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Abstract
Purpose—To predict organ-at-risk (OAR) complications as a function of dose-volume (DV)
constraint settings without explicit plan computation in a multi-plan IMRT framework.

Methods and Materials—A large number of plans were generated by varying the dose-volume
constraints (input features) on the OARs (multi-plan framework), and the dose-volume levels
achieved by the OARs in the plans (plan properties) were modeled as a function of the imposed
dose-volume constraint settings. OAR complications were then predicted for each of the plans by
using the imposed dose-volume constraints alone (features) or in combination with modeled dose-
volume levels (plan properties) as input to machine learning (ML) algorithms. These ML
approaches were used to model two OAR complications following head-and-neck and prostate
IMRT, xerostomia and Grade 2 rectal bleeding. Two-fold cross-validation was used for model
verification and mean errors are reported.

Results—Errors for modeling the achieved dose-volume values as a function of constraint
settings were 0-6%. In the head and neck case, the mean absolute prediction error of the saliva
flow rate normalized to the pre-treatment saliva flow rate was 0.42% with a 95% confidence
interval of [0.41%, 0.43%]. In the prostate case, an average prediction accuracy of 97.04% with a
95% confidence interval of [96.67%, 97.41%] was achieved for Grade 2 rectal bleeding
complications.

Conclusion—ML can be used for predicting OAR complications during treatment planning
allowing for alternative dose-volume constraint settings to be assessed within the planning
framework.
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I. INTRODUCTION
Radiation treatment planning requires consideration of competing objectives: maximizing
the radiation delivered to the planning target volume (PTV) and minimizing the amount of
radiation delivered to all other tissues. The tradeoff between the above factors leads to
consideration of multi-criteria objective techniques [1-7]. Recent papers addressing this
topic include Gopal and Starkschall [1], which presents various two-dimensional plan
comparison visualizations, Rosen et al., which deals with conformal radiotherapy and
emphasizes graphically-guided adjustments to base plans [2], Zhang et al., which focuses on
sensitivity analysis issues [3] and, as in the earlier work by Yu [4] and by Xing et al [5]
develops mechanisms for multi-parametric adjustments that seek to construct a sequence of
treatment plans that converge to a pre-specified set of goals, Romeijn et al. which shows the
mathematical equivalence of Pareto surfaces based on alternative metrics [6], and Craft et
al., which discusses invariance properties of Pareto surfaces [7]. The Pareto surface is
applied to IMRT cases via a two-step procedure, in which one plan is generated through
optimization and subsequent plans are generated based on the single plan and satisfaction of
the constraints [8, 9]. Despite the above literature, the limitation of the current planning
approach is that the relationship between the achieved plan dose-volume (DV) or dose levels
and the DV or dose constraint settings is not known apriori. Further, the current planning
approach does not allow for inferential determination of the ideal DV constraint settings that
will yield desired outcomes (achieved DV levels or plan-related complication levels).

We have previously described a multi-plan framework which provides for the generation of
many plans that differ in their DV constraint settings [10]. We utilize this framework in this
work. The rationale for this work is: (1) DV constraints are implicitly handled by
optimization algorithms in commercial planning systems as inequalities through the
introduction of penalty variables. These penalty variables account for differences between
the actual plan DV values and the DV constraint settings. As a result, the achieved DV
levels for an organ-at-risk (OAR) are frequently not equal to the DV constraint settings even
in the case that the constraint settings for that OAR are met. (2) Altering the DV constraint
settings for a given OAR has an effect on the actual DV values corresponding to all involved
OARs in the clinical case even if the DV constraint settings on the other OARs are
unchanged. (We have previously shown in Meyer et al [10] that the achieved DV level for a
given OAR can be accurately modeled as a quadratic function of the DV constraint settings
corresponding to all involved OARs.) (3) Without a suitable knowledge base of plans for a
given patient it is generally impossible to determine the DV constraint setting ranges for
each OAR that will yield the desired output DV values (and consequently OAR
complications). It would be ideal if the computation of a limited number of plans combined
with suitable modeling tools enabled the construction of a plan surface representing DV
levels for a given OAR as a function of DV constraint settings corresponding to all involved
OARs. Taking into consideration (1)-(3) we seek to predict OAR complications on the basis
of the DV constraint settings (without explicit plan computation for those settings), thereby
guiding the selection of OAR constraint settings for all involved OARs.

The purpose of this work is to describe an approach to guide the selection of DV constraint
settings by predicting plan-related OAR complications (and achieved DV levels as an
intermediate step) as a function of DV constraint settings directly without explicit plan
computation. We hypothesize that such a prediction is possible using machine learning (ML)
algorithms. We selected two frequently encountered OAR complications: xerostomia in
head and neck IMRT and rectal bleeding in prostate IMRT.
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II. METHODS AND MATERIALS
A. Multi-Plan Framework

We first describe the generation of the multi-plan framework that serves as a knowledge
base to be used in both training (i.e., model development) and validation (i.e., establishment
of confidence intervals) of the prediction of one OAR complication as a function of DV
constraints corresponding to all involved OARs. A large number of plans were explicitly
generated (for each case) by varying the input dose and DV constraint settings for two test
clinical cases: head and neck IMRT and prostate. Figures 1 (a) and (b) show the transverse
sections of two test clinical cases.

A.1 Head and Neck Case—For one head and neck case, 125 plans were generated by
varying the DV constraints on the left parotid (LP), right parotid (RP) and cord. For each
OAR, 5 sets of DV constraints were considered (see Table 1). Plans were normalized so that
90% of the PTV received 50.4 Gy. Figure 2 show the 125 DVHs corresponding to 125
plans.

A.2 Prostate Case—For one prostate case, 256 plans were generated by varying the DV
constraints on the rectum, bladder and bowel. An initial set of 64 plans were generated in
which the target involved the prostate plus nodal volumes (prescription dose of 45 Gy). Four
prostate-only boost plans were generated (prescription dose of 30.6 Gy). The combination of
initial and boost plans resulted in 256 plans (plans were normalized so that 95% of the PTV
associated with the prostate received 75.6 Gy). The DV constraints are summarized in Table
1. Figure 3 shows the DVHs corresponding to 256 plans.

B. Dose-Volume Relationships to OAR complications
Previous reports have described the relationships (derived retrospectively) between plan DV
levels and OAR complications. These data served as the “ground truth” for the actual
calculation of OAR complications against which our prediction of OAR complications was
compared.

B.1 Saliva Flow Rate—Retrospective studies have shown that specific volumes of the
parotid glands (66%, 45% and 24%) receiving specific doses (15 Gy, 30 Gy and 45 Gy)
correlated with post-treatment saliva flow rate [11-13]. Chao et al presented an EUD-based
model to calculate post-treatment saliva flow rate [12], which we use as the ground truth for
each of the 125 plans.

The saliva flow rate (mL/min) is normalized to that before treatment. The model is

(1)

where A and B are fitted parameters (0.0315 and 0.000168 respectively), F is the expected
resulting fractional saliva output, and EUD is the equivalent uniform dose to the left (L) and
right (R) parotids as defined in equation (2).

(2)

where, N is the total number of voxels corresponding to a given structure, Di is the dose to
the ith voxel, and a =1, is a structure-specific parameter that describes the dose–volume
effect.
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B.2 Rectal Bleeding—Retrospective studies have shown a correlation between rectal
bleeding and 25-70% of the rectal volume receiving 60-75 Gy [14-19] (25-30% for 70 Gy,
the most often cited DV level). Therefore, we used a threshold of 25%/70 Gy to determine a
binary classification for the plans in the prostate case. The volume of 25% also corresponds
to one of the rectum DV constraint settings in this work.

C. Modeling the Plan Surface
Our goal is to predict OAR complications (referred to as labels) during the treatment
planning process as a function of the DV constraint settings (referred to as features)
corresponding to all involved OARs. In some cases, in order to accurately predict treatment
related complications, an intermediate step of modeling achieved plan DV levels (referred to
as plan properties) corresponding to one OAR as a function of DV constraint settings
(features) for the full set of OARs is employed (equation 3):

(3)

where i corresponds to the OAR whose plan properties are being modeled and n corresponds
to the number of involved OARs. Details of modeling plan properties as a function of
features were described previously in Meyer et al [10]. This intermediate modeling step was
utilized in the head and neck case. Plan properties (specifically dose to 24%, 45% and 66%
of the parotids were modeled as a function of the input constraint settings (features) in Table
1 using quadratic functions and via linear programming data fitting tools as described in
[10].

D. Machine Learning (ML) Algorithms
We use ML algorithms to predict treatment related complications for an OAR as a function
of DV constraint settings (features) corresponding to all involved OARs and modeled
achieved plan dose and dose-volume levels (plan properties) corresponding to the OAR in
question if necessary as input (equation 4).

(4)

The goal of ML in this work is to build and validate the numerical prediction or decision
models (described in equation 4) from the knowledge base. The knowledge base is the
collection of plans arising from our multi-plan framework coupled with properties of those
plans.

The details of the modeling process are summarized in Figure 4. The outputs of the ML
models (labels) are the plan-related OAR complications. In our work, features alone served
as the input parameters in the ML model used to predict labels (as in the prostate case) if
acceptable prediction accuracy was achieved (solid path). Otherwise, these inputs were
supplemented by modeled plan properties (achieved DV levels), i.e., dashed path. In
summary, 11 inputs (5 features, and 3 predicted plan properties for each parotid) were used
to predict saliva flow rate in the head and neck case and 5 inputs (5 features) were used to
predict Grade 2 rectal bleeding complication in the prostate case using ML. These inputs to
the ML algorithms are summarized in Table 2.

Both the construction and the validation of the models were accomplished through the
repeated use of a two-fold cross-validation process. In this process, the knowledge base (set
of all computed IMRT plans for a case) is first randomly partitioned into training and testing
subsets each, consisting of an equal number of samples (plans). A model is constructed
using only the subset of the data in the training subset (50% of the total number of plans),
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and the quality of the model is evaluated by applying it to the data in the testing subset (data
not included in the training subset) and assessing the accuracy of the results produced on
that subset. This process was repeated 50 times and the average errors along with 95%
confidence intervals are reported.

Two machine learning algorithms were explored: support vector machines (SVM) and
decisions trees. While both approaches were tested for each of the two cases, it was
determined that SVMs yielded superior results in predicting saliva flow-rate and decision
trees yielded superior results in predicting rectal bleeding.

D.1 Sequential Minimal Optimization—The method that we used to predict the saliva
flow rate from features and the modeled plan properties was the construction of a linear
model (equation 4) via a sequential minimal optimization (SMO) algorithm [20, 21] for
“training” a support vector regression model, which is essentially a quadratic data fitting
error minimization problem whose objective function is comprised of a weighted
combination of two terms: the first term is a quadratic error measure and the second is a
model complexity term defined by a norm of the weights selected for the input features. The
SMO algorithm employs a linear model of the form k + l u where u denotes the vector of
input variables and k and l denote the fitting parameters (k a scalar, l a vector) to be
generated by SMO. Training a support vector machine (SVM) is accomplished by the
solution of a large constrained quadratic programming (QP) optimization problem in order
to determine the optimal weights of those linear terms. In support vector regression, an
accuracy threshold ε is set so that model prediction errors that are below this threshold yield
a penalty of 0 in the objective function. In order to model these error thresholds functions,
appropriate inequality constraints are used in the weight optimization problem:

(5)

where, c is a weighting factor for the sum of errors terms dd+ee and ll is a model complexity
measure.

D.2 Decision Trees—The binary classification method in predicting Grade 2 rectal
bleeding is an optimized decision tree, whose generation process via supervised learning we
will outline below (i-v). Referencing Figure 5, note that the non-leaf nodes (that is, the
nodes that have successor nodes below them, shown as ellipses in Figure 5) represent
univariate inequality tests that are followed by further tests at lower nodes until the final
tests leading to the leaf nodes (shown as rectangles in Figure 5) yield classification decisions
[22, 23].

A general approach to the construction of decision trees starts with the selection of a
branching test at the root node at the top of the tree and can be summarized as following:

i. Choose an attribute-value pair that leads to the best partition of the training
instances with respect to the output attribute.

ii. Create a separate branch for each range of value of the chosen attribute.

iii. Divide the instances into subgroups corresponding to the attribute value range of
the chosen node.

iv. For each subgroup, terminate the attribute partitioning process if:

a. All members of a subgroup have the same value for the output attribute.
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b. No further distinguishing attributes can be determined. Label the branch
with the output value seen by the majority of remaining instances.

v. Else, for each subgroup created in (iii) for which the attribute partitioning process
is not terminated in (iv) at a leaf, repeat the above branching process.

This stage of the algorithm is based on the training data, and generally produces a large and
complex decision tree that correctly classifies all of the training instances. In the second
stage of the tree generation process, this decision tree is then pruned by considering the test
data and removing parts of the tree that have a relatively high error rate or provide little gain
in statistical accuracy.

III. RESULTS
A. Modeling Plan Properties

We used equation 4 to determine the achieved plan properties as a function of features in the
head and neck case. Figures 6 and 7 show the results of modeling plan properties for the left
and right parotids, respectively, i.e., the comparison between the predicted plan properties
and the actual plan properties. The plan indices are reordered in each subfigure, so that the
displayed delivered doses are in increasing order. This reordering is done to show the
distribution of the delivered doses and to better allow comparisons of delivered doses with
the corresponding doses as predicted by equation 4. Relative fit errors varied from 0 to 6%.

B. Saliva Flow Rate
The results for predicted saliva flow rate (equation 5) using the SMO algorithm are shown in
Figure 8. The x-axis was the actual flow rate (normalized to the pre-treatment saliva flow
rate) for each of the 125 plans in the knowledge base (plans were sorted according to
increasing saliva flow-rate). The actual saliva flow rate was obtained using equation 1. The
y-axis was the mean saliva flow-rate using equation 5 and obtained from the 2-fold cross-
validation process. From Figure 8, it can be seen the normalized saliva flow rate ranged
from 20-30% for the case considered. The further a point is from the diagonal (which
represents equality of actual and predicted values), the larger the prediction error is. The
mean absolute error (averaged over 50 simulations in cross-validation) for saliva flow-rate
prediction obtained from the 2-fold cross-validation and normalized to the pre-treatment
saliva flow rate compared with the ground truth obtained from the EUD-exponential model
in equation 1 was 0.42% with a 95% confidence interval [0.41%, 0.43%].

C. Rectal Bleeding
Figure 9 shows a representative decision tree resulting from 2-fold cross-validation method
applied to the 256 prostate treatment plans. Each decision node of the tree represents one
DVH constraint, which is an input to the planning system. For example, 25Bldr is the DVH
constraint set for 25% of the bladder volume. The numbers on the branches show the dose
level. Each leaf node represents a classification result, and the number in parenthesis is the
number of instances that were classified correctly/incorrectly. Each leaf node corresponds to
the set of inequalities on the path from the top-most node to that leaf. An example of the
prediction results for a subset of 20 plans (from the set of 256 total plans) are illustrated in
Table 3. The DV constraints for 20 representative plans along with the prediction of Grade 2
complication (C) or no Grade 2 complication (NC) are listed in the first six columns. The
last column indicates whether the prediction was correct (Y) or incorrect (N). Using 2-fold
cross validation 50 times, we achieved an average prediction accuracy of 97.04% with a
95% confidence interval of [96.67%, 97.41%] for Grade 2 rectal bleeding.
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D. OAR Complications As a Function of DV Constraints
Our case-specific models were used to then predict OAR complications as a function of DV
constraints for arbitrary input DV constraints without explicit plan computation. Figure 10
shows an example of the results for the prediction of normalized saliva flow rate as a
function of the DV constraints using the approach described in this work. The contours in
each plot correspond to the percentage saliva flow rate normalized to the pre-treatment
saliva flow rate as a function of DV constraint settings for two of the OARs and a fixed
constraint setting for the third OAR. It can be observed that the plot for saliva flow rate as a
function of the DV constraint settings on one parotid gland (left or right) and the maximum
dose constraint to the cord for a fixed DV constraint setting for the other parotid gland is
near linear (see Figures 10 (a) and (b)) while the plot for the saliva flow rate as a function of
the DV constraints on both parotid glands for a fixed maximum cord dose constraint shows
curvature (see Figure 10 (c)).

Figure 11 shows an example of the results for the prediction of Grade 2 rectal complications.
The shaded region in each plot corresponds to the complication region for a range of DV
constraint settings for two OARs and a fixed constraint setting for the third OAR. We
attribute the unshaded region (lack of rectal bleeding) in Figure 11 (c) corresponding to
increasing the bladder and bowel settings to an associated dose transfer to the bladder and
bowel and reduced dose to the rectum. These results are examples of how the prediction of
OAR complications can guide the selection of DV constraint settings for all OARs.

IV. DISCUSSION
The goal of this work was to investigate the feasibility of predicting OAR complications
(labels) as a function of input features or DV constraint settings during the IMRT treatment
planning process. Conventional IMRT treatment planning is usually an iterative process
after plan generation. Planners evaluate the plan and modify the plan if the plan quality is
not satisfied. Our results show that the ability to predict OAR complications as a function of
DV constraint settings could guide the selection of such features corresponding to all
involved OARs in the case.

Relationships between the plan DV levels and OAR complications have been established
retrospectively. These data serve as the basis for formulation of dose and dose-volume
constraints in IMRT inverse planning. Investigators have modeled clinical complications
retrospectively using dose data in single institution and cooperative group clinical trials
[24-29]. Using modeling techniques including logistic regression, multivariate analysis,
support vector machines and neural networks, these investigators have successfully modeled
radiation therapy related OAR complications. Our work differs from the work of these
investigators in that our goal is to incorporate established dose and dose-volume parameters
derived from clinical trials into the treatment planning process (prospectively). Predicting
the OAR complications (labels) as a function of the DV constraint settings (features) in the
planning process can guide a knowledge-driven selection of appropriate input features
corresponding to all involved OARs. Incorporating the ability to predict potential
complications for a given case can also allow physicians decide among rival treatment plans.

Treatment planning currently only implicitly considers treatment related complications
through the evaluation of achieved dose or dose-volume levels following treatment plan
optimization. The proposed clinical workflow would involve first, the creation of a
collection of case-specific plans that differ in their DV constraint settings (knowledge base).
Next, plan-related OAR complications would be inferred using this knowledge base and
predictive algorithms described herein for any combination of features corresponding to all
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involved OARs. Each case would have its own unique relationship between the output labels
and input features and plan properties.

With the framework developed in this work, it is possible to directly infer plan-related
complications (labels) using the knowledge base of computed plans and modeling described
in this work. While the work described herein has not been validated, it does present the
opportunity to be validated in a clinical trial setting.

V. CONCLUSION
Our results show that using the methods described here, case-specific plan-related OAR
complications can be predicted as a function of DV constraint settings. ML tools can be used
to guide planners to select DV constraint settings corresponding to all involved OARs in a
knowledge-driven manner.
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Figure 1.
Axial slices of the (a) head-and-neck case showing the planning target volume (PTV),
parotids, and spinal cord, and (b) prostate case showing the PTV, bladder, and rectum.
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Figure 2.
DVHs corresponding to full knowledge base (encompassing both training and testing
datasets) of 125 head and neck plans for the (a) left parotid and (b) right parotid and (c)
spinal cord.
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Figure 3.
DVHs corresponding to full knowledge base (encompassing both training and testing
datasets) of 256 prostate plans for the (a) bladder and (b) bowel and (c) rectum.
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Figure 4.
Summary of Modeling Process Summary involving ML prediction of OAR complications
using features and plan properties (if necessary).
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Figure 5.
Optimized Decision Tree Algorithm Schematic.
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Figure 6.
Comparison of the modeled plan dose as a function of the input constraint settings using
quadratic modeling and the actual achieved dose for the left parotid at volume levels of (a)
24% (b) 45% and (c) 66%.
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Figure 7.
Comparison of the modeled plan dose as a function of the input constraint settings using
quadratic modeling and the actual achieved dose for the right parotid at volume levels of (a)
24% (b) 45% and (c) 66%.
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Figure 8.
Comparison of the mean (obtained from the 2-fold cross-validation process) predicted saliva
flow rate (normalized to the pre-treatment saliva flow rate) using equation 5 to the actual
saliva flow rate (calculated using equation 1).
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Figure 9.
Decision Tree for Grade 2 Rectal Complication Classification – an example.
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Figure 10.
Prediction of saliva flow rate (expressed as a percentage of the pre-treatment saliva flow
rate) as a function of the dose constraint settings for the three OARs: (a) fixed cord dose
constraint, dose constraint ranges for LP and RP, (b) fixed RP dose constraint, dose
constraint ranges for cord and LP and (c) fixed LP dose constraint, dose constraint ranges
for cord and RP.
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Figure 11.
Prediction of Grade 2 rectal complications as a function of the dose constraint settings for
the three OARs: (a) fixed bowel dose constraint, dose constraint ranges for bladder and
rectum, (b) fixed bladder dose constraint, dose constraint ranges for rectum and bowel and
(c) fixed rectum dose constraint, dose constraint ranges for bladder and bowel.
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