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A classification model is presented for rapid identification of Salmonella serotypes based on pulsed-field gel electrophoresis
(PFGE) fingerprints. The classification model was developed using random forest and support vector machine algorithms and
was then applied to a database of 45,923 PFGE patterns, randomly selected from all submissions to CDC PulseNet from 2005 to
2010. The patterns selected included the top 20 most frequent serotypes and 12 less frequent serotypes from various sources. The
prediction accuracies for the 32 serotypes ranged from 68.8% to 99.9%, with an overall accuracy of 96.0% for the random forest
classification, and ranged from 67.8% to 100.0%, with an overall accuracy of 96.1% for the support vector machine classification.
The prediction system improves reliability and accuracy and provides a new tool for early and fast screening and source tracking
of outbreak isolates. It is especially useful to get serotype information before the conventional methods are done. Additionally,
this system also works well for isolates that are serotyped as “unknown” by conventional methods, and it is useful for a labora-
tory where standard serotyping is not available.

According to the most recent report from the Centers for Dis-
ease Control and Prevention (CDC) (20), Salmonella was the

second most common pathogen among all food-borne pathogen
outbreaks, accounting for 23% of the outbreaks, 31% of the ill-
nesses, and 62% of the hospitalizations reported. Detailed strain
identification, including serotype identification, is critical for ef-
ficient epidemiological investigation of Salmonella outbreaks (18)
and is helpful in determining the relatedness of individual cases
for outbreak source tracking (21).

The standard serotyping method, which relies on the detection
of somatic (O) and flagellar (H) antigens present on the cell sur-
face of Salmonella, requires specialized skills and reagents; in ad-
dition, it is expensive and may take a couple of days to complete
(11, 12, 14). Numerous molecular techniques have been used to
serologically type Salmonella isolates based on microarrays (5),
real-time PCR (16), repetitive sequence-based PCR (25), multi-
plex primer extension (2), multilocus sequence typing (15), and
bead-based arrays (6). Each of these methods has advantages and
drawbacks in terms of cost, speed, robustness, and sensitivity (24).
Although these methods are improvements over the historical
method in various aspects, none has been evaluated as the ideal
method to be conducted on a massive scale for the routine micro-
biological laboratory (24).

Pulsed-field gel electrophoresis (PFGE) was adapted to Salmo-
nella in the 1990s and is now still the most widely used method to
identify and characterize Salmonella strains in outbreaks (8). It has
been reported that PFGE excels in tracking the source of Salmo-
nella infection for different serovars (22). Although it is also labor-
intensive and time-consuming, PFGE fingerprinting with conven-
tional serotyping is considered the gold standard for Salmonella
subtyping (7). The PulseNet network (http://www.cdc.gov
/pulsenet), coordinated by the CDC, uses PFGE as the preferred
subtyping method (10). By the end of 2010, around 350,000 pro-
files of about 500 Salmonella serotypes had been submitted to
PulseNet. These data are valuable for Salmonella outbreak source

tracking until PFGE fingerprinting is replaced by new, simpler
sequence-based methods. Considering the significant value of the
PFGE patterns, an ability to deduce the serotype of a Salmonella
isolate based on its PFGE profile would be highly attractive in that
it would limit the need for both PFGE and traditional serotyping
for rapid strain identification and source tracking (27). Liebana
et al. (18) compared several methods for discriminating Salmo-
nella isolates of five serovars and concluded that certain serotypes
could be deduced solely by their PFGE patterns. Gaul et al. (9)
further described the correlation of serotypes to PFGE subtypes
based on an analysis of 674 isolates from 12 Salmonella serotypes
and concluded that PFGE fingerprints could potentially provide
an alternative method for screening and identifying Salmonella
serotypes. Both results were based on hierarchical cluster analysis
performed by GelCompar II software (version 1.01; Applied
Maths, Kortrijk, Belgium) and BioNumerics software (Applied
Maths, Inc., Austin, TX), respectively (9, 18). Hierarchical cluster
analysis is an unsupervised algorithm in which the clusters are
determined only based on the pairwise similarities of the samples,
and no training set data are required. In BioNumerics, for exam-
ple, hierarchical cluster analysis groups bacterial isolates with sim-
ilar PFGE patterns in the same cluster to understand their similar-
ities and differences and to find or characterize the relationships
among isolates (27). No serotype information is utilized in the
analysis; therefore, it is ineffective for use in prediction or identi-
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fication of serotypes. We recently introduced a classification ap-
proach (27) to identify Salmonella serotypes of isolates based on
PFGE patterns. The classification model was applied to a data set
of 866 PFGE patterns consisting of eight serotypes; the overall
accuracy of correct identification of the eight serotypes was 96.3%.
Although the approach reached high prediction accuracy, the
number of isolates and the number of serotypes analyzed in the
study were small; four of the eight serotypes in this study had fewer
than 50 isolates.

Classification has received new attention in identifying disease
presence (1) and predicting which cancer patients would benefit
from chemotherapy and which would experience unnecessary
toxic side effects based on profiling of patterns of gene expression
(1). Development of a classification model involves two steps: (i)
model building and (ii) performance assessment. Typically, the
data are divided into a training set and a test set; the classification
model (rule) is developed on the training set and then applied to
the samples in the test set to assess its performance. Classification
performance depends greatly on the classification algorithms and
characteristics of the data to be classified. The random forest (RF)
and support vector machine (SVM) classification algorithms are
most widely used in classification of high-dimensional molecular
data (1, 19); both algorithms have been shown to consistently
perform better than other classical classification algorithms, such
as �-nearest neighbor method, classification tree, and linear dis-
criminant analysis (17).

Classification accuracy is estimated by applying the developed
model to the future samples that presumably emulate the popula-
tion of the current samples. If the current samples do not ade-
quately represent the future samples, then the estimates of predic-
tion accuracy can be biased. For example, if the sample size in the
present study is inadequate to represent the population that might
be seen for future samples, then the estimated accuracy (e.g., the
estimated 96.3% accuracy in our previous work) is likely too op-
timistic. In this study, a classification model was developed by
learning the PFGE patterns of the isolates of known serotypes
from the training samples; the model was subsequently used to
classify the serotype of a future sample based on its PFGE pattern.
When PFGE patterns from various isolates are compared by per-
forming band matching through BioNumerics software, the com-
positions of band classes depend on the compositions of the iso-
late groups. The same isolate may have slightly different sizes of
bands compared with different isolates. In other words, the PFGE
band sizes generated from different combinations of samples are
not comparable and need to be normalized (standardized) before
data analysis.

In this study, we expanded our previous work using RF and
SVM classification algorithms to develop classification models for
epidemic investigation of food-borne pathogen outbreaks. The
classification model was applied to a large database of 45,923
PFGE patterns randomly selected from all submissions to the
CDC PulseNet from 2005 to 2010 and covering 32 commonly
encountered serotypes. The goal of the study was to develop a new
tool for early and fast screening and source tracking of outbreak
isolates. The tool allows the fast and accurate prediction of sero-
types of Salmonella isolates from outbreaks before the conven-
tional methods are used. It will also be useful either to distinguish
an isolate that is serotyped as “unknown” by conventional meth-
ods or to apply in a laboratory where standard serotyping is not

available. A new method to normalize band sizes was also devel-
oped.

MATERIALS AND METHODS
PFGE fingerprint data set. A total of 45,923 XbaI-PFGE patterns of Sal-
monella enterica isolates from PulseNet were considered in this study.
These patterns were randomly selected from each of 32 serotypes from all
the submissions in the PulseNet national Salmonella database from 2005
to 2010. More than 99% of the isolates were collected from stool, blood,
urine, or unknown sites of patients from the United States. Less than 1%
of the isolates came from various foreign countries. The PFGE finger-
printing was performed by PulseNet-participating laboratories at their
state/local laboratories. The results were uploaded to PulseNet electroni-
cally and directly by the state and local health departments. The serotype
information of the patterns was obtained by the traditional serotyping
method (4, 11, 12, 14) from the state laboratories and CDC serotyping lab.

Because of the limitation of the BioNumerics software for processing
more than 20,000 PFGE patterns, the data were divided into three groups
(Table 1). Group 1 (G1) was randomly selected from the constructed
database from PulseNet, followed by the random selection of group 2
(G2). G1 and G2 had approximately equal numbers of isolates for all 32
serotypes. These two groups were used alternatively as the training and
test groups to develop the classification algorithm. The remaining 6093
patterns in group 3 (G3) were used as additional external validation, and
their serotype information was coded to prevent potential bias.

The gel images were processed and analyzed by BioNumerics software
according to the PulseNet protocol developed by CDC (26). BioNumerics
software was used to perform band matching of PFGE patterns of various
isolates in groups 1, 2, and 3. The presence or absence at each band posi-
tion was coded 1 or 0, respectively.

Standardization of band classes across groups. Since the band classes
for the three groups were created separately, they were not comparable
across groups. The classification model developed from the training data
set cannot be directly applied to the test data or to future data. To make
serotype prediction consistent and comparable, the band classes of all
PFGE patterns must be standardized for the algorithms. Two methods
were developed to standardize the band classes for cross-group analysis.
In both methods the band classes created from the training data were used
as the standard. The first standardization method normalized band sizes
of test data via BioNumerics software. The band class for the training data
was created and saved as the standard; the test data had band matching
performed by loading the saved standard through BioNumerics software.
This method was named the BioNumerics fixed-band method. In the
second method, the bands of each sample in the test data were normalized
according to the corresponding means of the band sizes of two adjacent
bands of the training data. For example, suppose the training data con-
sisted of band sizes of a1, b1, c1, d1, etc., and test data consisted of a2, b2,
c2, d2, etc. For each PFGE pattern in the test group, if a2 � (a1� b1)/2, a2
was normalized to a1, and if a2 � (a1 � b1)/2, it was adjusted to b1. This
new method is referred to as the NCTR fixed-band method.

Classification. Two classification algorithms, the RF (3) and SVM
(23), were used to build the classification model. RF was developed by
Breiman to improve performance over the decision tree algorithm (3) and
is available as the package RandomForest in R. SVM was introduced by
Vapnik (23), and the SVM program in R in the e1071 package was used.
This method finds a linear boundary in the input feature space or may be
expanded to allow the boundary to be found in a higher dimensional space
by projecting the input space into a large, potentially infinite, space.

Two-fold cross validation was used to assess the performance of the
classification model. In 2-fold cross validation, the model is trained on G1
and tested on G2, followed by training on G2 and testing on G1. Thus, the
entire data are classified once. The classification accuracy of each serotype
was calculated as the proportion of correct classification. The overall ac-
curacy was the average of the 2-fold partition repeated 100 times. The
classification model was further validated using a separate data set, G3, of
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6,093 patterns with their serotype information blinded to minimize po-
tential bias.

Distance matrix development. To interpret the differences in predic-
tion accuracies for various serotypes, the distance matrix of 32 serotypes
was developed. Group 1 and group 2, normalized by the group 1 standard
band class, were combined, resulting in 39,830 patterns of 32 serotypes.
The distance matrix presents the dissimilarities of any two patterns in the
whole group. The dissimilarity was measured by Jaccard distance (13),
and the values ranged from 0 to 1 (see Fig. 1).

RESULTS
PFGE fingerprint data set. Group data are presented in Table 1.
Group 1 (n � 19,877), which was randomly selected first, included
all 32 serotypes and all the sources where the Salmonella isolates
were extracted. Group 2 (n � 19,953) was randomly selected to
have approximately equal numbers of patterns in each of 32 sero-
types, except for S. enterica serotype Paratyphi A, which had only
20 patterns. The band classes for group 1 and group 2 were created
separately by BioNumerics software. Group 1 consisted of 60

bands ranging from 20 kb to 1,100 kb, while group 2 consisted of
61 bands in the same range (Table 2). Some of the bands from the
two groups were the same size, but most of them differed slightly.

Comparison of two standardization methods. RF and SVM
classification algorithms were applied to the PFGE patterns nor-
malized by the two standardization methods using the band class
of either group 1 or group 2 as the standard. The accuracies of all
predictions are listed in Table 3. First the RF model was trained on
the band class of group 1 patterns as the standard and was tested
on the band class of group 2 normalized by the BioNumerics
fixed-band method. The accuracies are shown in the second col-
umn from the left. The third column shows the accuracies of the
following prediction of RF by training on standard group 2 and
testing on standardized group 1. Thus, all of the data were classi-
fied once, and the average accuracies are listed in the fourth col-
umn. The remaining three columns show the accuracies from the
same RF classification model applied on PFGE bands but normal-
ized by the NCTR fixed-band method. The accuracies of SVM

TABLE 1 Selected Salmonella serotypes and numbers of patterns in three groups used in this study

S. enterica serotype group and
name

No. of patterns in the present study Isolates from human sources, 1996-2006a

Group 1 Group 2 Group 3 Total Rank Total no. for the period % of total

Most frequent serotypes (n � 20)
Agona 980 973 0 1,953 14 5,820 1.5
Braenderup 923 927 158 2,008 13 5,833 1.5
Enteritidis 929 914 495 2,338 2 69,547 17.8
Hadar 905 929 147 1,981 16 4,392 1.1
Heidelberg 915 1,008 191 2,114 4 20,473 5.2
I 4,[5],12:i:� 922 927 431 2,280 15 4,698 1.2
Infantis 917 926 235 2,078 11 6,031 1.5
Javiana 910 890 302 2,102 5 13,513 3.5
Mississippi 904 908 187 1,999 17 4,063 1.0
Montevideo 954 923 164 2,041 7 9,459 2.4
Muenchen 915 961 94 1,970 8 7,960 2.0
Newport 914 911 180 2,005 3 32,955 8.4
Oranienburg 963 988 0 1,951 9 6,783 1.7
Paratyphi B var. L(�) tartrate� 908 916 187 2,011 19 3,987 1.0
Poona 906 949 101 1,956 20 3,100 0.8
Saintpaul 954 940 358 2,252 10 6,322 1.6
Thompson 907 934 204 2,045 12 5,903 1.5
Typhi 935 1,006 0 1,941 18 3,990 1.0
Typhimurium 918 923 223 2,064 1 75,058 19.2
Typhimurium var. 5� 908 925 313 2,146 6 9,523 2.4

Less frequent serotypes (n � 12)
Anatum 106 116 256 478 23 2,218 0.6
Bareilly 100 101 225 426 24 2,051 0.5
Berta 109 100 293 502 21 2,488 0.6
Derby 105 107 181 393 29 1,642 0.4
Hartford 105 113 313 531 27 1,836 0.5
Litchfield 134 103 164 401 30 1,567 0.4
Mbandaka 159 111 162 432 25 2,048 0.5
Panama 124 104 288 516 28 1,698 0.4
Paratyphi A 115 20 0 135 35 1,163 0.3
Schwarzengrund 119 106 0 225 31 1,538 0.4
Senftenberg 97 92 0 189 32 1,457 0.4
Stanley 117 102 241 460 22 2,273 0.6
Total 19,877 19,953 6,093 45,923 390,767 100.0

a Data were derived and calculated from the CDC’s Salmonella annual summary of 2006 (4). Rank indicates the frequency of isolation, with lower numbers indicating greater
frequency. During this period, the 20 most frequent serotypes were represented by 299,410 isolates, or 76.6% of the total of 390,767 isolates for the period, and both groups together
were represented by 321,389 isolates, or 82.2% of the total number of isolates.
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algorithms applied to PFGE patterns standardized by the two
methods are also shown in Table 3. Except for the S. enterica se-
rotype I 4,[5],12:i:� (accuracies of approximately 90% to 93%)
and S. enterica serotypes Typhimurium and Typhimurium var.
5� (accuracies if approximately 64 to 72%), the other 20 most
common serotypes had prediction accuracies above 98% (most
higher than 99%) when the NCTR method was used to standard-

ize band classes but above only 96% when the BioNumerics
method was used in both RF and SVM classifications. When the
RF algorithm was applied (Table 3), the total average accuracy
from the NCTR method was 95.9%, which was higher than that of
95.1% using the BioNumerics method. The same result was ob-
tained when the SVM algorithm was used (96.1% for the NCTR
method and 95.1% for the BioNumerics method) (Table 3).

Comparison of two classification algorithms. In Table 3, both
the RF and SVM classification algorithms predicted the 20 most
common serotypes with higher accuracies than those of 12 minor-
ity serotypes in all prediction groups. A comparison of the data for
RF and SVM in Table 3 shows varied but slight differences in
prediction accuracies, except for several of the 12 less common
serotypes (S. enterica serotypes Anatum, Bareilly, and Senftenberg
using the BioNumerics method and S. enterica serotype Bareilly
using the NCTR method). The total average accuracies of the SVM
algorithm (95.1% using the BioNumerics method and 96.1% us-
ing the NCTR method) were higher than those of the RF algo-
rithm (95.1% for both standardization methods). In addition, the
combination of the SVM algorithm with the NCTR standardiza-
tion method produced the highest accuracies.

To test the reliability of the results above, we selected the G1
band class as the standard and combined G1 and G2, normalized
by the NCTR method, into one group for both RF and SVM clas-
sifications. The average accuracies were calculated after the 2-fold
cross-validation was repeated 100 times (Table 4). Seventeen out
of the 20 most common serotypes had average prediction accura-
cies above 97.5% using the RF prediction model and above 98.9%
using the SVM prediction model. The total average accuracies
were 96.0% for RF and 96.1% for SVM, values which are close to
or the same as the results presented in Table 3 (95.9% for RF and
96.1% for SVM).

Misclassifications. Tables S1A and B in the supplemental ma-
terial exhibit detailed aspects of the classifications shown in Table
4. The numbers on the diagonal show the correct classifications
for each of 32 serotypes, and the off-diagonal numbers indicate
the mispredicted patterns. For example, 1,710 out of 1,849 pat-
terns were correctly classified as S. enterica serotype I 4,[5],12:i:�,
while 139 patterns were misclassified: one pattern was mispre-
dicted as S. enterica serotype Hadar, one was mispredicted as S.
enterica serotype Montevideo, one was mispredicted as S. enterica
serotype Poona, 95 were mispredicted as S. enterica serotype Ty-
phimurium, and 40 were mispredicted as S. enterica serotype Ty-
phimurium var. 5�. The average accuracy was 92.5% after 100
repetitions. For S. enterica serotype Agona, the average prediction
accuracy was 99.9%, with only 2 out of 1,953 patterns misclassified
as S. enterica serotype Infantis and S. enterica serotype Montevideo
(see Table S1A in the supplemental material). Most misclassifica-
tion patterns were in the S. enterica serotypes Typhimurium, Ty-
phimurium var. 5�, and I 4,[5],12:i:� using both RF and SVM
algorithms. Around one-third of the patterns of S. Typhimurium
and S. Typhimurium var. 5� overlapped with each other.

Further validation. The classification models of RF and SVM,
which were trained and tested by 39,830 PFGE patterns (including
both group 1 and group 2), were further validated by an additional
6,093 PFGE patterns (group 3) with their serotypes coded to avoid
possible bias. The patterns of group 1 were combined with the
normalized patterns of group 2 and used as the training set, the
normalized band class of group 3 was used as the test set, and
the prediction accuracies by RF and SVM were calculated (Table

TABLE 2 Band sizes generated from G1 and G2 patterns

Banda

Band size (kbp) by group

G1 G2

1 1,101 1,101
2 1,037 1,038
3 979 994
4 890.8 893.2
5 850.7 850.4
6 790.7 791.6
7 746.6 746.9
8 710.9 711.4
9 666.1 666.5
10 645.6 645.5
11 603.7 603.4
12 582.1 581.9
13 560.1 560.5
14 538.3 541.2
15 513.4 522.4
16 497.2 506.4
17 481.2 482.5
18 459.9 459.9
19 438.7 438.9
20 411.8 412
21 392.1 392.1
22 373.9 373.9
23 357.5 357.8
24 342.8 342.9
25 334.4 334.5
26 322.4 322.4
27 308.9 308.9
28 290.8 290.8
29 275.6 275.6
30 256.7 256.7
31 247.2 247.4
32 237.5 237.7
33 223.2 222.6
34 211.9 210.4
35 194.6 194.7
36 183.4 183.4
37 175 175
38 168.3 168.2
39 160.1 160.4
40 145.8 148.2
41 136.1 137
42 127.2 127.8
43 118.8 118.9
44 110.4 110.4
45 103.8 103.7
46 97.28 97.48
47 84.87 86.87
48 75.75 83.71
49 70.79 75.74
50 66.11 70.78
51 61.22 66.1
52 53.56 61.27
53 47.45 53.3
54 42.79 46.43
55 37.2 42.69
56 32.79 37.12
57 30.88 32.77
58 28.82 30.88
59 25.36 28.88
60 21.33 25.32
61 21.34
a There are 60 bands in G1 and 61 bands in G2.

Salmonella Serotype Prediction from PFGE Patterns

May 2012 Volume 50 Number 5 jcm.asm.org 1527

http://jcm.asm.org


TABLE 3 The prediction accuracies of RF and SVM algorithms on PFGE patterns standardized by the BioNumerics fixed-band method and NCTR
fixed-band method using either the group 1 or group 2 band class as the standard

Algorithm and S. enterica serotype
group and name

% Accuracy by method and groupa

BioNumerics fixed-band method NCTR fixed-band method

G1 as the
standard

G2 as the
standard

Avg of the
serotypes

G1 as the
standard

G2 as the
standard

Avg of the
serotypes

RF algorithm
Most frequent serotypes (n � 20)

I 4,[5],12:i:� 90.1 90.5 90.3 91.7 91.0 91.3
Agona 99.9 99.7 99.8 99.9 99.7 99.8
Braenderup 98.9 98.7 98.8 99.7 99.8 99.7
Enteritidis 99.6 99.5 99.5 99.7 99.8 99.7
Hadar 99.4 99.0 99.2 99.0 98.5 98.7
Heidelberg 99.5 99.8 99.6 99.9 99.7 99.8
Infantis 98.5 98.7 98.6 99.8 99.9 99.8
Javiana 99.7 99.5 99.6 99.9 99.0 99.4
Mississippi 99.4 99.1 99.3 99.4 99.4 99.4
Montevideo 96.2 97.2 96.7 99.8 99.6 99.7
Muenchen 98.3 98.7 98.5 98.9 99.3 99.1
Newport 98.0 98.1 98.1 99.3 99.5 99.4
Oranienburg 98.5 98.3 98.4 99.4 99.2 99.3
Paratyphi B var. L(�) tartrate� 98.3 97.6 97.9 99.7 99.6 99.6
Poona 98.9 98.7 98.8 97.8 98.1 98.0
Saintpaul 99.7 99.6 99.6 99.6 99.2 99.4
Thompson 98.2 98.0 98.1 100.0 99.4 99.7
Typhi 99.9 99.8 99.8 99.6 99.7 99.6
Typhimurium 66.6 64.8 65.7 70.9 68.5 69.7
Typhimurium var. 5� 70.9 72.1 71.5 72.8 72.0 72.4

Less frequent serotypes (n � 12)
Anatum 75.9 78.3 77.0 96.6 96.2 96.4
Bareilly 82.2 72.0 77.1 75.2 52.0 63.6
Berta 95.0 97.2 96.2 94.0 99.1 96.7
Derby 91.6 91.4 91.5 88.8 88.6 88.7
Hartford 97.3 97.1 97.2 98.2 95.2 96.8
Litchfield 98.1 94.8 96.2 97.1 97.0 97.0
Mbandaka 99.1 96.2 97.4 100.0 99.4 99.6
Panama 90.4 90.3 90.4 91.3 81.5 86.0
Paratyphi A 100.0 96.5 97.0 100.0 88.7 90.4
Schwarzengrund 93.4 95.8 94.7 97.2 95.0 96.0
Senftenberg 81.5 74.2 77.8 92.4 86.6 89.4
Stanley 93.1 91.5 92.2 92.2 91.5 91.8

Total for the group 95.1 95.9

SVM algorithm
Most frequent serotypes (n � 20)

I 4,[5],12:i:� 91.5 91.2 91.3 93.0 92.3 92.6
Agona 99.5 99.7 99.6 100.0 100.0 100.0
Braenderup 98.6 98.5 98.5 99.8 99.7 99.7
Enteritidis 99.3 98.9 99.1 99.8 99.8 99.8
Hadar 99.1 99.1 99.1 99.1 98.5 98.8
Heidelberg 99.5 99.7 99.6 99.8 99.9 99.8
Infantis 98.4 98.0 98.2 99.8 99.8 99.8
Javiana 99.8 99.5 99.6 99.9 99.6 99.7
Mississippi 99.6 99.6 99.6 99.6 99.2 99.4
Montevideo 97.3 97.9 97.6 100.0 99.6 99.8
Muenchen 99.5 99.0 99.3 99.6 99.6 99.6
Newport 98.4 98.6 98.5 99.6 99.6 99.6
Oranienburg 97.2 98.1 97.6 99.4 99.6 99.5
Paratyphi B var. L(�) tartrate� 98.1 97.9 98.0 99.5 99.4 99.5
Poona 99.5 99.7 99.6 99.3 99.3 99.3
Saintpaul 99.1 99.6 99.4 99.5 99.2 99.3
Thompson 98.0 98.2 98.1 99.8 99.1 99.5
Typhi 100.0 100.0 100.0 99.8 99.9 99.8

(Continued on following page)
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5). The SVM classification exhibited overall better prediction as
expected, with accuracies higher than 97.2% for the top 20 sero-
types, except for three serotypes (S. Typhimurium, S. Typhimu-
rium var. 5�, and S. enterica serotype I 4,[5],12:i:�), and higher
than 91.2% for the 12 less common serotypes. Most of the PFGE
patterns (5,761 out of 6,093 patterns for RF and 5,798 out of 6,093
patterns for SVM) were correctly predicted to serotype; the overall
accuracies were 94.5% for the RF classification and 95.1% for the
SVM classification. Details are given in Tables S2A and B in the
supplemental material.

Distance matrix of the 32 serotypes. Fig. 1 shows the heat map
of 39,830 PFGE patterns of 32 serotypes, including those of group
1 and group 2. The large squares represent the patterns of the 20
most common serotypes, consisting of approximately 1,900 PFGE
patterns for each serotype; the small squares represent 12 less
common serotypes with approximately 200 PFGE patterns each.
The squares on the diagonal show the distances of the patterns
within the same serotype, while the other squares exhibit the dis-
tances between the patterns of the corresponding horizontal and
vertical serotypes. It is difficult to discern the relationships of the
12 less common serotypes because of limited data size. For the top
20 serotypes, the squares on the diagonal (mostly green) are dis-
tinguishable from other squares in the heat map, except for S.
enterica serotypes Typhimurium and Typhimurium var. 5�. The
patterns of S. enterica serotype I 4,[5],12:i:� were very close to
those of S. Typhimurium and S. Typhimurium var. 5�.

DISCUSSION

It is a challenge to develop new analytical tools to make full use of
the valuable data in PulseNet and maximize the application by
combining concepts and techniques from various research disci-
plines. Although a good correlation between PFGE patterns and
Salmonella serotypes has been reported (9, 18), it is not efficient
enough, and typically, the cutting of the dendrogram to form clus-
ters is based on subjective visual analysis. Additionally, it is diffi-
cult to apply hierarchical cluster analysis to large data sets (27).
Our previous work (27) applied statistical classification to PFGE

patterns and provided a more efficient alternative method for de-
termining Salmonella serotypes than the conventional hierarchi-
cal cluster analysis. Since only 866 PFGE patterns of eight sero-
types were included in the analytical database, however, our
previous algorithm had limitations.

The prediction accuracy is estimated by applying the predic-
tion model based on the current samples to presumably emulate
the population of the future samples. If the samples in the present
study do not adequately represent the future samples, then the
estimates of prediction accuracy can be biased (1). The 32 sero-
types selected in this study comprised 82.2% of all the isolates
reported during 11 years nationwide (Table 1), and there were not
many differences between the percentages of each year (75.5% to
86.4%) (4). The patterns from other serotypes were limited. The
database constructed in this study, which consisted of Salmonella
isolates from 2005 to 2010 in PulseNet, was assumed to represent
similar coverage. Therefore, the algorithm trained on this data set
should be applicable to predict all possible Salmonella candidates,
with a limited misprediction rate even with rare serotypes. To
keep high prediction accuracies in the future, the training data set
in the algorithm should be kept updated by the addition of PFGE
entries of new types and of new commonly occurring serotypes.

Since the top 20 serotypes covered 76.6% and the 12 less com-
mon serotypes covered 5.6% of total Salmonella isolates in 11
years, both groups 1 and 2 had around 900 to 1,000 PFGE patterns
for each of the top 20 serotypes and approximately 100 for each of
the 12 less common serotypes (except for the S. enterica serotype
Paratyphi A because of the data limitation). Inclusion of various
patterns for the most common serotypes was maximized in order
to increase the prediction sensitivity of the algorithms.

When a prediction system is put into practical use, standard-
ization is necessary to keep prediction results comparable and
consistent. The NCTR fixed-band method, created in this study
was shown to normalize the band class of the testing set to that of
the training set better than the conventional BioNumerics fixed-
band method (Table 3). In addition to the higher accuracies, the

TABLE 3 (Continued)

Algorithm and S. enterica serotype
group and name

% Accuracy by method and groupa

BioNumerics fixed-band method NCTR fixed-band method

G1 as the
standard

G2 as the
standard

Avg of the
serotypes

G1 as the
standard

G2 as the
standard

Avg of the
serotypes

Typhimurium 65.5 64.8 65.2 67.9 66.0 67.0
Typhimurium var. 5� 72.1 70.3 71.2 72.8 71.3 72.0

Less frequent serotypes (n � 12)
Anatum 50.9 68.9 59.5 98.3 95.3 96.8
Bareilly 93.1 85.0 89.0 91.1 66.0 78.5
Berta 94.0 96.3 95.2 95.0 96.3 95.7
Derby 88.8 91.4 90.1 86.0 89.5 87.7
Hartford 96.5 95.2 95.9 95.6 95.2 95.4
Litchfield 92.2 90.3 91.1 94.2 94.8 94.5
Mbandaka 97.3 95.6 96.3 99.1 98.7 98.9
Panama 92.3 96.0 94.3 90.4 88.7 89.5
Paratyphi A 100.0 92.2 93.3 100.0 90.4 91.9
Schwarzengrund 92.5 93.3 92.9 99.1 95.0 96.9
Senftenberg 91.3 85.6 88.4 91.3 89.7 90.5
Stanley 94.1 94.0 94.1 95.1 95.7 95.4

Total for the group 95.1 96.1
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NCTR method made the prediction process easier and more ap-
plicable than the conventional BioNumerics method. The NCTR
method was able to transfer the standard band class into certain
parameters in the model and normalize the band class of future
candidates to that of the standard with no need to load and save
the standard band class in BioNumerics and run the band-match-
ing function every time through the software. This is especially
useful for a large data set because BioNumerics was designed to
treat fewer than 20,000 patterns. In this study, the band class of
group 1 was a better standard since group 1 patterns were selected
first from the database; it included all available variants of PFGE
patterns in the database, such as sources, extraction locations, and
time. When G1 band class was used as the standard and training
set, the prediction accuracies were higher because the models were
already trained by as much as possible before being applied to the
prediction of the testing group (Table 3).

Statistically, hierarchical cluster analysis is generally consid-
ered to be unsupervised in the sense that the isolates are grouped
based only on the pairwise similarities among their PFGE profiles

without using serotype information. This type of analysis only
arranges the isolates into subsets with similar PFGE profiles to
distinguish their underlying phylogenetic structures or to discover
new subtypes (27). In contrast, the supervised classification ap-
proach focuses on studying the correlations between PFGE pat-
terns and serotypes and applies the information learned from the
training set as the rules for prediction in the test set, improving the
Salmonella serotype prediction (27). In this study, we introduced
another classification method, SVM, and compared the function-
ality of both the RF and SVM classification models on prediction
using large data sets.

It is worth mentioning that some of the misclassification could
be due to the incorrect serotyping results or to mistakes in input-
ting the serotype information into the PulseNet database. Further
analysis may confirm this possibility. For the 20 most common
serotypes, Tables 3, 4, and 5 show that under all conditions the
lowest prediction accuracies were consistently for S. enterica sero-
types Typhimurium and Typhimurium var. 5� and S. serotype I
4,[5],12:i:�. The supplemental data (see Tables S1A and B and
S2A and B) give more details regarding the false predictions. The
mispredictions of each of these three serotypes were found mostly
in the other two serotypes, especially between S. Typhimurium
and S. Typhimurium var. 5�. In Table S1B in the supplemental
material, for example, 594 out of 1,841 S. Typhimurium isolates

TABLE 4 Average accuracies of RF and SVM classification analyses on
39,829 PFGE patterns (including both G1 and G2) normalized by the
NCTR fixed-band method using G1 as the standard set of band classa

S. enterica serotype group and
name

RF avg accuracya

(% [SD])
SVM avg accuracya

(% [SD])

Most frequent serotypes (n � 20)
I 4,[5],12:i:� 92.5 (5.99) 92.5 (5.00)
Agona 99.9 (1.15) 100.0 (0.98)
Braenderup 99.8 (1.34) 99.6 (1.10)
Enteritidis 99.7 (1.47) 99.7 (1.87)
Hadar 99.0 (1.81) 98.9 (1.97)
Heidelberg 99.8 (1.05) 99.7 (1.97)
Infantis 99.8 (1.21) 99.8 (1.10)
Javiana 99.5 (2.32) 99.6 (1.89)
Mississippi 99.3 (2.00) 99.4 (1.86)
Montevideo 99.6 (0.65) 99.7 (1.29)
Muenchen 99.0 (3.01) 99.5 (2.28)
Newport 99.5 (1.97) 99.4 (2.40)
Oranienburg 99.4 (1.52) 99.5 (1.66)
Paratyphi B var. L(�) tartrate� 99.5 (1.98) 99.4 (2.45)
Poona 97.5 (3.99) 98.9 (2.80)
Saintpaul 99.3 (3.01) 99.4 (2.69)
Thompson 99.6 (3.04) 99.5 (2.58)
Typhi 99.7 (1.46) 99.9 (1.11)
Typhimurium 68.8 (8.79) 67.8 (10.29)
Typhimurium var. 5� 71.8 (12.01) 71.8 (12.13)

Less frequent serotypes (n � 12)
Anatum 96.8 (1.39) 97.4 (1.50)
Bareilly 80.6 (4.24) 88.7 (3.54)
Berta 97.8 (1.24) 95.9 (0.94)
Derby 87.7 (2.34) 88.1 (1.87)
Hartford 97.0 (1.33) 96.2 (1.28)
Litchfield 96.6 (1.19) 94.5 (2.01)
Mbandaka 99.6 (0.66) 98.5 (0.67)
Panama 89.7 (2.05) 91.8 (2.35)
Paratyphi A 98.3 (1.41) 98.1 (1.21)
Schwarzengrund 96.8 (1.38) 96.8 (1.80)
Senftenberg 92.4 (2.68) 91.9 (2.57)
Stanley 92.3 (1.89) 95.7 (2.04)
Total 96.0 96.1

a Two-fold cross validation was used with 100 repetitions.

TABLE 5 Further validation of RF and SVM prediction models on an
additional 6,093 PFGE patterns (group 3)

S. enterica serotype group and
name

% Accuracy (no. of correct predictions/
no. of PFGE patterns)

RF model SVM model

Most frequent serotypes (n � 20)
I 4,[5],12:i:- 93.5 (403/431) 94.0 (405/431)
Braenderup 100 (158/158) 100 (158/158)
Enteritidis 99.8 (494/495) 99.8 (494/495)
Hadar 98.6 (145/147) 98.6 (145/147)
Heidelberg 100 (191/191) 100 (191/191)
Infantis 100 (235/235) 99.6 (234/235)
Javiana 98.7 (298/302) 99.3 (300/302)
Mississippi 98.4 (184/187) 98.9 (185/187)
Montevideo 99.4 (163/164) 99.4 (163/164)
Muenchen 98.9 (93/94) 98.9 (93/94)
Newport 95.6 (172/180) 97.2 (175/180)
Paratyphi B var. L(�) tartrate� 100 (187/187) 99.5 (186/187)
Poona 98.0 (99/101) 100 (101/101)
Saintpaul 99.4 (355/358) 99.4 (356/358)
Thompson 100 (204/204) 99.0 (202/204)
Typhimurium 62.3 (139/223) 63.2 (141/223)
Typhimurium var. 5� 72.5 (227/313) 70.0 (219/313)

Less frequent serotypes (n � 12)
Anatum 97.3 (250/256) 98.4 (253/256)
Bareilly 88.9 (201/225) 93.8 (212/225)
Berta 95.2 (279/293) 97.6 (286/293)
Derby 90.1 (63/81) 91.2 (65/81)
Hartford 98.1 (307/313) 99.0 (310/313)
Litchfield 98.8 (162/164) 99.4 (163/164)
Mbandaka 99.4 (161/162) 99.4 (161/162)
Panama 92.7 (267/288) 94.1 (271/288)
Stanley 92.9 (224/241) 95.0 (229/241)
Overall 94.5 (5,761/6,093) 95.1 (5,798/6,093)
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were mispredicted: 435 as S. Typhimurium var. 5� and 156 as S.
enterica serotype I 4,[5],12:i:�. For the S. Typhimurium var. 5�,
517 out of 1,833 patterns were mispredicted: 454 as S. Typhimu-
rium and 52 as S. enterica serotype I 4,[5],12:i:�. Correspond-
ingly, most of the mispredictions of S. enterica serotype I 4,[5],12:
i:� were in S. Typhimurium and S. Typhimurium var. 5�, and
only 2.2% were other serotypes. These results were correlated with
the fact that these three serotypes are closely related and their
PFGE patterns were very similar. Actually, S. enterica serotype I
4,[5],12:i:� lacks the second-phase H antigen 1,2 and is the
monophasic variant of S. Typhimurium, whose formula is I
4,5,12:i:1,2. The S. Typhimurium var. 5�, whose obsolete name is
S. Typhimurium var. Copenhagen, was considered an O:5-nega-
tive variant of S. Typhimurium a few years ago, and its formula is
I 4,12:i:1,2. In many reports, S. Typhimurium var. 5� was even
included in S. Typhimurium (4), and no genetic differences were
detected between these two variants (11). The similarities of the
PFGE patterns among the three serotypes, especially S. Typhimu-
rium and S. Typhimurium var. 5�, resulted in their low predic-
tion accuracies. If S. Typhimurium var. 5� is included in the S.
Typhimurium serotype, the prediction accuracy increases to
94.0%.

The serotype prediction accuracies and the relationships be-
tween the 32 serotypes, especially the top 20 serotypes, could be
visually described from the distance matrix of the serotypes (Fig.
1). The distinguishable squares on the diagonal, except for the
squares of S. Typhimurium and S. Typhimurium var. 5�, indicate
the interserotype differences of the PFGE patterns, which allow
the prediction of these serotypes with high accuracies. The indis-
tinguishable squares of S. Typhimurium and S. Typhimurium var.
5� reveal that the patterns of these two serotypes are very similar,

which resulted in their low prediction accuracies. These two sero-
types accounted for most of the misclassified patterns, in agree-
ment with the heat map image. To achieve high prediction accu-
racies, the patterns of isolates within one serotype need to be not
only similar to each other but also far away from the patterns of
other serotypes. Figure 1 also shows the small distances between
patterns of S. enterica serotype I 4,[5],12:i:� and those of S. Ty-
phimurium and S. Typhimurium var. 5�., which is in agreement
with the prediction accuracy and misclassified patterns of S. en-
terica serotype I 4,[5],12:i:�.

In summary, RF and SVM classifications were applied to a data
set of 45,923 PFGE patterns covering 32 Salmonella serotypes
from CDC PulseNet. The SVM algorithm showed consistently
overall higher accuracies than the RF algorithm. The NCTR
fixed-band method was developed to standardize PFGE band
classes for prediction. The application of the classification al-
gorithms can satisfy the need for fast and early identification
and source tracking of outbreak isolates. It is especially useful
to predict and get the serotype information of outbreak isolates
before the conventional methods are used in a laboratory
where serotyping is available. The results of this study, together
with our previously published results (27), suggest that new
analysis methods developed from the concepts of mathematics,
statistics, and computer science could optimize current tech-
nologies and make the data more useful.
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