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Vitamin B,,-Mediated Restoration of Defective Anaerobic Growth
Leads to Reduced Biofilm Formation in Pseudomonas aeruginosa
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Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using ni-
trate (NO; ™) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis
is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Here, we uncovered the molecular
basis of anaerobiosis-triggered cell elongation and identified vitamin B, , to be a molecule that can reinstate defective anaerobic
growth of P. aeruginosa. The ratio of total cellular DNA content to protein content was significantly decreased in the PAO1
strain grown under anaerobic conditions, indicating that DNA replication is impaired during anaerobic growth. Anaerobic
growth of PAO1 reached a higher cell density in the presence of vitamin B,,, an essential coenzyme of class II ribonucleotide re-
ductase. In addition, cell morphology returned to a normal rod shape and transcription of stress-response genes was downregu-
lated under the same anaerobic growth conditions. These results suggest that vitamin B, the production of which was sup-
pressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic
growth of P. aeruginosa with normal cell division. Importantly, biofilm formation was substantially decreased when grown with
vitamin B,,, further demonstrating that anaerobiosis-induced cell elongation is responsible for robust biofilm formation. Taken

together, our data reveal mechanistic details of a morphological change that naturally occurs during anaerobic growth of P.
aeruginosa and illustrates the ability of vitamin B,, to modulate the biofilm-forming capacity of P. aeruginosa under such

condition.

Pseudomonas aeruginosa, an opportunistic human pathogen,
establishes persistent infections in the mucous airways of pa-
tients suffering from bronchiectasis, including cystic fibrosis (CF)
(46). In the CF-affected lung, defective ion transport due to the
lack of a functional cystic fibrosis transmembrane conductance
regulator (CFTR) results in the formation of thickened mucous
plaque on the airway epithelium, and such abnormal mucous lay-
ers are readily colonized by P. aeruginosa, which eventually pro-
liferates into microbial communities known as biofilms (4, 9, 59).
Of note, it was clearly demonstrated that the oxygen potential was
decreased inside this thick mucous layer (56). Importantly, the
results of previous studies by our group and others have revealed
that P. aeruginosa, when grown by anaerobic respiration, forms
robust biofilms (29, 57, 60). These data further implicate the clin-
ical relevance of the biofilm mode of bacterial growth inside the
mucous airway of CF patients.

As an obligate respirer, P. aeruginosa is equipped with highly
sophisticated regulatory mechanisms that allow it to grow anaer-
obically using alternative electron acceptors, such as nitrate
(NO;7) (44) or nitrite (NO, ) (58). These two compounds, pre-
sumed to be derived from nitric oxide (NO) produced by inflam-
matory responses, were present in relatively large quantities in the
mucous airway of CF patients (16, 22, 26, 28). P. aeruginosa senses
the lack of oxygen through an FNR (fumarate/nitrate regulator)-
like transcriptional activator, ANR (anaerobic nitrate regulator)
(1, 55), which becomes dimerized upon exposure to anaerobic
environments through its oxygen-labile [4Fe-4S]*" cluster (61).
Active ANR recognizes a specific conserved promoter sequence
(5'-TTGA-N°-TCAA-3’) called an ANR box and initiates the
transcription of genes under its control. The genome of PAO1, a
prototype strain of P. aeruginosa, contains a total of 170 ANR
boxes in its genome-wide promoter regions (52). Included among
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these are promoters that direct the expression of genes encoding
major anaerobic respiratory enzymes (61). Consistent with this
function, a microarray analysis reported that 691 genes, or
~12.4% of its total number of genes, were differentially expressed
in response to anaerobiosis (14). Together, these results suggest
that the genetic regulatory system of P. aeruginosa allows it to
respond flexibly to changes in ambient oxygen potential.

Biofilm is a sessile microbial community, and its formation is
often considered a complex developmental process (6). The gen-
eral steps involved include (i) initial attachment of planktonic
bacteria to a surface (30), (ii) microcolony formation (47), (iii)
secretion of polymeric matrix and further proliferation into a
macrocolony (40), (iv) maturation into a biofilm with a three-
dimensional structure (33), and (v) liberation of planktonic bac-
teria from the biofilm (41). At each stage, bacterial cell-to-surface
or bacterial cell-to-cell contact within a biofilm can be modulated
by alterations in cell surface properties. In recent work, we dem-
onstrated that unique changes in cellular morphology (i.e., cell
elongation) intrinsically accompany anaerobic NO; ™ respiration
and that such changes in cell shape positively influence the biofilm
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TABLE 1 Bacterial strains and plasmid used in this study

TABLE 2 Primers used for qRT-PCR

Strain or plasmid Relevant characteristics Reference or source

P. aeruginosa

strains

PAO1 Wild type Lab collection

ARNR_I PAOI1, PA1155 and PA1156 This study
deleted

ARNR_IT PAO1, PA5496 and PA5497 This study
deleted

ARNR_III PAOI1, PA1920 deleted This study

ARNR_II&III PAO1, PA5496, PA5497, and This study
PA1920 deleted

AnirS PAO1, PA0519 deleted 58

AoprE PAO1, PA0291 deleted This study

E. coli SY327/Apir F~ ara del(lac-pro) Lab collection

argE(Am) recA56 rifR

nalA Apir
Plasmid sacB suicide vector from Lab collection
pCVD442 plasmid pUM24

formation of PAO1, possibly accounting for the anaerobiosis-in-
duced stimulation of biofilm formation in P. aeruginosa (57).
Given that cell elongation normally occurs in bacterial cells under
conditions when DNA replication is interrupted (10), these results
suggested that P. aeruginosa, which has long been regarded to be a
proficient anaerobic respirer, may indeed encounter stress associ-
ated with DNA replication during anaerobic growth. In this study,
we uncovered the molecular mechanisms that underlie the cell
elongation elicited only under anaerobic growth conditions and
identified vitamin B,, to be a compound that can alleviate the
stress associated with anaerobic growth. We also investigated the
effect of supplementary vitamin B, on the expression profiles of
the whole transcriptome and on the biofilm formation. This re-
port reveals previously undescribed molecular features associated
with the anaerobic growth of P. aeruginosa and provides better
insight into its pathogenic potential, leading us to formulate novel
strategies to treat chronic P. aeruginosa airway infection.

MATERIALS AND METHODS

Bacterial strains and growth conditions. All strains and plasmids used in
this study are listed in Table 1. Bacterial cultures were grown at 37°C in
Luria-Bertani medium (LB; 10 g tryptone, 5 g yeast extract, and 10 g NaCl
per liter). Anaerobic growth of P. aeruginosa strains was achieved in a Coy
anaerobic chamber (Coylab Inc., Grass Lake, MI). To support anaerobic
growth, 1% KNOj; (Sigma-Aldrich) was added to the medium (termed
LBN).

Flow cytometry analysis. The average protein or DNA content per cell
was determined as average fluorescein isothiocyanate (FITC) or Hoechst
33258 fluorescence per cell, respectively. Bacterial cell staining and flow
cytometry analysis were performed as described previously (27). In brief,
PAOI cells grown overnight either aerobically or anaerobically in LBN
were harvested and resuspended in phosphate-buffered saline (PBS). The
bacterial suspensions were fixed for 1 h by incubation with 1 ml of 75%
ethanol. Fixed cells were spun down and washed with ice-cold PBS. Next,
the fixed cells were sequentially stained with 500 ul of 2 ug/ml FITC in
PBS, followed by 500 ul of 2 ug/ml Hoechst 33258. Flow cytometry anal-
ysis was performed using ~10* cells with an LSRII flow cytometer (Becton
Dickinson, Franklin Lakes, NJ) equipped with an argon ion laser emitting
0.5 W at 488 nm (Spectra-Physics, Santa Clara, CA) and a krypton laser
emitting 0.5 W in multiline UV mode (351 and 357 nm; Spectra-Physics).
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Gene name Orientation®  Primer sequence (5'-3")
nrdA (PA1156) F GCAAGGCCATCGATCACGAG
R TGCAGGCCGAGGTAGGTGAA
nrdB (PA1155) F GTTCCTGCGCAACCTGATCG
R GCCCATGGAGAGGATCTGGG
nrdJa (PA5497) F CGGAACTGATCGAGGCGTTG
R GCATTGTTGGCCAGGCTCAG
nrdJb (PA5496) F TCAACGAAGCCGAGGAGCAG
R TCGAACAGCGGCGACTTGAT
nrdD (PA1920) F GCACCCTGCAGAACGAGTGG
R GCGTAGTCGAGGCGGTCCTT
PA4554 F CAATTGCTGAACGACTCGAA
R AAGAAGTTCACCCGGTGTTG
PA2009 F GATCTTCACCGTGCTGACCT
R GGGAAGATCACGAAGTCGAT
PA3152 F ATGGGCTGGAATCAAGTGTC
R TAGAATCGGCTTTGCTCGTT
PA2171 F GGTCAAGGTGCTCAAGGAAC
R TAGTTCGCCCTCTTCCTCCT
PA0620 F TATGCGAATCAGACGAGTGC
R ACCTGTACTGGCATCCGTTC
PA1150 F AGGACCAAGTCCGTATGTCG
R CCCGCTTCACTCTTGAGTTC
PA3875 F AGTACCTGCTCGGGGCGAAG
R ATGCGGAAGTCCAGGGTGGT
PA4761 F ACATCCGCCTGATCGACTAC
R CAGCTCGATCTTGGCTTTCT
PA5054 F CAACGAGGAAGAGCTCAAGG
R TCTCGTCGATGAAGACGATG
rpoD (internal control)  F AAGGCCCTGAAGAAGCACGG
R GATCGGCATGAACAGCTCGG

“ F, forward; R, reverse.

The flow data were analyzed using FACSDiva software (Becton Dickin-
son). The average DNA and protein contents per cell were determined as
the average Hoechst 33258 and FITC fluorescence per cell, respectively.

DPA, vitamin B, ,, and CV biofilm assays. The quantitative measure-
ment of total DNA content was performed by diphenylamine (DPA) assay
following the procedures described previously (3). In summary, the DPA
reagent that consists of 2 g DPA (Sigma-Aldrich) dissolved in 100 ml of
pure acetic acid and 2.75 ml of concentrated sulfuric acid was mixed with
bacterial cell extract in the proportion of 2:1. The mixture was incubated
at 37°C for 4 h, followed by measurement of absorbance at 595 nm. The
amount of vitamin B, present in culture supernatants was measured as
described previously (31). Crystal violet (CV) biofilm staining assays were
performed as described previously (57).

qRT-PCR analysis. Transcript levels of ribonucleotide reductase
(RNR)-coding genes (PA1155, PA1156, PA1920, PA5496, and PA5497)
were measured by quantitative real-time PCR (qRT-PCR). To verify our
microarray results, QRT-PCR analysis was also performed on a subset of
genes whose expression levels were determined to be significantly altered.
The detailed procedure used for the analysis has been described previously
(57). Transcript levels of the rpoD gene were similar in cells grown under
aerobic or anaerobic conditions, and transcript levels of rpoD were thus
used to normalize the transcript levels of tested genes. The primers used
for qRT-PCR are listed in Table 2.

Construction of nrdAB, nrdJab, and nrdD deletion mutants. RNR
deletion mutants were created by allele replacement as previously de-
scribed (34). An allelic exchange reaction to construct a class I RNR mu-
tant was performed under strict anaerobic growth conditions. Five hun-
dred base pairs flanking sequences at both ends of the nrdAB, nrdjab, or
nrdD locus was PCR amplified with primers harboring specific restriction
enzyme sites. The nrdAB upstream sequence was digested with Sall and
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BamHI, while the downstream sequence was digested with BamHI and
Sacl. In this manner, the 3" end of the upstream sequence and the 5’ end
of the downstream sequence can be connected with no further treatment.
Likewise, the nrdJab upstream and downstream sequences were digested
with pairs of Sphl/Sacl and Sacl/Smal, respectively. Pairs of restriction
enzymes (Sall/SphI and Sphl/Sacl) were used to process the nrdD PCR
products. pCVD442-Gm, a suicide vector for gene replacement carrying a
gentamicin resistance marker, was cleaved with each set of restriction
enzymes (i.e., Sall/Sacl for nrdAB and nrdD and Sphl/Smal for nrdjab)
and ligated with the corresponding PCR products. The resultant suicide
vectors carrying each gene deletion were electroporated into Escherichia
coli SY327/Apir for subsequent conjugation into P. aeruginosa. Transcon-
jugants were selected on LB agar plates containing 200 ug/ml gentamicin,
and the second crossover of allele exchange was induced by 6% sucrose.
The deletion of each gene locus was confirmed by PCR, and the nrdAB,
nrdJab, and nrdD mutants were named ARNR_I, ARNR_II, and
ARNR_III, respectively. Further mutation of the nrdD gene was induced
by using the ARNR_II mutant as a recipient strain to create the
ARNR_II¢IIT double mutant.

Confocal microscopy image analysis. Differential interference con-
trast (DIC) images to show bacterial cell shape and three-dimensional
fluorescent biofilm images were acquired using a confocal microscope, as
described in previous literature (57). For DIC images, bacterial cells
grown for 16 h under specified conditions were mounted in eight-well
Lab-Tek chambered cover glass (catalog no. 155411; Nalge Nunc Interna-
tional). PAO1 cells transformed with a plasmid expressing green fluores-
cent protein (GFP) were used for biofilm analysis. Two microliters of
preculture grown aerobically was inoculated into 200 ul of LBN or LBN
supplemented with 1 uM vitamin B, (Sigma-Aldrich) placed in the same
chambered cover glass. After biofilm growth for 24 h at 37°C inside the
anaerobic chamber, each well was washed with PBS. A 488-nm laser ex-
cited the samples, and the emission was detected through a 520-nm filter.
The green fluorescence images were collected at 2 us/pixel speed. xy im-
ages of 57.232 um by 57.232 um were acquired, and 40 sliced images of
20.28 um total depth (0.507 wm/slice) were scanned in the z direction.
Images were saved as TIF files with embedded xyz scale lines. The average
green fluorescence intensity of each sliced image was measured using
Image] software (http://rsbweb.nih.gov/ij) and plotted against distance
from the bottom of the biofilm.

Microarray analysis. Microarray-based expression analysis of the
whole genome of PAO1 was performed using GeneChip P. aeruginosa
genome arrays (Affymetrix, Santa Clara, CA). The PAOI strain was grown
anaerobically in LBN or LBN with 1 uM vitamin B,, for 12 h. Total
bacterial RNA was isolated from each of three independent cultures per
growth condition. RNA was extracted using TRIzol reagent (Invitrogen,
Burlington, ON, Canada) following the manufacturer’s instructions, and
extracted RNA was further purified by using an RNeasy kit (Qiagen).
Purified RNA samples were then pooled together and submitted to DNA
Link Inc. (Seoul, South Korea), where RNA quality was monitored using
an Agilent 2100 bioanalyzer. Per RNA sample, 10 ug was used as input
into the Affymetrix procedure as recommended by the manufacturer’s
protocol (Affymetrix). Briefly, 10 pg of total RNA was converted to dou-
ble-stranded cDNA using random primers. Double-stranded cDNA was
purified with a MinElute PCR purification kit (Qiagen, Hilden, Germany)
and quantified by an ND-1000 spectrophotometer (NanoDrop Technol-
ogies, Inc., DE). The purified double-stranded cDNA was fragmented
using 0.6 U/ul of DNase I and end labeled by terminal transferase
reaction incorporating a biotinylated dideoxynucleotide. Fragmented
end-labeled cDNA was hybridized to the GeneChip P. aeruginosa ge-
nome arrays for 16 h at 45°C and 60 rpm as described in the Affymetrix
technical manual. After hybridization, the chips were stained and
washed in a GeneChip Fluidics Station 450 apparatus (Affymetrix) and
scanned by using a GeneChip Array Scanner 3000 7G (Affymetrix).
The image data were extracted through Affymetrix Command Console
software (version 1.1), and the raw CEL file was saved for subsequent
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data analysis. The Robust MultiAverage (RMA) algorithm imple-
mented in Affymetrix Expression Console software (version 1.1) was
used to normalize the raw data. Genes that showed significantly altered
expression levels in response to the growth with vitamin B,, were
selected and displayed as a heat map in Fig. 7.

Statistical analysis. Data are expressed as mean =* standard deviation
(SD). An unpaired Student’s f test was used to analyze the data. A P value
of <0.05 was considered statistically significant. All the experiments were
repeated for reproducibility.

Microarray data accession number. The entire microarray results are
available in NCBI’s GEO database under accession number GSE34836.

RESULTS

The average DNA content per cell was decreased in PAO1 cells
grown by anaerobic versus aerobic respiration. Since cell elon-
gation is known to be caused by stimuli that induce DNA damage
in bacteria (27, 42), we postulated that DNA replication may not
occur optimally in PAO1 during anaerobic respiration. To address
this issue, we measured the DNA/protein ratios of PAO1 cells
grown by either aerobic or anaerobic respiration. The DNA/pro-
tein ratio was reported to be kept constant in Gram-negative bac-
teria (8, 20), and thus, this ratio has been used as a parameter to
indicate whether DNA replication is orchestrated appropriately
with the bacterial cell division cycle (27, 49). As described in
Materials and Methods, the DNA content per cell was determined
on the basis of Hoechst 33258 fluorescence intensity, while the
protein content was presented as the fluorescence intensity of
FITC that labels the amine groups of cellular proteins. Figure 1A
shows double-fluorescent dot plots of the bacterial cells (~10,000
cells) stained with both Hoechst 33258 and FITC. Clear and dis-
tinct differences in staining patterns were observed between the
rod-shaped and elongated PAO1 cells. As summarized in Fig. 1B,
the mean FITC intensity of the anaerobically grown (and, thus,
elongated) PAO1 cells increased more than 2-fold compared to
that of the rod-shaped cells. The total DNA content, represented
as the mean intensity of Hoechst 33258 staining, however, was
somewhat decreased in anaerobically grown PAO1 cells, yielding a
DNA/protein ratio of 0.57, a value significantly lower than that
found in aerobically grown PAOL1 cells. This suggests that DNA
synthesis was not accordingly increased in PAO1 during the an-
aerobiosis-induced cell elongation process. Next, to corroborate
our flow cytometry results, we compared the total cellular content
of deoxynucleoside triphosphates (ANTPs) in bacterial cell ex-
tracts by using DPA assay. When bacterial cell extracts adjusted to
contain equal protein concentration were subjected to the assay,
thelevel of ANTPs detected in the anaerobic cell extract was ~60%
of the level of ANTPs in the aerobic counterpart, further suggest-
ing that synthesis of chromosomal DNA is likely hampered during
anaerobic growth in P. aeruginosa.

Transcript levels of genes encoding RNR were highly in-
duced in anaerobically growing PAO1. RNR is an enzyme that
catalyzes the formation of deoxyribonucleotides from ribonucle-
otides, thereby providing the building blocks for DNA synthesis
(24). In the P. aeruginosa genome, there are distinct gene clusters
that encode three different classes of RNRs (Fig. 2A). Class I re-
quires molecular oxygen to generate radicals for catalytic activity,
while the activity of class III is known to be activated under anaer-
obic growth conditions (45a, 50). Class II RNR uses vitamin B,, as
a cofactor to initiate catalytic activity and is active under both
aerobic and anaerobic conditions (45a, 50). In bacteria, genes en-
coding RNRs are transcriptionally activated, when DNA synthesis
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FIG 1 Relative DNA content per cellular protein was decreased in elongated
PAOLI cells. (A) Double-fluorescent dot plot analysis of PAO1. Bacterial cells
(~10,000 cells) grown aerobically or anaerobically in LBN for 16 h were
stained with Hoechst 33258 and FITC for a quantitative presentation of cellu-
lar DNA and protein contents, respectively. In the dot plot, x and y axes rep-
resent the intensities derived from Hoechst 33258 (blue, for DNA) and FITC
(green, for proteins), respectively. The plot is divided into four quadrants (Q1
to Q4). Quadrant Q2 contains PAO1 cells labeled with both dyes. (B) Average
fluorescence intensities of PAO1 cells grown under either condition. The
DNA/protein ratio was calculated by dividing the mean Hoechst 33258 inten-
sity by the mean FITC intensity. The values shown are the means * SDs from
three independent experiments. ¥, P < 0.01 versus DNA/protein ratio of aer-
obically grown cells. (C) DPA assay of PAO1 cells grown in LBN under aerobic
or anaerobic conditions. Bacterial cell extracts containing equal protein con-
tents were used for the assay, and the DNA contents of anaerobically grown
cells were normalized with those of aerobically grown PAO1 cells. Three inde-
pendent experiments were performed, and values of means * SDs are dis-
played in each bar. *, P < 0.01 versus DNA contents in aerobically grown
PAOTI cells.

is interrupted (12, 15), and therefore, measuring the transcript
levels of RNR-coding genes provides a reliable method for moni-
toring the state of DNA synthesis. Our qRT-PCR analysis indi-
cates that the mRNA levels of five selected genes, nrdA, nrdB,
nrdJa, nrdJb, and nrdD, were invariably increased in PAO1 cells
grown by anaerobic versus aerobic respiration, with nrdA and
nrdJabeing upregulated to the highestlevel at greater than 14- and
12-fold, respectively (Fig. 2B). Transcript levels of nrdB and nrdJb
were ~5.6- and ~2.7-fold increased, respectively. These results,
together with those shown in Fig. 1, suggest that DNA synthesis
may not occur optimally in PAO1 during anaerobic growth and
that such interrupted DNA synthesis likely accounts for the anaer-
obiosis-induced cell elongation.

The deletion mutants of each RNR class have distinctive
growth phenotypes under aerobic and anaerobic conditions.
Our results (Fig. 2B) demonstrated that transcription of genes for
class I and II but not class III RNRs was highly induced upon
anaerobiosis. This suggests that the expression of the former two
genes is subject to more sensitive regulation and that each class of
RNR may play a differential role depending on the oxygen tension
in the growth environment. To examine the effects of deficiencies
of each class of RNR on bacterial growth, we constructed a series of
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FIG 2 Quantitative RT-PCR analysis of genes encoding three different classes
of RNR. (A) Open reading frame maps of RNR-coding regions in PAO1 ge-
nome. Three different genetic loci encoding a component(s) of each class of
RNR are shown with corresponding PA numbers. (B) qRT-PCR was con-
ducted on cDNA synthesized from 2 ug total RNA extracted from PAO1 cells
grown either aerobically or anaerobically. Transcript levels of the five genes
indicated at the bottom of each set of bars were normalized with levels of the
rpoD transcript. Three independent experiments were performed, and values
of means * SDs are displayed in each bar. *, P < 0.05 versus transcript levels in
PAOI1 cells grown aerobically.

RNR mutant strains. No discernible growth was observed in a
mutant PAOLI strain defective in RNR class I after 16 h of aerobic
growth at 37°C (Fig. 3A). This particular mutant was recovered
and maintained by anaerobic growth. In contrast, single mutants
of class IT or III and a class II/III double mutant exhibited com-
pletely normal growth by aerobic respiration (Fig. 3A), suggesting
that DNA biogenesis under aerobic conditions is solely dependent
on RNR class I, while the other two classes are dispensable. Under
anaerobic conditions, however, bacterial growth of the class I mu-
tant was only mildly affected (Fig. 3B, leftmost set of growth
curves), further suggesting that the class  RNR plays a more dom-
inant role under aerobic growth conditions. The extent of growth
impairment resulting from mutations in class II or class III RNR
was greater than that associated with the disruption of class I genes
(Fig. 3B). Importantly, anaerobic growth of the class II/III double
mutant was most severely affected (Fig. 3B). Together, these re-
sults demonstrate that (i) class I RNR is necessary and sufficient
for DNA replication during aerobic growth and (ii) class II and
class ITI RNRs play more significant roles in supporting anaerobic
growth of P. aeruginosa.

When grown with extraneous vitamin B,,, cell shape re-
turned to normal, and this morphological change resulted in
robust anaerobic growth. RNRs should have complete radical
centers to function, and the activity of class II RNR is strictly
dependent on the presence of its coenzyme, vitamin B, (23). To
better understand the degree to which the class II RNR could be
activated upon anaerobic growth, we measured the level of vita-
min B,, produced under such conditions. As shown in Fig. 4, the
production of vitamin B, was significantly suppressed during
growth by anaerobic respiration. In contrast, the level of vitamin
B, secreted into the culture medium continued to increase with
time during aerobic culture, demonstrating that the machinery to
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FIG 3 Growth curves of RNR-defective PAO1 mutants. Growth of various RNR mutant strains, indicated at the top of each graph, was compared with that of
PAOI. Strains were grown in LBN either aerobically for 16 h (A) or anaerobically for 15 h (B). Anaerobic growth and aliquot samplings to measure ODy,, were
performed inside the anaerobic chamber. Each growth curve experiment was repeated for three times, and means = SDs are displayed in each graph.

produce vitamin B,, was highly impaired upon anaerobiosis.
Next, we evaluated the effects of added vitamin B,, on the anaer-
obic growth of P. aeruginosa strains. When grown with 1 uM
vitamin B,,, improved growth of PAO1 was clearly observed (Fig.
5A, first set). Similar growth enhancement was also observed in
the mutants in which class I or class III RNR was inactivated (Fig.
5A, second and fourth sets). In the presence of extra vitamin B,,,
anaerobic growth reached an optical density at 600 nm (ODy,) as
high as 1.4 to 1.6 after a 16-h culture period, a value more than
2-fold higher than that after growth in LBN. Such an elevation in
growth, however, was not detected when genes encoding class II
RNR were disrupted (Fig. 5, third and fifth sets), further confirm-
ing the specific requirement of vitamin B,, for the activation of
class IT RNR.

Interestingly, enhanced anaerobic growth is accompanied by
changes in cell shape. Upon anaerobic growth with the addition of
vitamin B,,, cell morphology returned to the normal rod shape in
cells that possess uninterrupted class II RNR genes (Fig. 5B). Two
strains that harbor mutations in class II RNR (ARNR_II and
ARNR_II#IIT) remained elongated under the same growth con-
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FIG 4 Vitamin B,, production profiles of PAO1 during aerobic and anaerobic
growth. Culture supernatants removed every 2 h during aerobic and anaerobic
growth were filter sterilized, and vitamin B,, contents were assessed as de-
scribed in Materials and Methods.
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ditions. These results suggest that restimulation of class Il RNR by
the addition of vitamin B,, helped bacteria undergo optimal cell
division, which in turn resulted in a significant increase in the
anaerobic growth of P. aeruginosa.

Next, we sought to examine whether the value of the DNA/
protein ratio would reflect the cell shape change observed in our
microscopic analysis (Fig. 5B). To investigate this, we repeated the
FACS analysis using PAO1 cells grown anaerobically in LBN sup-
plemented with vitamin B,,. The average fluorescence intensities
of Hoechst 33258 and FITC were 86,362 and 82,977, respectively,
yielding a DNA/protein ratio of ~1.04, a value comparable to that
derived from aerobically grown PAO1 cells (Fig. 6A). The DPA
assay also demonstrated that the relative DNA content per protein
was increased ~2-fold in PAO1 cells grown with added vitamin
B,, (Fig. 6B). These results provide further evidence that the abil-
ity to synthesize DNA was restored by the sole addition of vitamin
B,, in PAOL.

Microarray analysis revealed significant changes in gene ex-
pression profiles in PAOL1 cells grown with added vitamin B,,.
Our results demonstrated that PAO1 cells, when grown with vita-
min B, underwent significant changes in growth-associated phe-
notypes, such as an enhanced growth rate and cell shape changes.
To better understand the global changes in gene expression stim-
ulated by the addition of vitamin B,,, we performed microarray
analysis. Figure 7 shows a list of genes that were highly upregulated
or downregulated in PAO1 upon anaerobic growth in the pres-
ence versus absence of vitamin B,,. Among the most upregulated
genes, a substantial number are involved in fimbrial biogenesis
(Fig. 7, top portion). In addition, the expression of genes encoding
diverse metabolic enzymes (i.e., maiA, hmgA, hisF2, and hisH2)
and surface molecules (i.e., wbpG and oprB) was also highly acti-
vated, when grown in medium supplemented with vitamin B;,,
and therefore, their rod-shaped morphology was steadily main-
tained. The transcription of a cluster of genes from PA0614 to
PA0647 was invariably repressed upon growth with added vitamin
B,,. Most genes assembled in this cluster encode probable bacte-
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FIG 5 Effects of vitamin B,, on the anaerobic growth and cellular morphology of PAO1 and RNR-defective mutants. (A) Anaerobic growth of various RNR
mutant strains was compared with that of PAO1. Strains were grown in LBN supplemented with 1 uM vitamin B,, or in LBN inside the anaerobic chamber. Each
growth curve experiment was repeated for three times, and means = SDs are displayed in each graph. (B) DIC images of P. aeruginosa strains grown in LBN and
LBN plus 1 uM vitamin B,,. All images were acquired at the same magnification.

riophage proteins and hypothetical proteins associated with bac-
teriophage (48). A subset of genes in this particular genetic locus
was induced in their expression during anaerobic growth com-
pared to the level of expression during aerobic growth (14). Im-

A Anaerobic : LBN + Vitamin B12 B 25
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FIG 6 Ability to replicate DNA was restored upon growth with added vitamin
B,,. (A) Double-fluorescent dot plot analysis was performed using PAO1
(~10,000 cells) grown anaerobically in LBN supplemented with 1 uM vitamin
B,,. Experimental conditions were identical to those described for Fig. 1A. (B) DPA
assay of PAO1 cells grown in LBN under anaerobic conditions in the absence or pres-
ence of added vitamin B, ,. Experimental conditions were identical to those described
for Fig. 1C. *, P < 0.01 versus DNA contents in PAO1 cells grown in LBN.
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portantly, anaerobic growth with vitamin B, resulted in signifi-
cant decreases in the expression of genes encoding class IT and III
RNRs (Fig. 7, black vertical line to the right), providing additional
evidence that the ability to replicate DNA was restored in the
presence of extraneous vitamin B,,. It is also worthy of notice that
the transcriptional levels of a group of stress-response genes (i.e.,
dnak, grpE, recN, hslU, groES, and groEL; Fig. 7, red vertical line)
were reduced, suggesting that a great deal of stress incurred during
anaerobiosis is relieved by the addition of vitamin B,,. Intrigu-
ingly, a significant decrease in the expression of genes encoding
enzymes involved in anaerobic respiration was also detected in the
microarray analysis (Fig. 7, blue vertical line).

To verify our microarray results, we selected a total of 11 genes,
including 4 upregulated and 7 downregulated genes, and per-
formed qRT-PCR analysis on those genes. Consistent with our
microarray results, relative expression of all selected genes exhib-
ited identical patterns in response to the growth with extraneously
added vitamin B,, (Fig. 7, bar graphs).

Biofilm formation was reduced during anaerobic growth
with extraneous vitamin B ,. The biofilm formation of P. aerugi-
nosa was significantly enhanced during anaerobic respiration (29,
60). Our previous research has demonstrated that a positive cor-
relation exists between anaerobiosis-induced cell elongation and
biofilm formation (57). To further demonstrate that enhanced
biofilm formation is an event associated with cell elongation, we
examined the effect of vitamin B,, on the anaerobic biofilm for-
mation of P. aeruginosa. Figure 8 shows three-dimensional bio-
film images (57.232 by 57.232 by 20.280 wm) of PAO1 cells har-
boring a plasmid that produces GFP. A robust biofilm with a
considerable depth was formed by PAOL1 cells, when grown anaer-
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FIG 7 Microarray analysis of PAO1 grown by anaerobic NO; ™ respiration with added vitamin B, ,. Heat map of differentially expressed genes upon growth with versus
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obically in LBN (Fig. 8A). On the basis of our biofilm image anal-
ysis, higher green fluorescence intensities were persistently de-
tected with increasing biofilm height (Fig. 8C, black line). In
contrast, biofilm formation was significantly reduced in PAO1
cells grown with extraneous vitamin B,, (Fig. 8B). In this biofilm,
the green fluorescence intensity was detected only in the first 11
sliced images (Fig. 8C). These results clearly suggest that suppres-
sion of anaerobiosis-induced cell elongation by the addition of
vitamin B, negatively influenced the biofilm formation in PAO1.

Anaerobic growth rescue by vitamin B,, did not occur in a
nitrite reductase-deficient mutant. Our previous results demon-
strated that a AnirS mutant lacking in the activity of nitrite reduc-
tase was not elongated during anaerobic growth in LBN (57).
Given that (i) nitric oxide (NO) is the product of nitrite reductase
and (ii) RNRs are highly susceptible to NO-mediated intoxication
(18, 39), this result suggested that endogenously produced NO
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was ascribed to the inactivation of RNRs, resulting in the anaero-
biosis-triggered cell elongation. We therefore sought to examine
whether vitamin B,, can still rescue the limited anaerobic growth
of the AnirS mutant, where NO-mediated intoxication would not
occur. As shown in Fig. 9A, mutant cells maintained their rod
shape regardless of the presence of vitamin B,, while PAO1 cells
were repeatedly able to return to their normal shape. The anaero-
bic growth of the AnirS mutant was not elevated to any degree by
the presence of added vitamin B,, (Fig. 9B, dashed lines), suggest-
ing that vitamin B,, can effectively rescue only anaerobic growth
arrested by NO-mediated RNR inactivation.

DISCUSSION

P. aeruginosa, an obligate respirer, is capable of luxuriant growth
by anaerobic respiration. Its genome harbors a series of enzymes
involved in dissimilatory nitrate (NO5 ) reduction, and several
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studies have demonstrated that fairly dense cell masses can readily
be attained by anaerobic NO; ™ respiration (2, 13, 45, 51, 61, 62).
In this study, we revealed for the first time that the anaerobic
growth of P. aeruginosa is indeed accompanied by apparent de-
fects in DNA replication. Binary fission of bacterial cells begins
with chromosome replication, which should be completed before
cytokinesis can take place for optimal cell division (35). Therefore,
treatment that results in the inhibition of DNA replication can
give rise to abnormal cell elongation in bacterial cells (5). Our
initial hypothesis that DNA replication might be impaired in an-
aerobically growing P. aeruginosa was validated by the FACS anal-
ysis that compared the DNA/protein ratios of PAOI cells grown
under either condition. The DNA/protein ratio of PAO1 cells cul-
tured by anaerobic NO;~ respiration was less than half of the
value obtained from aerobically grown PAOIL. On the basis of
findings by Odsbu and colleagues, the DNA/protein ratio was de-
creased by only 10% following treatment with 5 mM hydroxyurea
(HU), which inhibits the activity of ribonucleotide reductase in E.
coli (27). Thus, such a sharp decrease in the DNA/protein ratio
indicates that DNA replication was substantially inhibited in an-
aerobically growing PAO1.

RNR plays an essential role in DNA biogenesis, and it is of
particular interest that P. aeruginosa possesses three different
classes of RNR that basically perform the same function (50). The
presence of such redundancy accounts for the bacterial adaptabil-
ity to survive under diverse environmental conditions (45a). The
results presented in Fig. 3 clearly elucidated that (i) each class plays
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a distinct role under conditions of various oxygen concentrations
and (ii) aerobic growth of PAO1 was strictly dependent on the
presence of functional class I RNR. Fortunately, we managed to
overcome the difficulty of growing a class I mutant aerobically by
performing allelic exchange under strict anaerobic conditions. To
our knowledge, the class I RNR mutant has not been previously
constructed in any bacterial species, and this study has elucidated
its growth-related phenotypes for the first time.

Vitamin B,,, an essential cofactor for the class II RNR, is a
tetrapyrrole-based aromatic macrocycle, and ~30 enzymes are
involved in its complicated biosynthesis process (36, 38). Due to
the presence of genes encoding oxygen-dependent enzymes, such
as cobG (PA2906) and cobN (PA2944), P. aeruginosa is considered
to possess a vitamin B,, synthesis pathway that is dependent on
the presence of molecular oxygen (19, 36). Consistent with this
knowledge, we found that PAO1 produced very low levels of vita-
min B, during anaerobic growth (Fig. 4), likely rendering the
class II RNR incompetent. Our growth curve experiments, results
of which are shown in Fig. 3, appeared to suggest that class I and
III RNRs contributed equally to the anaerobic growth of P. aerugi-
nosa. Vitamin B, add-back experiments, however, clearly dem-
onstrated the dominant role of class II RNR in supporting the
anaerobic growth of P. aeruginosa. When grown with the addition
of 1 uM vitamin B, ,, a dramatic increase in anaerobic growth was
apparently observed in strains with intact class II RNR, including
wild-type PAOL. In addition, cell shape returned completely back
to normal in the same set of strains that exhibited robust anaero-
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FIG 9 Vitamin B,,-mediated anaerobic growth rescue was not observed in a
AnirS mutant devoid of nitrite reductase. (A) DIC images of PAOI and the
AnirS mutant grown in LBN and LBN plus 1 uM vitamin B,,. Experimental
conditions were identical to those described for Fig. 5B. (B) Anaerobic growth
of the AnirS mutant was compared with that of PAO1. Strains were grown in
LBN or in LBN supplemented with 1 uM vitamin B,, inside the anaerobic
chamber. Aliquots of cultures were withdrawn at designated times, and ODy,
values (means * SDs, n = 3) were plotted for growth curves.

bic growth. These results suggest that (i) inactivation of class II
RNR due to the lack of sufficient production of vitamin B,, is
responsible for the anaerobiosis-induced cell elongation and (ii)
anaerobic growth is affected by such cell shape changes. These
findings, therefore, also propose that LB supplemented with
NO; ", which has been widely used as the “gold standard” to grow

RN  DeoxyRN

'

Cell elongation

'

Biofilm

Reduction of P. aeruginosa Biofilm Formation

P. aeruginosa under anaerobic conditions, does not actually pro-
vide the best optimal conditions for such growth.

When cell elongation was suppressed in the presence of vita-
min B,,, biofilm formation was accordingly decreased to a signif-
icant extent, further supporting our conclusion that enhanced
biofilm formation is a consequence of cell elongation incurred
during anaerobic growth (57). Interestingly, these findings are
similar to those of Gotoh and colleagues (17). When aerobically
growing P. aeruginosa was treated with HU, a specific inhibitor of
class I RNR, a high degree of cell elongation had occurred. Like-
wise, such cell shape changes also resulted in robust biofilm for-
mation under aerobic conditions (17). Together with our results,
these findings suggest that cell elongation invariably occurs by
DNA replication inhibition, no matter whether it is due to anaer-
obiosis or to treatment with HU. Moreover, such changes in sur-
face properties caused bacterial cells to form robust biofilms.

In our microscopic analyses, cell elongation became observable
after ~8 h of anaerobic growth (data not shown), supporting the
idea that cell elongation may occur in response to an exposure to
a molecule that accumulates over time during anaerobic respira-
tion. Cell elongation and the growth-related phenotypes of the
AnirS mutant provided a clue as to the involvement of NO in such
a process. NO, a by-product of anaerobic respiration, has been
reported to accumulate persistently during anaerobic NO; ™ res-
piration of P. aeruginosa (21, 61). Our results shown in Fig. 9
demonstrated that cells of the AnirS mutant, devoid of its ability to
reduce nitrite (NO, ) to NO, were not elongated. In previous
studies, we also found that cell elongation was suppressed in the
presence of carboxy-PTIO (2-[4-carboxypheny]-4,4,5,5-tetra-
methylimidazoline-1-oxy-3-oxide), a stoichiometric NO scaven-
ger (57). The AnirS mutant did not respond to vitamin B, sup-
plementation. Since this result implicates that vitamin B,, can
boost the anaerobic growth rate only under conditions where en-
dogenous NO is produced continuously, NO-mediated inactiva-
tion of RNR (especially class II RNR) accounts for the anaerobio-
sis-induced cell elongation of P. aeruginosa.

Mounting evidence has suggested that CF patients suffer from
defective vitamin B,, absorption (7, 11, 25). Although vitamin B,,

e Vitamin B12
NO 3

RN DeoxyRN 1

+
Rod shape

v
Biofilm

FIG 10 Summary of anaerobiosis-induced cell elongation and role of vitamin B,, in the suppression of cell elongation. Nitrate reductase (NAR) reduces NO; ",
an alternative electron acceptor to NO,~, which is further reduced to NO by periplasmic nitrite reductase (NIR). Endogenously accumulated NO intoxicates
RNR, which in turn results in decreased synthesis of deoxyribonucleotides (downward-pointing arrow). Vitamin B, restores RNR activity (especially class II
type), and normal production of deoxyribonucleotides is achieved (upward-pointing arrow). Abbreviations: RN, ribonucleotide; DeoxyRN, deoxyribonucle-

otides; RNR, ribonucleotide reductase.
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absorption can be corrected by administration of pancreatic sup-
plements (7), such malabsorption provides a basis for the frequent
occurrence of anemia among CF patients (54). It is not clear how
much vitamin B,, is present in the CF patient mucous airway,
which was reported to possess regions with reduced oxygen ten-
sion (56, 60). Our results demonstrate that the addition of vitamin
B,, does not exert any noticeable effect on bacterial replication or
protein synthesis profiles during aerobic growth (data not
shown). Added vitamin B,,, however, can significantly modulate
the growth-related phenotypes and biofilm formation of P.
aeruginosa under anaerobic conditions. In particular, biofilm for-
mation during anaerobiosis was noticeably suppressed, suggesting
that an adequate delivery of vitamin B,, may be useful in reducing
the bacterial capability to form biofilm during anaerobic respira-
tion, despite its positive effect on anaerobic growth. It will be
important to further investigate the following questions. (i) Can
vitamin B, treatment also decrease the robustness of a preestab-
lished anaerobic P. aeruginosa biofilm? (ii) Is there any difference
in the relative antibiotic susceptibility between bacterial cells with
contrasting cell shapes? (iii) Can we identify an optimal vitamin
B,, concentration that can inhibit the biofilm formation of P.
aeruginosa with only a marginal effect on its anaerobic growth?
Answers to these questions will provide additional information
with regard to the potential therapeutic applications of vitamin
B,, for the treatment of an anaerobic biofilm infection of P.
aeruginosa.

This study demonstrates an interesting phenotype that a major
pathogen of patients with CF, P. aeruginosa, exhibits during an-
aerobic in vitro growth. Although the anaerobic nature of the air-
way mucus of patients with CF is well appreciated (32, 53, 56, 58,
60), it has to be stated that our results included the following
limitations. (i) Our biofilm was formed on an abiotic surface for a
short duration. This in vitro biofilm may not be biologically rele-
vant to reflect P. aeruginosa biofilms in the chronically infected
airway of CF patients. Moreover, in order to stimulate anaerobic
growth of PAO1, a relatively large amount of NO;~ was used.
Although NO; ™ is presumed to be persistently provided, the larg-
est amount of NO; ™~ reported in the airway of a patient with CF
was 700 uM (43). It remains yet to be addressed whether P. aerugi-
nosa proliferating as a biofilm inside the airway mucus of a patient
with CF encounters a similar level of anaerobiosis-induced stress.
(ii) Multiple bacterial species are involved in the airway infection
of patients with CF, rendering microbial lifestyle in the airway of
patients with CF highly complicated (37, 53). Our results clearly
showed that a prototype P. aeruginosa strain, PAO1, was unable to
produce vitamin B,, during anaerobic respiration but responded
dramatically to the exogenously supplied vitamin B,,. It will be
important to investigate whether other bacterial species can syn-
thesize vitamin B, ,, which would help P. aeruginosa relieve anaer-
obic growth-associated stress.

In conclusion, we explored the molecular basis behind the an-
aerobiosis-induced cell elongation, and most importantly, we
identified a molecule that can reverse such an abnormal morpho-
logical change, which can eventually influence the biofilm forma-
tion (Fig. 10). To establish effective treatment strategies for
chronic P. aeruginosa infection of the airway of patients with CF, a
molecular-level understanding of the anaerobiosis-induced mod-
ulation of bacterial virulence features is necessary. We anticipate
that our current results will stimulate further investigations, with
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the ultimate goal of eradicating this clinically important oppor-
tunist from anaerobic mucous layers.
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