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Abstract
Purpose—To investigate the impact of tumor site, measurement precision, tumor-surrogate
correlation, training data selection, model design, and inter-patient and inter-fraction variations on
the accuracy of external-marker based models of tumor position.

Methods and Materials—Cyberknife Synchrony™ system log files comprising synchronously
acquired positions of external markers and the tumor from 167 treatment fractions were analyzed.
The accuracies of Synchrony™, ordinary-least-squares (OLS) regression, and partial-least-squares
(PLS) regression models for predicting tumor position from external markers were evaluated.
Quantity and timing of data used to build the predictive model were varied. Effects of tumor-
surrogate correlation and of the precision in both tumor and external surrogate position
measurements were explored by adding noise to the data.

Results—Tumor position prediction errors increased over the duration of a fraction. Increasing
training data quantities did not always lead to more accurate models. Adding uncorrelated noise to
the external marker-based inputs degraded tumor-surrogate correlation models by 16% for PLS
and 57% for OLS. External marker and tumor position measurement errors led to tumor position
prediction changes 0.3 to 3.6 times the magnitude of measurement errors, varying widely with
model algorithm. Tumor position prediction errors were significantly associated with patient index
but not with fraction index or tumor site. PLS was as accurate as Synchrony™ and more accurate
than OLS.

Conclusions—The accuracy of surrogate-based inferential models of tumor position was
affected by all of the investigated factors except tumor site and fraction index.
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I. Introduction
Respiration-induced tumor motion degrades radiation therapy targeting accuracy.1–3 While
4DCT and brief fluoroscopic movies can be used to measure tumor motion over a few
respiratory cycles, accurately predicting the extent of tumor motion during treatment often
cannot be accomplished because of day-to-day and breath-to-breath variations.4

Furthermore, a transient event such as a deep breath or a cough can cause the tumor to move
out of its usual range of positions.5–9 As a result, motion management technologies
correcting for real-time tumor motion must accurately track the tumor.8–11

Direct tracking systems, which measure the position of the tumor itself, either continuously
image or electromagnetically localize the tumor. Fluoroscopically imaging over the entire
treatment fraction12 imparts unnecessary ionizing radiation to the healthy tissue. While
electromagnetic signals can be used to track implanted fiducial markers without ionizing
radiation,13 at the time of this writing the technology has only been approved for use in the
prostate.

Indirect tracking systems rely on external surrogates of respiratory motion, such as optical
markers affixed to the torso, to predict the position of the tumor.8–10,14–17 Tumor motion
models based on the positions of multiple markers affixed to the torso show particular
promise as alternatives to direct tracking systems.9–10,14–16

Most studies to date of surrogate-based tumor localization do not explore potential
variations in the model or explain sources of error. One notable exception is the study by
Yan et al.,16 which considers both single and multiple marker models and quantifies the
impact of shifting input data in time to account for marker-tumor phase offsets. While the
literature has suggested that such issues as signal-to-noise ratio (SNR)18 and variations in
the tumor-surrogate relationship7,19–21 might lead to indirect tumor tracking system errors,
to our knowledge no study to date has provided a systematic investigation of factors that
may contribute to the accuracy of surrogate-based predictive models of tumor position. This
information would make it possible to more accurately localize the tumor in real time.

In this study, we evaluate potential sources of error in tumor position prediction models. The
primary purpose of this study was to investigate the impacts of: (1) tumor site, (2) tumor and
external surrogate measurement precision, (3) tumor-surrogate correlation, (4) training data
selection, (5) model design, (6) inter-patient variations, and (7) inter-fraction variations on
the accuracy of external marker-based models of tumor position in the context of three
modeling algorithms: ordinary-least-squares (OLS) regression, the Cyberknife Synchrony™

algorithm, and partial-least-squares (PLS) regression. The secondary goal of this study was
to evaluate PLS regression for modeling tumor motion from external surrogates. Preliminary
studies10 have indicated that PLS may be more accurate than computationally simpler
multiple-marker linear algorithms such as OLS and Synchrony™ because of the collinearity
in external markers’ motion.22
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II. Methods and Materials
II.A. Position Data

Data consisted of Synchrony™ (Accuray Inc., Sunnyvale, CA) system log files comprising
113, 10, and 44 treatment fractions from 61, 5, and 22 lung, liver, and pancreas patients,
respectively, who underwent stereotactic body radiation therapy at Georgetown University
Hospital, Washington, DC. These data were obtained under an Institutional Review Board
protocol. The files included 3D positions of: (1) the centroid of a set of 2–3 fiducials
implanted in the tumor that were measured via stereoscopic x-rays, henceforth referred to as
the tumor position; and (2) three markers affixed to the patient’s form-fitting vest that were
tracked optically. The position of the tumor, identified as the centroid of the set of implanted
fiducials, was aligned in time with those of the external markers according to the timestamps
in the system log files. Each dataset included 40–112 (mean=62) concurrent tumor and
marker localizations spaced at a mean interval of 66 sec. The log files also included the
continuous real-time output of the Synchrony™ inferential model.

II.B. Applying and Testing Inferential Models
For each fraction, a series of models were tested. First, a model was fit (Section II.C) to a
training dataset of concurrent tumor and external marker positions. This model was used to
predict tumor positions from other external marker measurements in the same treatment
fraction. Each predicted tumor position, derived from marker measurements alone, was
validated against the tumor position measured from stereoscopic x-rays. This process was
repeated for training datasets of each set of N consecutive measurements in a treatment
fraction, each time testing the model against the tumor localizations that were acquired
during that fraction after the training dataset. Prediction error was defined as the magnitude
of the vector displacement between the stereoscopic x-ray-measured tumor position and the
modeled tumor position.

II.C. Model Design
II.C.1. Input Data Pre-processing—In addition to the raw external marker positions, an
alternative input was created by projecting marker displacements onto a single dimension of
motion, defined as ri (Figure 1). The motivation for comparing raw 3D inputs to projected,
1D inputs was to better understand the impact of this data processing technique on the
Cyberknife Synchrony™ algorithm’s performance. As described by Sayeh et al.,23 the
Cyberknife Synchrony™ system uses ri as the inputs to its tumor position models.

To calculate ri(t) for a marker i, the projection line was determined from the three-column
matrix of marker positions acquired during training data collection. The direction of the line
was given by the first principal component vector of the marker positions, which is defined
as the first eigenvector of the marker data covariance matrix.24 The projection line also was
designed to intersect the average 3D marker position, mi, of the marker data. Each 3D
marker position was then projected orthogonally onto the projection line. For each position
(xi(t), yi(t), zi(t)), ri(t) was defined as the distance between the projected position of the
sample on the line and mi.

II.C.2. Model Algorithms—Three model fitting algorithms were considered: OLS
regression, PLS regression, and the Synchrony™ algorithm. OLS and PLS are mutlilinear
models that operate according to Ŷ = X · B, where X is matrix of inputs (respiratory
surrogate positions) with m measurements and n inputs, B is an n × 3 matrix of regression
coefficients, and Ŷ is a matrix of m × 3 outputs (predicted tumor positions).
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OLS defines B as the set of regression coefficients that minimizes the expression ||Y − X ·
B||2. The OLS solution is given by B = X + · Y, where X + is the Moore-Penrose pseudo-
inverse of X. For full-rank, real X, X + is defined as X + = (X T · X)−1 · XT. For rank-
deficient, real X, X + = V · Σ+ · UT, where U, Σ, and V are the matrices in the singular value

decomposition of X given by X =U · Σ · V. The terms of Σ+ are given by  for

Σi, j ≠ 0 and  for Σi, j =0.

PLS regression finds the regression coefficients that minimize the expression

.25 To accomplish this task, PLS regression first compresses the
input data matrix, X, into an m × A matrix of scores, T = [t1, t2, …, tA], where A is typically
less than the number of variables in the raw input data. The scores, ti, are orthogonal, linear
combinations of the columns of X. The optimal number of scores, A, for each dataset was
determined through a cross-validation process, in which models based on various numbers
of scores were created, each time leaving one sample out of the training data and using it to
evaluate the model. In most cases 1–3 scores were utilized in the PLS model. The SIMPLS
algorithm26 was applied to determine the PLS regression coefficients. The scores of Y, ui for
i = 1 to A, were linear combinations of the columns of Y that are chosen so as to maximize
the covariance between ti and ui. The first X score, t1, was given by t1 = X · XT · Y 0/
norm(X · XT · Y), where Y0 is mean-centered Y. The first X weight, r1, and the first X basis,

v1, were both unity. The Y loadings and scores were calculated as  and ui = Y0 · qi,

respectively. The X basis was updated with each iteration as ,
where Vi−1 = [v1, v2, …, vi−1]. Subsequent X weights and scores were calculated as

 and ti =X · ri. The regression coefficient matrix, B, was given
by B =R · QT, where R = [r1, r2, …, rA] and Q = [ q1, q2, …, qA].

The inferential model in the Synchrony™ system was reproduced for this study based on the
description by Sayeh et al.23 so that the training data and timing could be controlled for
comparison to OLS and PLS results. The algorithm can be stated briefly as follows. Initially,
separate linear, quadratic, or hybrid models were developed for each of the three markers.

The linear and quadratic models were defined by Ŷi = A1,iri + A0,i and ,
respectively. For quadratic and hybrid models, separate coefficients were calculated for
inhalation and exhalation. The final estimated tumor position was given by the average of
the outputs of models using the three markers. The system selects between linear or
quadratic models through a modified standard error function that selects for increased
accuracy and reduced computational complexity.23 In the clinical Cyberknife Synchrony™

system, the operator selects both the number of images used to train the model and the
frequency of images acquired during treatment. Our implementation of the Synchrony™

model, SYNr, based on 15 tumor localizations (the typical training data length in the clinic
from which our data originated) was validated against the actual logged 15-sample model
output. In the SI, ML and AP directions, respectively, the mean (± standard deviation)
distance between SYNr and actual Synchrony™ outputs were 0.5 ± 1.2 mm, 0.5 ± 1.7 mm,
and 0.3 ± 0.5 mm. For this study, only the linear form was considered, because more than
70% of cases in the database did not utilize quadratic models when the modified standard
error function was applied.

Both the OLSr and the SYNr algorithms utilize an ordinary linear regression step. The SYNr
algorithm differs from OLSr in that SYNr creates separate linear models for each of the 3
markers and averages their outputs to predict the tumor position. In contrast, the OLSr
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model regresses on one matrix comprising all of the marker data, leading to a different set of
regression coefficients.

II.C.3. Summary of Models Evaluated—Five tumor position prediction models were
considered: OLSxyz, OLSr, PLSxyz, PLSr, and SYNr. OLSxyz and PLSxyz models utilized
the 3D marker data. OLSr, PLSr, and SYNr models utilized the projected marker data.

II.D. Training Data Selection
II.D.1. Quantity of Training Data—Training datasets of N = 6 to N = 35 samples of
measured tumor and external surrogate positions were evaluated for their accuracy in
inferring tumor positions that occurred subsequent to the training data. Mean and 95th

percentile errors over 20 minutes of data were evaluated.

II.D.2. Time Since Training Data Acquisition—Errors for models in which 6 samples
of concurrent external marker and tumor positions comprised the training data were binned
by time elapsed since the end of training data.

II.D.3. Tumor-Surrogate Correlation—The impact of uncorrelated external surrogate
inputs on tumor position prediction model accuracy was explored in OLSr, PLSr, and SYNr
models. For each model type, models with 6 samples of concurrent external marker and
tumor positions were created. Then new models were trained on the same training data (6
samples × 3 inputs) plus an additional input vector of Gaussian noise (6 random values × 1
input) for a total of 4 inputs. The accuracy of models with and without the additional noise
input were compared.

II.E. Inter-Patient and Inter-Fraction Variations
Each patient underwent 1–5 treatment fractions. The mean tumor-surrogate model prediction
error for each treatment fraction was determined. Using the 46 patients for whom more than
one treatment fraction of data was available, the Kruskal-Wallis one-way analysis of
variance test was applied to determine whether the mean error of a fraction was significantly
associated with either patient index or fraction index.

II.F. Measurement Precision
Tumor-surrogate models created from the training data were compared to models with
simulated noise in either input (external marker) or output (tumor) measurements. In each
case, models based on 6 training samples were evaluated on the testing dataset.

To simulate radiographic tumor localization uncertainties, noise from a Gaussian
distribution was added to the radiographic tumor localizations. Noise levels were varied by
randomly selecting the standard deviation of the Gaussian noise in each trial. Another set of
models was then created from training data with noise and used to determine new predicted
tumor positions in the testing dataset. This process was repeated for noise added to external
marker localizations.

III. Results
III.A. Model Design

For OLSxyz, PLSxyz, OLSr, PLSr, and SYNr models trained on 6 samples, 22.8%, 12.7%,
19.0%, 9.1%, and 9.5% of the predictions, respectively, exceeded 0.5 cm (Figure 2). The
OLSxyz, PLSxyz, and OLSr distributions peaked in the 0.1 cm to 0.2 cm range, and the
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PLSxyz, PLSr, and SYNr distributions peaked in the 0–0.1 cm range. PLSr and SYNr
results did not differ significantly for any quantity of training points.

III.B. Training Data Selection
III.B.1. Quantity of Training Data—The 95th percentile and mean tumor position
prediction errors for each number of training samples are shown in Figure 3. The OLSxyz
error peaked to an average of 7.7 cm at N = 10. OLSxyz, and OLSr 95th percentile errors
exceeded 1 cm for some values of N, but PLSxyz, PLSr, and SYNr 95th percentile errors did
not exceed 1 cm in the tested range of N. Mean errors for the six models converged to
approximately 0.2 cm for N > 20.

III.B.2. Time Since Training Data Acquisition—Average errors for each model type
increased as time elapsed after the end of the training data (Figure 4). Mean errors in 0–2
min and in 10–20 min of data increased from 0.3 to 1.3 cm for OLSxyz, 0.2 to 0.5 cm for
PLSxyz, 0.2 to 0.6 cm for OLSr, 0.2 to 0.4 cm for PLSr, and 0.2 cm to 0.4 cm for SYNr.

III.C. Tumor-Surrogate Correlation
The uncorrelated (Gaussian noise) input degraded prediction models (Figure 5). Mean errors
in the 0–2 min bin increased by 57% for OLSr and by 16% for PLSr.

III.D. Tumor Site
For each modeling algorithm, error distributions were comparable across the three tumor
sites (Figure 6). Lung, liver, and pancreas mean errors were 2.2 mm, 1.9 mm, and 2.3 mm,
respectively, and further details are described in Table I. Of the three sites, only the pancreas
errors differed significantly (Kruskal-Wallis one-way ANOVA, p < 0.05) from errors of the
other sites. However, it can be argued that the 0.1 mm mean error difference between lung
and pancreas cases is not clinically significant. It is not clear whether liver results would
differ significantly from lung results with a larger sample size.

III.E. Inter-Patient and Inter-Fraction Variations
For each of the model types, the model error in a single fraction was significantly (p < 0.05)
associated with the patient from whom the fraction was recorded. This pattern is evident in
Figure 7, in which the mean errors of the four fractions of patient 2, for instance, cluster
around a value that differs from the value associated with patient 8. The mean model error
over a fraction was not significantly (p > 0.05) associated with the treatment fraction index.

III.F. Measurement Precision
When noise was added to measurements of radiographic tumor positions in the training
dataset (Figure 8), the resulting average error in the testing dataset varied as 1.1, 0.3, and 0.4
times the average noise for OLSr, PLSr, and SYNr, respectively; noise-to-error correlations
ranged from 0.44 to 0.53. When noise was added to the measurement of the external
surrogate position data, the resulting average error in the testing dataset varied as 3.7, 0.6,
and 0.6 times the average noise for OLSr, PLSr, and SYNr, respectively, and noise-to-error
correlations ranged from 0.09 to 0.32.

IV. Discussion
In this study, a series of factors impacting the accuracy of respiratory surrogate models of
tumor motion were explored. Model accuracy was affected by inter-patient variations, tumor
and external surrogate measurement precision, tumor-surrogate correlation, training data
selection, tumor-surrogate correlation, and model design. Tumor site and fraction index
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were not predictive of model accuracy. These results provide the reader with a framework
for designing and evaluating a surrogate-based tumor position prediction model. In addition,
PLS models were more accurate than OLS models and were as accurate as Synchrony™

models.

Many studies reporting high tumor-surrogate correlations have evaluated only a few minutes
of data.21,27 The results of these studies may not be representative of the behavior of the
model over entire treatment fractions. Analyses of datasets capturing motion over the
duration of a treatment fraction have reported variations in the tumor-surrogate
relationship.7–8,19 In this study, model errors increased over time; we attribute this
increasing error to tumor-surrogate relationship changes. In practice, this effect could be
overcome by updating the model during the treatment fraction. Intra-fraction model updates
have been utilized by tracking systems like Cyberknife Synchrony™, but model updates are
not common in gated treatment protocols.

In this work, projecting external marker motion onto a single dimension improved accuracy
by increasing the correlation between surrogate signals and tumor motion. Shifting the
surrogate signal in time relative to the tumor signal is a common method for increasing
tumor-surrogate correlation.16,19,28–29 However, because of changes in the tumor-surrogate
phase offset, these shifted surrogates are not likely to maintain their improved correlation
over time.7,19

PLSr and SYNr results did not differ significantly. We investigated other model designs (not
described in detail here) but were unable to reduce model errors below those of the PLSr
model. Because the continuous external marker motion in the data log files appears to
indicate a high signal-noise ratio (SNR), we hypothesize that the accuracy of any model
based on this dataset is limited by precision of the gold-standard radiographic tumor
localizations. PLSr and SYNr represent the state-of-the-art in indirect tumor localization
algorithms. In addition to their accuracy, each requires only milliseconds to derive tumor
position from surrogate data. Subject to the limitations of SNR and the other factors
investigated in this study, both PLSr and SYNr are candidates for real-time applications.

Decreased measurement precision in either gold-standard tumor localizations or external
surrogate measurements was found to have considerable impact on model accuracy. For
OLSr models, the errors in tumor position prediction induced by measurement precision
limitations were 1–4 times as large as the measurement errors themselves. For PLSr and
Synchrony™ models, the errors in tumor position prediction were 0.3–0.6 times as large as
the measurement errors. Many optical (surrogate) tracking systems are capable of achieving
sub-millimeter accuracy,30–31 but infrared tracking accuracies exceeding one millimeter
have been reported in clinically available devices.32 Typical errors of x-ray-based
localizations of bony anatomy or fiducial tracking are 0.6–2 mm.32

Surprisingly, utilizing a larger quantity of training data, whether in dimensionality of marker
motion or in number of training data points, did not improve the accuracy of tumor position
predictions. In the case of OLS models, the error peaked at the transition between
underdetermined and overdetermined systems. For any modeling algorithm, the optimal
number of training points will also vary as a function of spacing between training samples.
Training data captured over a period of minutes may encompass tumor-surrogate
relationship changes that would not be present in training data captured in a shorter period of
time.

PLS was consistently more accurate than OLS, a conclusion in agreement with the
diaphragm tracking work of Qiu et al.10 OLS regression coefficients are volatile when inputs
are collinear, tending to change considerably for different training samples from the same
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dataset.22 As a result, PLS has been described a superior alternative to OLS when the inputs
are highly collinear.33

Yan et al. has shown that multiple-surrogate models of tumor motion can be more accurate
than single-marker models16 by overcoming the location effect, in which tumor-surrogate
correlation varies with marker placement.15 Nevertheless, our results support the conclusion
that incorporating additional surrogate-based inputs that are uncorrelated with tumor motion
may actually degrade the model. Fortunately, respiration-induced tumor motion is correlated
with such respiratory surrogates as markers affixed to the torso, spirometry, and bellows
systems.7,16,34

Finally, patient-specific, fraction-specific, and site-specific results were evaluated. Results
did not differ between lung, liver, and pancreas cancers. Furthermore, the model error was
not found to be significantly associated with fraction index. Patient index, on the other hand,
was significantly associated with model accuracy. The practical implication of these results
is that the design of a study to evaluate tumor motion models should use a large enough
group of patients to obtain statistically significant results; multi-site and inter-fraction data
are less important unless a model will be applied without revision on multiple treatment
days.

V. Conclusions
The accuracy of tumor position prediction models using external surrogates was affected by
inter-patient variations, measurement precision, tumor-surrogate correlation, training data
selection, and model design, but tumor site and fraction index were not predictive of model
accuracy. PLS regression models were more accurate OLS models and as accurate as
Synchrony™ models.
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Figure 1.
Example of (a) 3D surrogate marker motion data (solid) projected onto its first principle
component (arrow) line (dashed) to obtain (b) a 1D representation of respiration-induced
surrogate marker motion.
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Figure 2.
Histogram of radial errors from the first minute of testing samples for models based on 6
training samples. The last bin comprises all errors greater than 0.5 cm.
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Figure 3.
Mean and 95th percentile tumor position model prediction errors in the test data acquired
over 20 minutes for (a) OLSxyz, (b) PLSxyz, (c) OLSr, (d) PLSr, and (e) SYNr models. For
clarity, the y-axis in (a) is scaled differently than that of (b–e).
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Figure 4.
Mean and standard deviation (error bars) of tumor position model prediction errors, binned
by time elapsed since the end of training data collection.
* The standard deviation of the OLSxyz error bar in the >20 min bin is 2.3 cm.
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Figure 5.
The impact of an uncorrelated (Gaussian noise) input variable in OLSr and PLSr models.
Mean and standard deviation of model errors indicate that the additional input increased
errors. In the 0–2 min bin, OLSr errors increased by 57%, and PLSr errors increased by
16%.
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Figure 6.
Histograms of mean error in each fraction by tumor site for (a) OLSxyz, (b) PLSxyz, (c)
OLSr, (d) PLSr, and (e) SYNr models, each based on 6 training data points.
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Figure 7.
Mean and standard deviation of 9-training-datapoint PLSr in each fraction for 9 patients.
Errors represent samples acquired within 20 minutes of the training dataset. For clarity, the
figure is limited to the 9 patients with >3 treatment fractions available for analysis; the
results for these patients are consistent with the dataset as a whole.
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Figure 8.
(a) Tumor and (b) external marker localization noise (in the training data used to build the
model that predict tumor position) versus tumor position prediction error. Best fit lines
represent least-squared-error linear regression fits with an assumption of zero error for zero
noise. OLSr regression lines have slopes of (a) 1.1 and (b) 3.7. The PLSr line overlies the
SYNr line in (b).
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Table I

Errors for models based on 6 training points, stratified by tumor site

Mean ± standard deviation of error (mm)

Model Lung Liver Pancreas

OLSxyz 3.0 ± 4.5 2.7 ± 2.7 3.3 ± 4.6

PLSxyz 1.9 ± 2.0 1.7 ± 1.3 2.0 ± 2.0

OLSr 2.5 ± 3.4 2.1 ± 2.6 2.6 ± 2.8

PLSr 1.8 ± 1.6 1.6 ± 1.1 1.8 ± 1.5

Synchrony 1.7 ± 1.6 1.6 ± 1.0 1.8 ± 1.5

Pooled results 2.2 ± 2.9 1.9 ± 1.9 2.3 ± 2.8
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