decision optimization or reweighting framework (Dosher & Lu, 1998, 1999; Lu,
Chu, Dosher, & Lee, 2005; Petrov, Dosher, & Lu, 2005, 2006) claims that perceptual
learning optimizes connections (decision weights) for a given task by learning incrementally
with practice to exclude the least relevant and noisiest information and to up-weight the
most relevant and least noisy information. Specificity is a characteristic of the learned
connections between early visual representations and task-related decision units, and not a
property of the visual representations themselves. The reweighting framework, initially
proposed by Dosher and Lu (1998, 1999), was implemented as an Augmented Hebbian
Reweighting Model (AHRM) by Petrov, Dosher, and Lu (2005, 2006) and experimentally
tested with repeated alternation between training phases of discrimination of oriented targets
embedded in right-tilted and left-tilted external noise. Continued practice produced both
general learning and increased optimization specific to one noise context over the other,
seen as persistent switch costs after extended training. To the extent that optimization of
weights in the two tasks are not consistent, then training until performance reaches
asymptote reinforces learning that is unlikely to transfer, or will transfer negatively to the
related task or context. While the transfer between tasks in different retinal locations will
require an elaboration of the AHRM computational model for multiple locations, the general
principle is that extended practice optimizes specifically for one task and increases switch
costs for the transfer task so long as the optimized weight structures for the two differ
substantially (see Petrov, Dosher, & Lu, 2005, 2006; and Dosher & Lu, 2009, for reviews).
Although the specific predictions depend upon the exact training protocol (see Lu, Liu, &
Dosher, 2010), for fits of the model to the data of sample experiments), this model predicts
early improvements at transfer due to generalized learning, but increased switch costs (lack
of transfer, or specificity) after longer periods of training and optimization.

1.3 Experimental approach
Our goal in the current experiment is to measure the amount of transfer, or conversely
specificity, following different amounts of training on the initial task. As indicated
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previously, the paradigm, selected from Jeter, Dosher, Petrov & Lu (Jeter et al., 2009),
evaluated specificity to a feature (orientation) plus location change between tasks. Modeled
on the tasks of Karni and Sagi (1991) and of Ahissar and Hochstein (1997), this paradigm
produces intermediate levels of transfer (Jeter et al., 2009), which might then increase or
decrease with different levels of practice. Observers trained and tested on a two-alternative
high precision (±5° from a fixed, oblique reference angle) identification task with and
without external noise masks (see Fig. 2a–b and Methods). Four groups of observers
experience differing amounts of practice prior to transfer, ranging between 2 and 12 blocks.
This task showed robust learning in both high and no noise tests and exhibits partial transfer
and partial specificity for moderate levels (8 blocks) of training (Jeter et al., 2009), so the
extent of transfer after different amounts of training may be measured. There is room to
measure both higher and lower specificities as training extent is varied. There is evidence in
the literature showing partially independent learning mechanisms with and without external
noise masking, so it is possible that the results would differ in the two noise environments
(Dosher & Lu, 1998, 2005).

There are two approaches to the measurement of transfer in perceptual learning, a matched-
tasks method and a pre-test method. The current experiment uses the matched-task method
in which the initial training task and the transfer task are equivalent and the tasks are
randomly assigned to subjects. In this case, the first measurements on the initial training task
are the control for performance in the transfer task. The matched-task approach is a good
one for the current question because it allows a direct comparison of performance in the two
phases. It is also advantageous because there is a clear outcome for 100% specificity – exact
equivalence (independence) in the two stages of learning – and a clear outcome for 0%
specificity or 100% transfer, in which the performance on the transfer task simply continues
that on the training task. The alternative is to pre-test the transfer task, then train on the
primary task, and then measure performance on the transfer task after the switch. The pre-
testing approach is more complicated to interpret because it requires an estimation of
whether the amount of improvement between the first (“pre-test”) session to the first session
after the transfer switch is larger than some “normal” amount of improvement from a first to
a second session (Dosher & Lu, 2007). Additionally, the pre-test approach is called into
question by recent work on the enabling of transfer by double training (Xiao, Zhang, Wang,
Klein, Levi, Yu, 2008), in which transfer may in many cases be specially “promoted” by
pre-training some task in the transfer location; in other words a pre-test in the transfer
location may set up a special condition in which transfer is more likely to occur. While these
double training effects must be understand, and deserve independent study, they complicate
the current question. For all these reasons, we selected the matched-task approach to
measure specificity and transfer following different amounts of training.

2. Methods
2.1. Participants

Seven observers participated in each of groups that varied in the amount of initial training of
2, 4, 8, and 12 practice blocks (T2, T4,T8, and T12). All subjects provided written consent
under the UC Irvine Institutional Review Board protocol.

2.2. Stimulus and Display
The signal Gabor patch was 64×64 pixels (3°×3° visual angle at a viewing distance of 72

cm): , with angle θ of −35°±5°
or +55°±5°, spatial frequency f = 2 cpd, standard deviation of the Gaussian envelope σ = 0.4
degrees. The ±5° angular-difference is a relatively high precision judgment (Jeter, Dosher,
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Lu, & Petrov, 2009). The contrast c is the maximum contrast of the Gabor, and l0 is the mid-
gray luminance. The No Noise and High Noise conditions were intermixed within each
testing block. Each 64×64 noise image had individual 2×2 pixel noise elements with
Gaussian-distributed values with mean value l0 and standard deviation 0.33. Signal and
noise images were combined via temporal integration (15 ms per frame). Two Gabor frames
were ‘sandwiched’ between pairs of external noise (or blank) frames, so signal and external
noise were combined through temporal integration. Fresh noise images were generated for
each trial. The stimuli could occur in one of two pairs of retinal positions, either NW/SE or
SW/NE corners of the screen, approximately 5.67° of visual angle from fixation (Figure 2b).
On any individual trial, only a single Gabor patch appeared. Each block involved only two
diagonally opposite positions. If the first phase of training used the NW/SE diagonal, then
the transfer tests used the NE/SW diagonal, and vice versa. All stimuli were generated using
MATLAB 5.2 (The Mathworks, 1999) and PsychToolbox 2.34 extensions (Brainard, 1997).

2.2. Apparatus
Stimuli were displayed on a 19” Viewsonic color monitor by a Macintosh G4 using the
internal 10-bit video card (refresh rate 67 Hz, resolution 640 × 480 pixels). Luminance
calibration was performed both with psychophysical matching judgments and with a
Tectronix Lumacolor J17 photometer. The lookup table divided the luminance range (from 1
cd/m2 to 67 cd/m2) into 127 levels for the noise frames and 127 gray levels in the assigned
contrast range for the Gabor targets. A chin rest stabilized the observer’s head.

2.3. Design
Subjects discriminated between a Gabor tilted clockwise (from top to “Right”) or
counterclockwise (from top to “Left”) from a reference angle of either −35° or +55°. The
presentation position was randomized on a diagonal (NW/SE or NE/SW). The reference
angle and presentation diagonal were randomly assigned to subjects for initial training (2, 4,
8 or 12 blocks), and switched to the opposite reference angle and diagonal for the transfer
tests (all 8 blocks). The Gabor orientation discrimination task required high precision
judgments of stimuli differing by δ°=±5° in orientation.

2.4. Procedure
Observers completed 1248 trials per session. Each session was divided into 2 blocks and
separated by brief rest periods. Therefore, T2 trained for 2 blocks (1248 trials in one session
in one day), T4 trained for 4 blocks (2496 trials in two sessions over different days), T8
trained for 8 blocks (4992 trials in four sessions over different days) and T12 trained for 12
blocks (7488 trials in six sessions over different days). Contrast thresholds were tracked
using adaptive staircases (Levitt, 1971). For the first session in the initial training, transfer
and switchback phases, the participant completed 10 practice trials and two practice trials on
all other sessions. Additionally, early, ‘level-finding’, trials (the first 3–5 reversal points or
corresponding to 35–60 trials) in each of four interleaved adaptive sequences (see Staircase
Method below) are not included in the threshold measurements. On each trial, the participant
fixated on a small cross at the center of the screen. A beep occurred 250 ms after the fixation
cross. Another 250 ms later, the stimulus sequence (2 white noise frames + 2 Gabor frames
+ 2 new noise frames) appeared for a total of 90 ms (15 ms/frame). A precue appeared 150
ms after fixation. The short lead-time of 100 ms prior to the oriented Gabor prevented eye
movements. A negative feedback tone was presented after each error. The next trial began
750 ms after the key press response.
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2.5. Staircase Method
Two adaptive staircases (Levitt, 1971) were used to track threshold Gabor contrasts in each
stimulus condition. The 3/1 and 2/1 staircases track accuracies of 79.3 and 70.7 percent
correct, respectively. Signal contrast levels were reduced by 10% after either 3 or 2
consecutive correct responses and increased 10% after each incorrect response. Separate
staircases for all stimulus conditions (including retinal position) were interleaved. There
were 168 and 144 trials, respectively, for the 3/1 and 2/1 staircases for a total of 312 in each
block. Reversals in staircase direction were determined from the sequence of responses.
Threshold contrast levels were computed by averaging an even number of reversals for each
staircase sequence, excluding the first four or five. (The number of reversals excluded is
either even or odd so as to allow averaging over an even number; this guarantees that every
low reversal is balanced with a high reversal, limiting estimation bias.) An overall contrast
threshold was estimated by averaging the thresholds of all staircases every two blocks per
session (day) in no noise and high noise.

2.6. Methods of Analysis
The mean contrast thresholds in different groups were compared with analysis of variance or
t-tests or with corresponding non-parametric Kruskal-Wallis or Mann-Whitney U tests. The
contrast thresholds as a function of blocks of practice were fitted with power function
models, with a lower (minimum threshold) asymptote α and initial incremental threshold
λand a rate ρ: c(t) = λt−ρ + α, where t is the number of training blocks. Transfer of
perceptual learning at the point of transfer can be measured as the amount of experience that
transfers in the context of power function models of perceptual learning: c(t) = λ(t + te)−ρ +
α, where the experience parameter te summarizes the transfer expressed as the number of
blocks of training to yield an equivalent performance (see Dosher & Lu, 2007; and Jeter,
Dosher, Lu, & Petrov, 2009).

In the fullest models, each curve has independent parameters (λi ρI αi, for each condition i),
while constrained (nested) models held certain parameters equal (equating λi = λj, ρi = ρj,
and/or αi = αj over groups). If groups differ by one or more parameters, then a nested model
comparison equating those parameter(s) will significantly reduce the quality of fit when
tested by a nested-model F:

In some cases, the p-values of several parametric or non-parametric tests are combined

through the Fisher’s , where k is the number of significance tests, and df =
2k (Fisher, 1932).

Specificity can be measured in several ways. The specificity index introduced by Ahissar
and Hochstein (1997) expresses specificity as the proportion of the improvement during
initial training that does not transfer, a score that expresses specificity as a percentage in the

dimension of contrast threshold:  are the

contrast thresholds for the first and last blocks of the initial training phase and  is the
contrast threshold for the first block of the transfer test, where I indicates the group or
condition. Ahissar and Hochstein’s specificity index is best suited where initial training is
asymptotic. The current experiment measures transfer after small amounts of practice in
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certain conditions (T2, T4), and in these situations the index can be improved by replacing

 – the value where the contrast threshold is expected to be at the next testing

block under full transfer. This index is: . Alternatively, the
transfer value te from the power function models of perceptual learning provides a measure
of transfer in the dimension of practice blocks; a te of 0 corresponds to no transfer, of full
specificity, while a te = tTtotal corresponds to full transfer, or no specificity.

3. Results
3.1. Learning Curves for Initial Training

Four groups received different amounts of 2, 4, 8, or 12 blocks of practice before transfer,
labeled T2, T4, T8, and T12, respectively. Observers are assigned at random to these groups
that vary only in the amount of initial training. After training, all groups switched to the
opposite retinal positions and orientation and completed 8 additional blocks of practice on
the transfer task. Two blocks of training occurred per day. Task performance is indexed by
the average (threshold) contrast required to produce a criterion accuracy level (i.e., 75%
correct) by averaging two adaptive staircases, 70.7% for a 2/1 staircase, and 79.3 for a 3/1
staircase (see Methods).

Group average contrast thresholds (at 75% correct) were plotted as a function of practice
block separately for ‘no noise’ and ‘high noise’ test conditions (Fig. 1c, left half). The
smooth curves in Figure 2 are fits of a power function model of improvement in contrast
threshold as a function of training block: with a lower (minimum threshold) asymptote α
and initial incremental threshold: c(t) = λt−ρ + α, applied independently to the initial
training and transfer phases for each group separately. Explicit estimation of transfer within
a joint power function model appears in section 3.3. Thresholds were higher with external
noise masks than without (all p < 0.001). All curves showed significant reductions in
thresholds between the first and last block in the training phase, with more training
producing larger contrast threshold reductions (paired t-tests, all p < 0.03).

Although the total amount of learning should increase with increased training, we expected
no differences in the common (overlapping) portions of the training performance as the four
groups differ only in random assignment of observers. The first two blocks of all groups
(T2, T4, T8, T12) showed no differences in either the high external noise or no noise
conditions (all individual p > .46 in Kruskal-Wallis tests), with Fisher’s χ2 = 2.26, df=4,
p=0.688 for high noise and Fisher’s χ2 = 1.09, df=4, p=0.896 for low noise. The first eight
blocks of T8 and T12 did not differ significantly (all individual p > 0.23 in high noise and >
0.18 in no noise in Mann-Whitney tests), with Fisher’s χ2 = 14.14, df=16, p=0.588 for high
noise and Fisher’s χ2 = 17.41, df=16, p=0.360 for low noise3. In short, more training
produces more learning, but the groups – as expected – were statistically equivalent for the
shared portions of the training curves.

3.2. Transfer Phase Performance
The key question of this research is whether the performance on the transfer test depends
upon the amount of initial training. Group T2 yielded the best average performance on the
transfer task, while T12 showed the worst average performance on the transfer test, and so
the least gain given the amount of training, with Groups T4 and T8 showing intermediate
values (Fig. 2c). Comparing the shortest and longest training groups (T12 versus T2) with

3Non-parametric tests were requested by reviewers in consideration of the somewhat smaller number of observers in each group; these
results were closely equivalent to the corresponding parametric tests.
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Kruskal-Wallis tests, T12 showed poorer transfer performance in high external noise
(Fisher’s χ2 = 40.37, df=16, p < .001; ps for the 8 transfer blocks [.025 – .338]) and in no
noise (Fisher’s χ2 = 37.33, df=16, p < .001; ps for the 8 transfer blocks [.035 – .227]). (The
corresponding parametric analysis of variance tests were significant for high external noise
and just missed significance in no noise.)

Power function models of the average group data during the transfer phase also documented
worse transfer performance in T12 (contrast thresholds were higher) than in the T2 training
group. A model that restricted the power function learning curves in the training phase to be
the same (equating λ2 = λ12, ρ2 = ρ12, and α2 = α12) was easily rejected in both high noise
(F(3, 10) = 26.68, p = 0.001, for the nested model test) and no noise (F(3, 10) = 16.75, p =
0.001), again indicating poorer performance at transfer following more training.

By all these measures on the aggregate data, more training yielded significantly less transfer
(worse contrast threshold performance) after the task switch than did brief training.

3.2. Power functions and Te

This section uses expanded power function models that explicitly estimate a transfer or
experience parameter after different amounts of practice. This approach has advantages: (1)
It derives a model-based estimate of transfer, and (2) It can be applied and tested for
significance in individual as well as group data. The initial training phase and the transfer
phase are taken together, with parameter te estimating the benefit from prior training in the
transfer phase – measured in blocks of training required to match performance at the point of
initial transfer (see Dosher & Lu, 2007; Jeter, Dosher, Lu, & Petrov, 2009). The initial
training and transfer phases are fit with common asymptote α, initial incremental threshold
λ, and a rate ρ – reflecting the structure of the matched-task design. The value of te is set to
0 in training and is estimated from the data for the transfer phase4.

Individual data are shown in Figure 3(a–d), with separate panels for each training group.
Table 1 lists the estimated values of the experience parameter te, and R2 summarizing the
quality of fit for high external noise and no noise for each individual and the group average.
While the threshold levels and rate of learning differ between subjects (individual learning is
notoriously variable in perceptual learning studies, Fine & Jacobs, 2002), there is a
relatively consistent pattern of increasing specificity with added training. Values of te show
a downward trend or less transfer for groups receiving more training (see Table 1). The
average te’s in high noise were 1.81, 1.44, 0.93, and 0.01, for T2, T4, T8, and T12,
respectively (χ2 = 9.26, df = 3, p = 0.03), and in low noise were 1.85, 1.96, 0.66, and 0.84,
respectively (χ2 = 1.79, df = 3, p = 0.618 by non-parametric Kruskal-Wallis tests).
Considering comparisons of T2 and T12: In high noise conditions, the average te = 1.81 for
T2 and te = 0.01 for T12 differed significantly (z = −2.75, p = 0.006 by Mann-Whitney test).
In no noise conditions, te = 1.85 for T2 and te= 0.84 in T12 (z = −1.34, p = 0.18). In short,
T12 shows significantly worse performance at the point of transfer than T2. Indeed, the
average estimated transfer decreases systematically from near full transfer at T2 towards
little transfer at T12.

3.3. Nested model tests for T2 and T12 groups
The results of individual observers, as well as the average, can be tested for significant
differences from 100% specificity (te=0) or 100% transfer (te = number of initial practice

4Subsidiary analyses showed separate rates of learning ρ in the initial training and transfer phases when compared directly. Whenever
te is greater than 0, the elaborated power function itself embodies a slower (instantaneous) rate of learning due to the transfer phase
starting farther along the power function.
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blocks) through nested model test comparison with models in which te is an estimated (free)
parameter. Full specificity (te=0) is consistent with the independent representations
framework as a consequence of training and testing different neural representations
regardless of the amount of training. For the T2 group, the constrained model (Table 2,
bottom), where te = 0 (100% specificity) was rejected in the average data in both high
external noise (F(1, 6) = 31.65, p = 0.001) and no noise (F(1,6) = 185.27, p = 0.0001). It was
rejected for 5 of 7 individuals in high noise and for 6 or 7 individuals in low noise
conditions. In the cases where the 100% specificity model was rejected, with freely
estimated te> 0, indicating significant transfer. For the T2 group, setting te = 2 (the number
of blocks of initial training in T2) was statistically equivalent to the model with te free to
vary in both high external noise (F(1, 6) = .087, p = .778) and in no noise (F(1,6) = 0.277, p
= .618) for the average data (see Table 2, top) and for the majority of individual observers (6
of 7 observers in high noise and 5 of 7 observers in no noise). In short, for the majority of
observers and for the group data, two blocks of training yielded results that are statistically
consistent with 100% transfer.

In contrast, full transfer (setting te = 12) was easily rejected (p < .01) for the T12 condition
for the average data in both high noise (F(1, 12) = 43.54, p < 0.001) and no noise (F(1,12) =
38.41, p < 0.001), and for all individual observers. Instead, the results for T12 are closer to
100% specificity. In high noise, the average data showed no significant difference from
100% specificity, or no transfer (te = 0) (F(1,12) = 0.005, p = .942), with 1 (and 1 marginal)
of 7 observers showing significantly more transfer. In low noise, although the estimated
transfer scores were all less than 1, these small levels of transfer were significantly different
from zero for the average data (F(1,12) = 37.62, p < 0.001), and 6 of 7 observers. Still, the
extent of transfer is significantly less than te = 2, which was rejected in high noise in the
average data (F(1,12) = 17.40, p = 0.001) and for 6 of 7 individual observers, and was
rejected in no noise for the average data (F(1,12) = 10.91, p = 0.005), and for 5 of 7
individual observers.

The most extended training group (T12) approximated 100% specificity, especially in high
noise – which might suggest complete independence of learning in the transfer stage from
the perceptual learning in the initial training stage. If so, the 8 blocks of training after the
task switch should equal the first 8 blocks of initial training in the same condition of this
matched-task design. However, the data suggest that the rate of perceptual learning in the
transfer task for group T12 may be slowed in both no noise and high noise. The power
function model where all parameters are free to vary for the first 8 blocks in training in T12,
(ρ = −1.35 in No Noise and ρ = −0.61 High Noise) and during the transfer stage for all 8
blocks in T12 (ρ = −0.28 in No Noise and ρ = −0.24 High Noise) are compared in a separate
nested model test that equates ρ (rate) and α. The first 8 blocks in the initial training differ
from those in the transfer training for this condition (F(2,10) = 5.94, p = 0.02) in no noise,
and (F(2,10) = 10.33, p = 0.003) in high noise indicating that the difference in rates between
initial training and transfer differed significantly. This suggests a more complicated
interpretation for specificity than merely training and testing independent neural
representations.

Taken together, the nested model tests on te suggest that after additional training until
asymptote, performance is worse in the transfer stage for group T12 than for the T2 group
that trained the least, thus reinforcing the notion that optimized learning is less likely to
transfer. The majority of F-tests for the individual observers were generally consistent with
these conclusions (Figure 3a–d). The T4 and T8 groups having an intermediate pattern of
specificity, suggesting a continuous reversal of transfer towards specificity with increased
training5. These results are remarkable – improvements seen after transfer to a second task
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following only two blocks of training are largely eliminated after more extended training to
yield increasing specificity.

A framework that suggests specificity is due to training and testing separate neural
populations in early visual cortex cannot account for the data. A framework suggesting that
more training can lead to additional transfer is also rejected. We are lead to infer that
learning is a dynamic process that has different consequences for transfer and specificity for
different amounts of training. Possible interpretations are considered in the discussion.

3.4. Specificity Index
The pattern described in the previous sections has a parallel expression when summarized
with specificity indices. Specificity indices quantify the performance at the initial point of
transfer as a proportion of the total improvement in the training phase that does not transfer.
An initial performance in the transfer phase that matches the initial performance in the first
task (assuming equivalence of the two tasks) corresponds to a specificity of 1.0. Figure 4

shows the results for a form of the index  (see Methods for

discussion) that uses the final contrast threshold expected at the next block  as the
estimated final learning in the training stage in order to take into account rapid learning in
the early stages of practice. This is modified from the standard index (Ahissar & Hochstein,
1997; Jeter et al., 2009), developed for cases were initial training has already reached
asymptotic levels of performance, which omits the +1 in the subscript. (The standard index
leads slightly smaller estimates especially for briefer training conditions, and yields a
negative estimate of specificity for T2, corresponding to performance even better than the
final block of the initial task.) Specificity indices are plotted for each training group for tests
with and without external noise masks (Fig. 4). The specificity scores increase with the
amount of initial training, with the highest specificity for T8 and T12. These specificity
indices are generally also higher for high noise test conditions than for no noise tests. In high
noise trials, all groups except T2 showed significant degrees of specificity as measured by
the index (all p < .05 by one sample t-test), while those for T2 were not significantly
different from zero (n.s.). In no noise trials, T2 and T4 specificity scores showed no
significant difference from zero, indicating transfer (all p > 0.10) while T8 and T12 showed
partial specificity. The high noise tests may have larger specificity indices because these
tests are more sensitive to mistuning of weight templates for external noise exclusion
(Dosher & Lu, 1998) upon changing to the transfer task.

3.5. Switchback Session
We also evaluated the impact of continued training during the second, transfer phase (the 8
blocks after the task switch) on the performance of the initial task through a “switchback”
test. A subset of subjects was switched back to the initial training task in an additional
session after training and transfer stages were completed (see Fig. 2c right, Switchback
Session). The performance in the switchback block is statistically equivalent, with one
exception, to the last block in the initial training phase (see Fig. 5), which tested the identical
task, stimuli, and retinal location (all p > .10 by paired t-test with the exception of T2 in Hi
Noise where the switchback threshold is significantly better i.e., lower than the threshold
from the last day of initial training). Despite having practiced for 8 additional blocks on a
different position and orientation during the transfer phase, performance on the initial task

5An anonymous reviewer suggested that individual observers show either full transfer or full specificity, with different mixtures in
different training conditions. Due to the fact that each observer appears in only one group, we cannot rule out this interpretation.
However, continuous changes in optimized weight structures provide an alternative and consistent account of the results, one we feel
is more consistent with the overall pattern of data.
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was essentially unchanged. There are two possible interpretations of these data. One is that
there is an asymmetry of influence preserving the earlier-learned information: training in the
initial stage task alters performance in the transfer stage task, but training in the transfer
phase task does not go back to corrupt learning on the initial training task. Another
possibility – one that we favor – is that there are two influences on learning, namely general
learning improvements, and specific learning switch costs, that oppose and approximately
cancel one another in this situation. These possibilities are considered further below.

4. Discussion
In summary, the group that trained the least (T2), corresponding to the early stages of the
training process where learning is most rapid (Hawkey, Amitay, & Moore, 2004; Poggio,
Fahle, & Edelman, 1992), also has the most transfer. While providing the best final
performance for the first task, training that approaches asymptotic performance (e.g., T12)
also engages specific learning that increasingly limits the transfer to the second task with
similar but different stimuli and judgments. Groups that have not reached asymptotic
performance in training (e.g. T4, T8) show an intermediate pattern of transfer at the initial
point in the transfer stage. Continued training on the transfer task results in perceptual
learning of that task. So, the most specificity, or least transfer, was observed for group T12
with the most training at the initial point of transfer. Although the T12 performance in the
transfer task with different orientation and locations showed almost full specificity at the
switch point, yet there was some indication in the data that the subsequent perceptual
learning of the new task is not quite as efficient as the initial learning: The learning in the
transfer task was slightly but significantly slower than the learning in the original task for
the same number of training blocks. When switched back to the initial training task in the
final session, performance was essentially where it left off. So either the intervening training
on the transfer task does not interfere significantly with the original learning, or else, as we
believe, increasing specificity offsets ongoing general learning6. These results demonstrate
that specificity of learning to stimulus dimensions such as orientation and retinal position
changes dynamically over the course of training. To our knowledge, this is the first
systematic empirical examination of the effects of increased training on transfer in
perceptual learning. The current study examined the case of transfer to a different feature
value (i.e., reference orientation angle) in different visual location, which plausibly incurs
switch costs due to the inconsistency in orientation angles. Further research is needed to
fully understand the boundary conditions for the phenomena.

In any case, the results of the current experiment would seem to rule out several of the
hypotheses about transfer and specificity outlined in the introduction. The separate neural
representations framework in its simple form predicts specificity regardless of the extent of
initial training since the two tasks are assumed to train separate and independent
representations for the different orientations and different visual positions. That initially
transferrable improvements are eliminated and reversed with extended training suggests that
the classic observations of specificity following asymptotic training does not reflect retuning
or other modification of different, independent, pieces of visual cortex (Ahissar &
Hochstein, 1997; Gilbert et al., 2001; Karni & Sagi, 1991), at least in any simple way. Even
if this framework were modified to allow for some small amount of general learning at the
beginning, these initial benefits due to general task familiarization should be maintained
even if subsequent learning is 100% specific.

6These switchback results may depend upon ongoing general learning and the distance between the orientations trained in the two
tasks.
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The incremental transfer framework argues that whatever is acquired at each incremental
stage of learning has some chance of transfer, so that net transfer can only be improved with
further training. This is also inconsistent with our findings – it predicts exactly the opposite
ordering of empirical transfer reported here, such that the longest initial training should have
had the highest, not the lowest amount of benefit at the point of task switch.

The reverse hierarchy theory (Ahissar & Hochstein, 1997, 2004) states that “easy” tasks are
learned at higher levels of the visual hierarchy and therefore are transferrable, while
“difficult” tasks require learning at lower levels of the visual hierarchy, and are specific to
spatial location and for features such as orientation or spatial frequency. The relevant
predictions for training on a high precision task (a “difficult” task in RHT labeling, see Jeter
et al., 2009) are not specified in the source papers, and so open to interpretation. We suggest
that the most likely prediction is that early improvements, and associated transfer, reflect
changes at high levels in the visual hierarchy, while subsequent improvements reflect
changes at lower, fully specific, levels. The cascade of learning proposed by newer forms of
the RHT (Ahissar & Hochstein, 2004) claims that learning first occurs at high and
transferrable levels of the visual hierarchy, and then cascades to lower levels of the visual
hierarchy if that level leads to improvements in performance. This framework predicts
constant and complete specificity with the exception of an early and constant transfer
benefit. The current data were not compatible with these claims: either all training should be
specific in as much as the task is high precision and so must be learned at a low,
nontransferable, level of the visual hierarchy; or some small early amount is transferred, but
all subsequent training should have no effect on the amount of transfer. The RHT provides
no explanation why an early transfer should be reversed – if performance of the new task
based on higher-level learning leads to better performance, then learning of the switch task
should begin with the transferrable performance as the starting point of subsequent learning.

We suggest instead that the dynamic properties of specificity in perceptual learning are
better understood as the learned optimization of the selection or weighting of sensory inputs
to the task (Dosher & Lu, 1998; Petrov et al., 2005). During training, a first-approximation
to the optimum connections (weights) that selectively enhances the channels near the signal
stimuli and down-weights the task-irrelevant channels are learned first, and a more specific
weight optimization that more narrowly focuses on the signal stimuli is refined and
solidified as learning continues. This possible interpretation is generally consistent with an
augmented Hebbian re-weighting model (AHRM) of perceptual learning (Petrov et al.,
2005). It may also provide an explanation for reported differences in brain activation during
different phases of perceptual learning (Yotsumoto, Watanabe, & Sasaki, 2008).

Petrov et al. (2005) trained observers in an orientation discrimination task, alternating fairly
extended training in each of two distinct external noise contexts, and found that the AHRM
model (for learning in a single location) predicted two aspects of learning also seen in the
data: a general improvement in performance over practice, and a cost for switching task
environments that persisted over multiple back and forth task changes. Adaptive reweighting
of sensory representation inputs to a decision unit over practice changes the weight profile to
increasingly focus on relevant spatial frequencies and orientations, while at the same time
task-specific weight optimization caused substantial and persistent costs at task switches.
The experiment in the current paper differs in the change of angles over tasks, rather than
external noise characteristics, and also by training in a new visual location; it also measures
only two task-training phases. Even so, the current data pattern is similar to the early phases
of the Petrov et al. model predictions and data: Extensive training on a first task should
produce general improvements, especially early in training, offset by increasingly specific
weight optimization that will increase the switch-cost at the change of tasks. The principles
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of general improvement increasingly offset by switch costs associated with highly specific
optimization after extensive training are consistent with the current data set.

This incremental reweighting framework also provides a possible explanation for the current
“switchback” condition measurements, which are consistent with the observations of Petrov
et al. (2005) for the earliest switch-costs, where general improvements are offset by switch
costs to yield a “switchback” at about the last level on the previous task. This interpretation
is only distinguished in the Petrov et al. data by the successive, multiple, switch design – a
little used but powerful design for distinguishing between independent learning and push-
pull optimization of alternate task performance.

According to the AHRM model, switch costs are specific to cases where the two tasks have
significant differences between shared parts of the optimized weight structures. In the case
where the optimum weight structures for the two tasks are closely similar and generally
consistent with one another, cooperative learning may occur in addition – or instead. This
framework suggests that the finding of increased training leading to increased switch costs
for the second task likely reflects the switch of angles between the two tasks. A location
switch without a switch of angle might very well show less specificity with extended
training. Development of a fully implemented AHRM model that generates quantitative
predictions for transfer across retinal locations, a multi-location AHRM, is a substantial
independent project.

In sum, we favor the incremental reweighting framework’s account of the current data on
the extent of training and the effects on transfer and specificity. Our results and conclusion
will benefit by further testing either in related between-group designs on different task
combinations, or in related task paradigms. Together with consideration of interesting recent
reports of location double training on transfer to different locations in perceptual learning
Xiao, Zhang, Wang, Klein, Levi, and Yu (2008), this work addresses one of the most
important questions in perceptual learning: why and how does learned perceptual expertise
transfer?

Our study documented the effect of different amounts of transfer by comparing learning in
different groups of observers. An alternative approach (suggested by a reviewer) might have
been to assess transfer on a second task after different stages of perceptual learning in a
primary task. The alternative within-observer design is complicated by two factors. First, the
work of Xiao, et al. (2008) showed that alternate training of locations may in some
circumstances “promote” transfer from one location to another. The effects of double
training are not fully understood yet; the comparison of transfer in groups receiving different
amounts of training avoids them. Second, the periodic assessment of performance on a
transfer task within an observer is a variant of the Petrov, Dosher, & Lu (2005, 2006)
paradigm in which observers alternate between two learning or task contexts, perhaps with
only a single block of practice in the transfer “assessment” phases interspersed with longer
training phases on the main task. The Petrov et al. study, described above, found general
learning as well as optimization for each task/context and consequent switch-costs following
every task alternation. These results document that the transfer assessment phases of a
within-observer design would alter the system it is trying to measure – a form of Heisenberg
principle in perceptual learning. Interpretation of such data, as suggested above, would
require a quantitative model – a new elaboration of the Petrov, Dosher & Lu (2005)
Augmented Hebbian Reweighting Model (AHRM) (or a contender model) – for transfer
across different retinal locations to provide a system within to assess the potentially complex
interactions of primary and transfer training. The substantive theoretical elaboration and
experimental testing of such a model remain for future investigations. Together with critical
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empirical tests, these model developments aim to contribute to a broad theoretical account of
specificity and transfer in perceptual learning.
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Figure 1.
A schematic illustration shows full specificity (top), partial transfer/partial specificity
(middle) or full transfer (bottom). Black lines show hypothetical improvements in a
threshold performance measure with perceptual learning, with the learning curves on the left
for initial training, and the learning curves on the right for transfer phase training. Blue
vertical lines mark the improvements in performance due to transfer, while red vertical lines
mark the converse failure to transfer, or specificity. The transfer can also be characterized in
terms of the equivalent amount of practice required to yield the performance level at the
point of task switch, shown by the green lines dropped to the practice axis at the equivalent
blocks of learning at the point of transfer.
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Figure 2.
Sample stimuli, display, and data. (a) Stimuli for a high-precision discrimination task are
Gabor targets with and without noise tilted ±5° from an implicit reference angle (+55°
shown here, or −35°). (b) Observers trained at one of two pairs on either the NW-SE or the
NE-SE diagonal and reference orientation in the training stage and switched both position
and orientation in the transfer stage. (c) Average contrast thresholds (75%) during initial
training and subsequent practice in the transfer task are shown for conditions trained for
either 2, 4, 8, or 12 blocks, in zero noise or in high external noise. High noise trials require
higher contrast thresholds than no noise trials. (Black: Train 2 Blocks (T2), Yellow: Train 4
Blocks (T4), Purple: Train 8 Blocks (T8), Green: Train 12 Blocks (T12)). All groups
practiced for an additional 8 blocks in the transfer stage, after switching both positions and
angles. The switchback session returned to the original testing conditions. Error bars are two
standard deviations estimated using Monte Carlo simulations that resampled from each
subject based on the mean and standard deviations of staircase reversals, and averaged over
subjects at each data point (re-sampled 1000 times).
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Figure 3.
Perceptual learning data in high and no noise for individual data and the group
average. Contrast thresholds are plotted for the seven individuals in each group and the
group average data: (a) T2, (b) T4, (c) T8, and (d) T12. The smooth curves are the best-
fitting power function model with experience, or transfer parameter, te, free to vary shown in
Table 1. See the text and Table 2 for comparisons with other nested models.
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Figure 4.
Specificity Index for aggregate data in high and no external noise. The specificity index

 takes into account the rapid improvements in early
learning for short training groups. The index is shown for high external noise (pixilated) and
no external noise (gray) test conditions. Specificity systematically increases with the amount
of training, and is larger in external noise tests.

Jeter et al. Page 23

Vision Res. Author manuscript; available in PMC 2012 May 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Analysis of switch-back performance. The contrast threshold for a switchback test
following training in the transfer task is compared to the last contrast threshold of the same
task in the initial training phase. The two are nearly equivalent, except for T2, which shows
additional learning.
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