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Hepatitis E Virus Replication Requires an Active Ubiquitin-

Proteasome System
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The mechanism of hepatitis E virus (HEV) replication remains largely unknown. Here we demonstrate that HEV replication re-
quires an active ubiquitin-proteasome system and that proteasome inhibitors affect HEV replication, possibly by inhibition of
viral transcription or/and translation without a significant effect on cellular translation. Overexpression of ubiquitin in inhibi-
tor-treated cells partially reverses the inhibitor effect on HEV replication. The results suggest that HEV replication requires in-
teractions with proteasome machinery, which could be a potential therapeutic target against HEV.

he cellular ubiquitin-proteasome system (UPS) is important

for intracellular protein degradation in eukaryotic cells (40,
46). The UPS is composed of ubiquitination and substrate-de-
grading machinery. Ubiquitination is the conjugation of proteins
with ubiquitin and occurs through the sequential enzymatic reac-
tions of an E1 activating enzyme, E2 conjugation enzyme, and E3
ligase (17). Viruses manipulate the infrastructure and metabolism
of their host cell to effect their own survival. UPS has been impli-
cated in the infection cycle and virus-host interplay of several vi-
ruses (3, 9, 28, 36, 51). Bortezomib is an FDA-approved protea-
some inhibitor that has demonstrated clinical efficacy in the
treatment of multiple myeloma (7, 10, 27). Therefore, in this study
we examined the role of UPS in the replication of hepatitis E virus
(HEV) and evaluated the potential use of UPS inhibitors as ther-
apeutic agents against HEV infection.

HEV, a nonenveloped single-strand positive-sense RNA virus
in the family Hepeviridae (30, 32), is an important but understud-
ied human pathogen (2, 11, 31, 33). The genome of HEV is ~7.2
kb and contains a 5'-m7G cap (20) and three open reading frames
(ORFs) (39). The ORF1 protein possesses domains for replicase
enzymes (25) and among these, functional activities of RdRp (1),
Hel (21, 22), and MetT (29) have been experimentally verified.
ORF2 encodes the viral capsid protein (16, 50). ORF3 encodes a
small multifunctional protein that interacts with various signaling
pathways (5, 6, 13, 24, 26, 33-35, 4345, 48, 49). The ORF2 and
OREF3 proteins are translated from a 2.2-kb subgenomic RNA (15,
18). The expression of the ORF3 protein is not required for virus
replication, virion assembly, or infection in vitro (12, 14).

It has been reported that proteasome inhibitors affect the rep-
lication of herpesviruses (9), vaccinia virus (36), influenza virus
(47), human immunodeficiency virus (38), and cytomegalovi-
ruses (42). Many viruses encode proteins that can modify the
host’s ubiquitin machinery, (19). Recently, a papain-like cysteine
protease has been described as a deubiquitinating enzyme in HEV
(23), indicating that a ubiquitin system may influence the life cycle
of HEV.

For all experiments, a subclone of a human hepatocellular car-
cinoma cell line, Huh7-S10-3, which is permissive for HEV repli-
cation, was used, and the cells were maintained in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine
serum under a 5% CO, atmosphere at 37°C. Transfected cells were
maintained under the same conditions except at 34.5°C.

First, to determine whether proteasome activity is required for
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HEV replication, we tested the effects of proteasome inhibitors
MG132, lactacystin, and epoxomicin (Sigma) on HEV replication.
The toxicities of the inhibitors were tested by the alamarBlue assay
(Invitrogen), and we showed that there was >80% cell survival
when concentrations of inhibitors were less than or equal to 1 M
(Fig. 1A). Thus, for all further experiments in this study, the con-
centration of inhibitors we used was 1 uM or less.

HEV replicon expressing the Renilla luciferase (Rluc) gene sys-
tem (designated pSK-HEV-2RLuc) was developed previously us-
ing the genotype 1 human HEV infectious clone pSK-HEV-2 (4).
The capped RNA transcript of the pSK-HEV-2RLuc clone was
transfected into Huh7-S10-3 cells by using the DMRIE-C reagent
(Invitrogen). UPS inhibitors were added to culture medium at 24
h posttransfection. The luciferase activities were measured with a
dual luciferase reporter assay system (Promega) at 5 days post-
transfection. Firefly luciferase RNA was cotransfected with HEV
Rluc replicon RNA to normalize the Renilla luciferase signal. All
the inhibitors tested in this study caused a significant reduction in
the level of virus replication, suggesting that the UPS is important
for HEV replication. The MG132 inhibitor had a more pro-
nounced effect on virus replication than other inhibitors (Fig. 1B).
Furthermore, we found that this inhibition of HEV replication
was concentration dependent (Fig. 1C).

To investigate which specific step(s) of the HEV replication
cycle might be affected by lack of proteasome activity, we per-
formed an immunofluorescence assay (IFA) to detect viral capsid
protein synthesis, and we performed negative-strand-specific re-
verse transcription-PCR (RT-PCR) to detect replicative negative-
strand viral RNA. Briefly, Huh7 cells were transfected with the
full-length capped RNA transcripts of the pSK-HEV?2 infectious
clone, and capsid protein synthesis was monitored by IFA (8).
When 1 puM MG132 inhibitor was added to culture medium at 24
h posttransfection, no capsid protein synthesis was detected by
IFA (Fig. 2A), further confirming that HEV replication requires an
active ubiquitin proteasome system.
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FIG 1 The proteasome inhibitors significantly reduced the levels of HEV replication. (A) Toxicity of inhibitors to Huh7 S10 cells. The results shown are from an
alamarBlue assay for Huh7 S10 cells treated with the inhibitors MG132, lactacystin, and epoxomicin. The assay was performed on the fourth day after treatment.
The concentrations of inhibitors are indicated. Mean values from three independent experiments are plotted. (B) HEV replication is reduced by treatment with
proteasome inhibitors. Relative luciferase activities are shown for Huh7 S10 cells transfected with capped RNA transcript of the pSK-HEV2RLuc clone. Inhibitor
treatment started 1 day posttransfection, and the concentration of inhibitors was 1 uM. A luciferase assay was performed on the fifth day posttransfection. Mean
values from six independent experiments are plotted. Statistical analysis was performed using analysis of variance followed by Dunnett’s procedure, and
significance was set at a Plevel of <0.05 (indicated with an asterisk). Data analysis was performed using JMP9 software. (C) Effect of MG132 on HEV replication.
Relative luciferase activities are shown for Huh7 S10 cells transfected with capped RNA transcript of the pSK-HEV2RLuc clone. Inhibitor treatment started 1 day
posttransfection, and the concentration of MG132 used is indicated. A luciferase assay was performed on the fifth day posttransfection. Mean values from three

independent experiments are plotted.

For the detection of negative-strand replicative viral RNA, a
strand-specific anchored RT-PCR was carried out essentially as
described previously (41). RNA was reverse transcribed with a
forward primer (5'-GGGGGGGGGGGGCCGCGCCCATACTT
TCGATGA-3"), and both the first and second amplifications were
carried out using the forward poly(G) primer (5'-GGGGGGGGG
GGGGGGGG-3') and reverse primer (5'-CAGGGAGCGCGGAA
CGGAACGCAG-3'). As for a positive control, a negative-strand
HEV RNA was prepared by in vitro transcription of a PCR DNA
template amplified with a forward primer (5'-CCAGCAGTATTC
AAAGACC-3") and a reverse primer (5'-GATCATCTCCCTA
TAGTGAGTCGTATTATTTCAGGGAGCGCGAAACGC-3'; T7
polymerase promoter sequence, underlined). Huh7 cells were
transfected with the capped full-length RNA transcripts of the
pSK-HEV2 infectious clone, and cells were treated with 1 pM
MG132 inhibitor at 1 day posttransfection and harvested on the
fifth day posttransfection. No negative-strand viral RNA was de-
tected when cells were treated with MG132 inhibitor (Fig. 2B),
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suggesting that the proteasome activity is needed for the replica-
tion of the HEV genome, possibly by inhibition of viral transcrip-
tion or translation or both. We believe that inhibition of early or
multiple stages of virus replication will result in little or no
synthesis of negative-strand RNA, thus explaining our obser-
vation of the absolute negative result on the detection of the
negative-strand RNA.

Due to the long duration of treatment, we tested the cytotoxicities
of the inhibitors in cell culture to determine the concentration ranges
of inhibitors. It is possible that inhibitors may impair cellular trans-
lation and thus could attribute to the inhibition of viral replication.
Therefore, we subsequently tested the effects of the inhibitor drug
treatments on green fluorescent protein (GFP) synthesis. In addition,
in another set of experiments we expressed part of the viral capsid
protein that is known to form virus-like particles (VLPs) in the pres-
ence and absence of MG132. Huh?7 cells were transfected, inhibitor
treatment was the same as described above, and pAcGFP N1 and
pTrix-neo-ORF2 (with deletion of amino acids 1 to 111 [A1-111])
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FIG 2 MG132 inhibits viral transcription and/or translation. (A) Immunofluorescent staining of a subclone of Huh?7 cells transfected with similar amounts of capped
full-length RNA transcripts. (Left) MG132 untreated; (right) MG132 treated. Inhibitor treatment started 1 day posttransfection, and cells were stained for HEV ORF2
protein by using chimpanzee 1313 anti-HEV immune serum. (B) Detection of HEV replication by strand-specific anchored RT-PCR. A subclone of Huh7 cells was
transfected with similar amounts of capped full-length RNA transcript, 1 WM MG132 treatment started 1 day posttransfection, and cells were harvested on the fifth day
posttransfection. For detection of replicative negative-sense viral RNA, a strand-specific anchored RT-PCR was carried out. Lane 1, 100-bp marker; lane 2, RT-PCR
results for positive-control negative-strand RNA transcript generated by in vitro transcription; lane 3, PCR performed with positive-control negative-strand RNA
transcript generated by in vitro transcription (reaction without RT); lane 4, RT-PCR performed with RNA isolated from full-length capped RNA transfected cells; lane
5, PCR performed with RNA isolated from full-length capped RNA transfected cells (reaction without RT); lane 6, RT-PCR performed with RNA isolated from

full-length capped RNA-transfected cells and treated with 1 pM MG132; lane 7, RT-PCR performed with mock-transfected cells.

were transfected to Huh?7 cells. Immunoblotting was performed with
anti-GFP rabbit polyclonal antibody (1:500), anti-HEV chimpanzee
polyclonal serum (1:200), and anti-actin goat polyclonal antibody
(1:200) (all from Santa Cruz Biotechnology) and with appropriate
secondary antibody. Comparable levels of GFP, capsid protein, and
actin were observed in drug-treated and untreated cells (Fig. 3A and
B). Also, when the full-length RNA genome of HEV was transfected
into Huh?7 cells in the presence of MG123, no capsid protein was
detected. These results strongly suggest that there is inhibition of viral
replication without a significant effect on cellular translation.

It has been shown that MG132 reduces the pool of free ubiq-
uitin in cells (28). MG132 inhibits budding of human parainflu-
enza virus 5 by depletion of free ubiquitin in cells by blocking the
26S proteasomal degradation of polyubiquitinated proteins (37).
Therefore, to determine whether the observed inhibition of HEV
replication by MG132 was due to depletion of free ubiquitin, we
cotransfected plasmid pRK5-HA-ubiquitin (kindly provided by
Ted Dawson [Addgene plasmid]) with capped viral RNA tran-
script, and the effect on viral replication was monitored. An in-
crease in viral replication was observed when the cells were
cotransfected with capped HEV RNA transcript with pRK5-HA-
ubiquitin compared to cells cotransfected with capped HEV RNA
transcript with the pTrix neo plasmid (Fig. 4A). Immunoblotting
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FIG 3 The inhibitory effect of MG132 on HEV replication does not result
from the inhibition of translation. (A) Effect of MG132 treatment on GFP
synthesis. A subclone of Huh7 cells was transfected with a similar amount of
PACGFP N1 plasmid in six-well plates. Inhibitor treatment started 1 day post-
transfection, cells were harvested on the fifth day posttransfection, and immu-
noblotting was performed with anti-GFP polyclonal serum produced in a rab-
bit. Lane 1, mock-transfected cells; lane 2, pAcGFP N1-transfected cells; lane 3,
PACGFP Nl-transfected cells with 1 wM MG132 treatment. (B) Effect of
MG132 treatment on ORF2 protein synthesis. A subclone of Huh7 cells were
transfected with a similar amount of pTrix-neo-ORF2 (A1-111) plasmid in
six-well plates. Inhibitor treatment started 1 day posttransfection, cells were
harvested on the fifth day posttransfection, and immunoblotting was per-
formed with chimpanzee 1313 anti-HEV immune serum. Lane 1, mock-trans-
fected cells; lane 2, pTrix-neo-ORF2 (A1-111)-transfected cells; lane 3, pTrix-
neo-ORF2 (A1-111)-transfected cells treated with 1 wM MG132.
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FIG 4 Overexpression of HA-ubiquitin partially restores virus replication. (A) Effect of HA-ubiquitin overexpression on HEV replication in the context of
MG132 treatment. In six-well plates, cotransfection of capped RNA transcripts of the pSK-HEV2RLuc clone and pRK-HA-Ub/pTrix-neo was carried out.
MG132 treatment started 1 day posttransfection. A luciferase assay was performed on the fifth day posttransfection. Mean relative light unit (RLU) values from
three independent experiments are plotted. Statistical analysis was performed using analysis of variance followed by contrast procedure, and significance was set
at a P level of <0.05 (indicated with an asterisk). Data analysis was performed using JMP9 software. (B) Representative results from an immunoblot assay
performed with the anti-HA tag monoclonal antibody of the experiment shown in panel A.

was performed to detect the expression of hemagglutinin (HA)-
ubiquitin in the transfected cells by using an anti-HA tag mono-
clonal antibody produced in mice (Sigma) (Fig. 4B). In the case of
overexpression of HA-ubiquitin and MG132 treatment, recycling
of ubiquitin molecules may be affected; in this case, the pool of
free HA-ubiquitin must be large enough to cause depletion of free
HA-ubiquitin but sufficient to restore virus replication. There-
fore, we believe that the reason that there was no difference be-
tween lanes 4 (without MG132) and 5 (with MG132) is likely due
to the overexpression of HA-ubiquitin. Viral replication was not
completely restored, and this may have been due to cotransfection
efficiency. Nevertheless, the results suggest that depletion of free
ubiquitin may be important for inhibition of viral replication.

In summary, in this study we demonstrated an important role
of UPS in the life cycle of HEV. Proteasome inhibitors affected
viral replication, possibly by inhibition of viral transcription or/
and translation. The results strongly suggested that an active pro-
teasome system is essential for HEV replication, and therefore
proteasome inhibitors could be useful as therapeutics against
HEV infection.
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