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Originating from the classic Wacker process,1 the palladium(II)-catalyzed oxidative
difunctionalization of alkenes has emerged as an attractive strategy for the rapid generation
of molecular complexity due to its ability to form multiple carbon–carbon/carbon–
heteroatom bonds and stereogenic centers in a single step.2,3,4 This versatility, combined
with the broad functional group compatibility and air- and moisture-tolerance, renders the
Pd(II)-catalyzed oxidative difunctionalization a powerful tool for synthetic chemists. One of
the most synthetically relevant transformations of this class is the Pd(II)-catalyzed oxidative
carboetherification of hydroxyalkenes, which leads to a variety of interesting oxygenated
heterocycles.5 Pioneered by Semmelhack,6 the oxidative carboetherification in the presence
of CO or electronically biased olefins has been developed with wide application to complex
molecule synthesis.7 Mechanistically such reactions are believed to proceed via a β-alkoxy-
alkylpalladium(II) intermediate 1 generated from nucleophilic oxypalladation (Scheme 1).
Compared to the more often reported carbon–heteroatom bond forming processes, the scope
of oxidative carbon–carbon bond formation from 1 is still limited.8 It is both synthetically
and mechanistically interesting to expand the scope of this type of transformation in order to
access more structurally diverse molecules.

Aiming to develop a viable method for the catalytic oxidative oxypalladation/arylation of
unactivated hydroxyalkenes, we were inspired by the recent development in the field of
Pd(II)-catalyzed directed arene C–H activation/C–C bond formation.9 Noting that 1 could
undergo cyclopalladation with a proximate arene ring under similar condition (Scheme 1),
we envisioned the possibility of merging the two Pd(II)-catalyzed transformations, namely
the oxypalladation and C–H activation/C–C bond formation.

The success of this strategy lies in the identification of a catalytic system efficient for both
the oxypalladation and C–H functionalization steps, as well as the ability to avoid oxidation
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of the alcohol functional group.10 Herein we report a simple and mild Pd(II)-catalyzed
method for the efficient construction of the tetrahydro-2H-indeno-[2,1-b]furan framework
from acyclic hydroxyalkenes bearing unactivated arenes.

We began our study by subjecting 4-methyl-3-phenylpent-4-en-1-ol (2a) to a catalytic
amount of palladium acetate and a variety of different stoichiometric oxidants. Several
common combinations for Pd(II)-catalyzed oxidative C–H activations such as Pd(II)/Cu(II),
Pd(II)/Ag(I) and Pd(II)/PIDA were shown to be ineffective for this transformation (Table 1,
entries 1–3).8,11 Simple Pd(OAc)2/pyridine/O2 (1 atm) system,12 however, was able to
efficiently catalyze the desired transformation, affording 3a in moderate yield (entry 5). The
use of bidentate pyridine-based ligands were found to significantly retard the reaction
(entries 6, 7).13 Tuning the substituents on the pyridine ligand (entries 8–10) led to the
identification of ethyl nicotinate14 as the optimal ligand. The ligand loading could also be
lowered to 6 mol% without loss of yield (entry 12).

A variety of α-aryl-γ-hydroxyalkenes could be cyclized to the corresponding
tetrahydro-2H-indeno-[2,1-b]furan derivatives using this Pd(II)-catalyzed intramolecular
tandem oxypalladation/C–H activation protocol. Illustrative examples of the reaction scope
are shown in Table 2. Both alkyl and aryl substituents on the carbon-carbon double bond
were tolerated (3b, 3c), as well as tertiary alcohol nucleophile (3d). In addition, a wide range
of electron-rich, -neutral and -deficient arenes were found to participate in the C–H
activation process (3e–h, 3j). An aryl bromide-containing substrate afforded the desired
product (3i) in modest yield, although additional quantities of copper(II) chloride proved to
be necessary,15 this observed orthogonal reactivity relative to the Pd(0)-catalyzed cross-
coupling chemistry is useful for the further elaboration of the arene ring. meta-Substituted
arene (entry 10) cyclized to give a 3:1 mixture of regioisomers favoring the cleavage of the
less hindered C–H bond (3j, 3j’). Finally it was found that a pyridyl group could also
participate in the C–H activation process with functionalization solely at the 4-position (3k).

(1)

Lactone 4 can be accessed by one step oxidation of the oxyarylation adduct 3a (eq. 1). The
relative stereochemistry of 4 was confirmed by X-ray diffraction. Lactone 4 is also
structurally related to a class of sulindac-derived biologically active molecules which have
been used for “precancerous treatment.”16

To gain an insight into the reaction mechanism, deuterium labeling experiments were
performed. The observed kinetic isotope effect for both intermolecular and intramolecular
cases were found to be approximately 2.17 This observation is consistent with a reaction
mechanism in which irreversible C–H bond cleavage is rate-limiting. Next, treating 2a with
palladium acetate under an argon atmosphere in the presence of ethyl nicotinate also
afforded cyclization product 3a (Scheme 2). The formation of 3a in the absence of external
re-oxidant is consistent with the Pd(II)/Pd(0) catalytic cycle depicted in Scheme 1.

One of the most interesting aspects of the Pd(II)-catalyzed oxidative process is its
orthogonal reactivity compared with Pd(0)-catalyzed transformations (Scheme 3). Treating
hydroxyalkene 2i with a catalytic amount of palladium acetate and XPhos in the presence of
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K2CO3 afforded chroman derivative 5 by a classic Pd(0)-catalyzed C–O coupling.18 The
alkene functional group remained intact. However, switching the base to NaOtBu resulted in
the formation of cyclization product 3a via Pd(0)-catalyzed carboetherification of the alkene
originally developed by Wolfe and co-workers.5 On the other hand, subjecting 2i to the
standard conditions described in this work led to exclusive formation of 3i via the desired
Pd(II)-catalyzed oxypalladation/C–H functionalization pathway. Dechlorinated material was
not detected. This demonstrates the potential of diversified modification of a single
compound containing multiple functional groups using different palladium catalyst systems.

In conclusion, we have developed an efficient protocol for the intramolecular oxidative
oxyarylation of hydroxyalkenes using a Pd(II)-catalyzed tandem oxypalladation/C–H
functionalization strategy. This methodology allows rapid access to tetrahydro-2H-indeno-
[2,1-b]furan framework from simple acyclic hydroxyalkene bearing unactivated arenes or
heteroarenes. Further mechanistic studies and application of this strategy to the synthesis of
other heterocyclic systems are currently under investigation.

Experimental Section
An oven-dried 50 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar was
charged with palladium acetate (5.6 mg, 0.05 equiv.), potassium carbonate (34.5 mg, 0.5
equiv.). The tube was then briefly evacuated and backfilled with oxygen (This sequence was
repeated a total of four times). Ethyl nicotinate (4.5 mg, 0.06 equiv.) and hydroxyalkene
(0.50 mmol, 1.0 equiv.) were added to the tube followed by anhydrous toluene (5.0 mL) via
syringe. The sealed tube was placed in a pre-heated 100 °C oil bath. After stirring at the
same temperature for 19 h the mixture was allowed to cool to room temperature. Ether (5
mL), methanol (0.25 mL), and sodium borohydride (9.5 mg, 0.5 equiv.) were then added and
the resulting mixture was stirred for a further 5 min at room temperature. The mixture was
then filtered through a short plug of silica gel and concentrated in vacuo. The residue was
purified by silica gel flash column chromatography (EtOAc/hexane) to afford the cyclization
product.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Observed kinetic isotope effect.
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Scheme 1.
Scope of the Pd(II)/Pd(0) catalyzed oxidative carboetherification.
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Scheme 2.
Oxyarylation in the absence of external oxidant.
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Scheme 3.
Divergent Pd(II)-catalysis and Pd(0)-catalysis.
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Table 1

Representative optimization of the reaction conditions.a

Entry Ligand (x mol%) Oxidant (y equiv.) Yield %b

1 None CuCl2 (2) <5

2 None AgOAc (2) 18

3 None PhI(OAc)2 (2) <5

4 None O2 (1 atm) 22

5 Pyridine(20) O2 (1 atm) 66

6 2,2’-bipyridyl(10) O2 (1 atm) 13

7 1,10-phen(10) O2 (1 atm) 5

8 3-cyanopyridine(20) O2 (1 atm) 71

9 4-DMAP(20) O2 (1 atm) 82

10 Ethyl nicotinate(20) O2 (1 atm) 88

11c Ethyl nicotinate(20) O2 (1 atm) <5

12 Ethyl nicotinate(6) O2 (1 atm) 89

[a]
Reaction conditions: Pd(OAc)2 (5 mol%), Ligand (x mol%), Oxidant (y equiv.), K2CO3 (0.5 equiv.), 2a (0.1 mmol), toluene (1 mL), 100 °C, 19

h.

[b]
GC Yield using dodecane as an internal standard.

[c]
Without Pd(OAc)2.
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Table 2

Pd(II)-catalyzed oxidative oxyarylation of hydroxyalkenes.a

Entry Substrate Product Yield%b

1 3a 81

2 3b 58

3 3c 74

4 3d 74

5 3e 80

6 3f 66

7 3g 87

8 3h 69

9 3i 48c

10 67

11 3k 73

[a]
Reaction conditions: Pd(OAc)2 (5 mol%), ethyl nicotinate (6 mol%), O2 (1 atm), K2CO3 (0.5 equiv.), 2 (0.5 mmol), toluene (5 mL), 100 °C, 19

h.

[b]
Isolated yields, average of two runs.

[c]
With 5 mol% CuCl2 as co-oxidant and 30 mol% ethyl nicotinate.
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[d]
Ratio determined by 1H NMR.
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