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Abstract

Anti-angiogenesis agents and the identification of cancer stem-like cells (CSC) are opening new avenues for
targeted cancer therapy. Recent evidence indicates that angiogenesis regulatory pathways and developmental
pathways that control CSC fate are intimately connected, and that endothelial cells are a key component of the
CSC niche. Numerous anti-angiogenic therapies developed so far target the VEGF pathway. However, VEGF-
targeted therapy is hindered by clinical resistance and side effects, and new approaches are needed. One such
approach may be direct targeting of tumor endothelial cell fate determination. Interfering with tumor endothelial
cells growth and survival could inhibit not only angiogenesis but also the self-replication of CSC, which relies on
signals from surrounding endothelial cells in the tumor microenvironment. The Notch pathway is central to
controlling cell fate both during angiogenesis and in CSC from several tumors. A number of investigational Notch
inhibitors are being developed. Understanding how Notch interacts with other factors that control endothelial cell
functions and angiogenesis in cancers could pave the way to innovative therapeutic strategies that simultaneously

target angiogenesis and CSC.

Introduction

The endothelium is a key regulator of vascular integrity
and function. Endothelial cell functions and gene
expression profiles are controlled by cytokines, hor-
mones and metabolic products, as well as by mechanical
stimuli such as shear stress caused by changes in blood
flow [1]. Endothelial cells play a major role in the crea-
tion of supplemental blood vessels in ischemic tissues
following vascular obstruction. This process is “hijacked”
by cancer, which depends on neo-angiogenesis and vas-
culogenesis for growth and invasion. Endothelial cells
are also an important component of the “vascular niche”
for cancer stem-like cells (CSC) [2]. A number of path-
ways, including vascular endothelial growth factor
(VEGF) and its receptors (VEGFRs), basic fibroblast
growth factor (bFGF), transforming growth factor beta
(TGEP), and platelet-derived growth factor (PDGF) with
their receptors, angiopoietin/Tie and ephrin/Eph, regu-
late vasculogenesis and angiogenesis [3]. Notch signal-
ing, directly or by cross-talking with other pathways,
plays a major role in modulating endothelial cells func-
tions [4]. Additionally, Notch signaling has emerged as
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one of the master pathways in CSC [5]. This review
summarizes the current data on the effects of Notch sig-
naling in endothelial cells and CSC and how this modu-
lation can be exploited for therapeutic purposes.

The Notch pathway

Notch signaling is a highly conserved pathway that con-
trols cell fate decisions in metazoans from invertebrates
to mammals [6,7]. It is a short range communication
system between two adjacent cells, based on ligand-acti-
vated receptors. In mammals there are four paralog
receptors (Notchl, -2, -3 and -4) and five canonical
ligands (Delta-like or DLL1, 3, 4 and Jaggedl and 2).
Both receptors and ligands are type I membrane-span-
ning proteins Receptors are heterodimers consisting of
an extracellular subunit (NE€) non-covalently bound to
a transmembrane subunit (N™), Both subunits derive
from a single precursor that is cleaved in the trans-
Golgi by a furin-like protease. Ligand binding to N*©
induces a conformational change that allows subunit
dissociation. This is followed by the first proteolytic cut
by a surface protease ADAM (A Disintegrin And Metal-
loprotease) which removes a short extracellular fragment
of N™ and creates a membrane-tethered intermediate
(Notch extracellular truncation or NEXT). NEXT is a
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substrate for y-secretase, an intramembranous protease
complex. y-Secretase in turn generates the active form
of Notch (Notch intracellular, N'“) which translocates
to the nucleus where it binds transcription factor CSL
(CBEF-1, Suppressor of Hairless, Lag-1), also known as
RPB-Jx (recombinant signal binding protein 1 for Jx) in
mice. N'© binding displaces a co-repressor complex,
promotes the recruitment of co-activator molecules and
the transcription of numerous Notch target genes (Fig-
ure 1). The best known Notch targets include the Hes
(hairy/enhancer of split) and Hey (Hes-related proteins)
families and Nrarp (Notch-regulated ankyrin repeat pro-
tein). These and other Notch targets regulate further
downstream genes which can either maintain cell in an
uncommitted state or induce differentiation. The
mechanistic reasons for these differences remain
unclear. Cyclin D1, cMyc, and many other genes that
control cell proliferation, differentiation and apoptosis
are also influenced by Notch [8]. Although this pathway
appears deceptively simple and is theoretically identical
for all 4 Notch paralogs, exceedingly complex mechan-
isms regulate Notch signal intensity and paralog-specific
effects. These are described in our recent review [5],
and summarized diagrammatically in Figure 1. In addi-
tion to embryonic development, the Notch pathway
controls multiple cell fate decisions during adult life,
including stem cells maintenance, differentiation and
proliferation as well as apoptosis in continuously renew-
ing tissues such as the epidermis, the intestinal epithe-
lium and the endothelium.

Role of Notch during embryonic vascular
development

Vascular development is modulated by Notch signaling,
which is active in both endothelial and smooth muscle
cells. In particular, endothelial cells express Notch
receptors 1, -2 and -4 and ligands Jaggedl, DLL4 and
DLL1 while vascular smooth muscle cells (VSC) are
characterized by Notch3 expression. [9,10]. During
embryonic development, Notch induces differentiation
of angioblasts to endothelial cells, and controls cell fate
specification of endothelial cells into arterial or venous
identities [11]. Mouse embryos with Notchl loss of
function or double Notchl and Notch4 loss of function
mutations display severe defects in vascular develop-
ment [12]. Endothelial-specific knockout of Jaggedl
results in an embryonic lethal phenotype with absence
of smooth muscle actin [13]. Loss of Notch3 produces
dilated arteries with abnormal elastic laminae [14] Mice
homozygous for Jaggedl loss of function mutation die
from haemorrhage early during development [15]. Con-
sistently with the major role played by Notch during
vascular development, two human cardiovascular dis-
eases are associated with genetic alterations of this
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pathway. Mutations of Notch3 cause CADASIL (Cere-
bral Autosomal-Dominant Artheriopathy with Subcorti-
cal Infarcts and Leukoencephalopathy), characterised by
stroke and dementia due to vascular lesions [16]. Ala-
gille syndrome is a pleiotropic developmental disease
caused by mutations of Jaggedl and characterized by
congenital heart defect with cardiovascular anomalies
[17].

Role of Notch in vascular homeostasis and
function during postnatal life
Ischemic tissues and tumor angiogenesis
Angiogenesis requires stimulation of vascular endothelial
cells through the release of angiogenic factors. Of these,
vascular endothelial growth factor A (VEGEF-A) is the
most critical regulator of vascular development [18].
VEGEFR2 regulates most of the endothelial cell response
to VEGEF-A, including cell migration, proliferation, survi-
val, permeability and sprouting of new blood vessels
from pre-existing ones [19]. Sprouting begins with
VEGEF-A induction of filopodia on specialized endothe-
lial cells, the “tip” cells, which are guided by a gradient
of VEGF-A [20]. For productive angiogenesis, branching
must be limited to “tip” cells and simultaneously inhib-
ited in the adjacent cells, known as “stalk” cells, charac-
terized by lack of protrusive activity. Endothelial cells
dynamically compete for the “tip” cell position, and the
selection between “tip"- and “stalk” cell fate depends on
the interplay between VEGF and Notch pathways which
interact at several levels to generate a highly organized
blood vessel network [21]. According to a model sup-
ported by a wealth of experimental data, VEGF-A
induces expression of DLL4 in endothelial “tip” cells
[22], which in turn activates Notch on the adjacent
endothelial cells dampening their response to VEGF-A
and conferring a “stalk” phenotype [23]. Notch activa-
tion in human umbilical vein cells (HUVEC) decreases
their response to VEGF-A through downregulation of
VEGEFR-2 (Taylor 372-383) and upregulation of VEGFR-
1, a VEGER isoform with weak tyrosine kinase activity
[24-26]. VEGFR-1 regulates sprout formation also by
production of sFlt-1, a soluble form of VEGFR-1 that
antagonizes VEGF signaling [27,28]. Directionality of the
guided sprouting process is thus achieved through a
population behavior, in which the migration influenced
by the VEGFR-DLL4-Notch interplay, continues toward
the highest concentration of VEGF-A [29]. This phe-
nomenon is reminiscent of classical “lateral inhibition”
during Drosophila neurogenesis. Ectodermal cells differ-
entiating towards a neuronal fate prevent adjacent cells
from undergoing the same fate by expressing Notch
ligand Delta and activating Notch in adjacent cells [6].
Consistently with the model described above, blockade
of DLL4 with specific monoclonal antibodies in
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Figure 1 A simplified diagram of canonical Notch signaling: A: membrane and cytoplasmic events. In ligand expressing cells, ligands are
ubiquitinated (UQ) by E3 ligases Mindbomb and Neuralized, endocytosed and “activated”. “Active” ligands bind Notch receptors, dissociating NE©
from N™. The complex ligand- N is trans-endocytosed into the ligand-expressing cell, perhaps providing mechanical energy to separate N™
from N™. Some ligands expressed in cis can bind Notch on the same cell, causing cis-inhibition. Ligand-induced N separation unmasks the
ADAM cleavage site (red), which is cleaved by ADAM10 or ADAM17, producing N¥T and a short peptide which is released. N*T is cleaved by y-
secretase, at the membrane or during endocytosis, generating N, This process is facilitated by adaptor-associated kinase AAK1 [101] and may
require mono-ubiquitination. The release of N' from endosomes (or the selection of cleavage site by y-secretase) may require endosome
acidification (H") by aquaporin Bib. The stability of N' is requlated by factors such as Pin-1 prolyl isomerase and NLK kinase. Endocytosis can
lead to ligand-independent Notch activation catalyzed by y-secretase. In the absence of non-visual B-arrestin Kurz, Deltex may lead to Notch
endocytosis and activation. The amount of Notch available at the membrane is controlled by many endocytosis-recycling mechanisms. Several
E3 ligases (Itch, CBL, Nedd4, the Deltex-Kurz complex) can target Notch for degradation. The ESCRT complex and lgd in Drosophila (and
presumably their homologues in mammals) control Notch degradation, and their loss causes accumulation of Notch in endosomes and ligand-
independent activation. In actively dividing cells, Numb/ACBD3 asymmetrically partitions to one daughter cell, causing selective Notch
degradation in it. GSI, monoclonal antibodies (mAbs) to Notch receptors and ligands and Notch decoy molecules have been used effectively in
vivo to inhibit Notch signaling. B: nuclear events. N is transported to the nucleus, where it causes the dissociation of the co-repressor complex
including SHARP, SKIP and several other proteins (CoR) from CSL. Notch, CSL and MAML form a tertiary complex which in turn recruites p300
and other coactivators (CoA) to the chromatin and forming the NTC that activates transcription. The NTC can form heterodimers on the
chromatin with other NTCs or supramolecular complexes with other transcription factors, modulating the choice of genes regulated by Notch.
Dominant negative (DN) MAML constructs or peptidomimetic agents have been used in vivo to inhibit Notch-mediated transcriptional activation
(see reference 5 for review).
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experimental tumors leads to excessive branching and
unproductive angiogenesis [30]. Similarly, inhibition of
DLL4 signaling by intramuscular injection of an adeno-
virus encoding a soluble form of DLL4 extracellular
domain impairs reparative angiogenesis in a mouse
model of ischemia [31].

N-acetyl-glucosaminidation of fucose residues on the
extracellular subunit of Notch, catalyzed by enzymes of
the Fringe family, affects differentially Notch activation
induced by Jagged or Delta-family ligands [32]. In parti-
cular, Fringe glycosylation, even though it does not
reduce Jaggedl binding to Notchl, potentiates DLL1
over Jaggedl signaling, probably by a more effective pro-
motion of Notch proteolysis following ligand binding
[33]. Benedito et al. have shown that in presence of gly-
cosylated Notch, high levels of Jaggedl in endothelial
cells inhibit DLL4 signaling, leading to enhanced sprout-
ing and promotion of angiogenesis [34]. Tumor necrosis
factor . (TNFa), a cytokine abundant in many solid
tumors, induces Jaggedl in endothelial cells, conferring
a “tip” cell phenotype highly enriched in Jaggedl, but
not DLL4 [35]. Taken together, these findings indicate
that the effects of Notch signaling on angiogenesis are
also controlled by the relative expression levels of DLL4
and Jaggedl ligands, and by the relative affinity of
Notch receptors for these classes of ligands, which in
turn is dependent on Fringe-catalyzed Notch modifica-
tions. Factors that selectively control the expression of
the two ligands DLL4 or Jaggedl, or modulate the affi-
nity of receptors for these ligands, could have a pro-
found influence on tumor angiogenesis.

Lymphangiogenesis may be as important to tumor
biology as hemangiogenesis, particularly for tumors
that predominantly metastasize to regional lymph
nodes. VEGFR-3 is expressed on lymphatic endothe-
lium and with its ligand VEGEF-C, stimulates the
growth of lymphatic vessels, regulating physiological
and pathological lymphangiogenesis [36] as well as
embryonic angiogenesis before the emergence of lym-
phatic vessels [37]. In breast cancer, VEGFR-3 expres-
sion is upregulated in the endothelium of tumor blood
vessels, while VEGF-C is highly expressed in intraduc-
tal and invasive cancer cells [38]. Notch induces
VEGEFR-3 expression in human endothelial cells and in
mice, increasing endothelial cell responsiveness to
VEGE-C and promoting endothelial cell survival and
morphological changes [39]. Notchl and Notch4 are
expressed in normal and tumor lymphatic endothelial
cells, and Notchl is activated in lymphatic endothe-
lium of invasive mammary micropapillary carcinomas
[39] These data suggest a role for cross-talk between
VEGFR-3 and Notch in both tumor angiogenesis and
lymphangiogenesis.
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Regulation of bone marrow endothelial progenitor cells
New blood vessels formation in tumors is thought to
happen through two processes: angiogenesis, defined as
the proliferation and sprouting of existing blood vessels,
and vasculogenesis, resulting from the recruitment of
circulating cells derived from the bone marrow [40].
Endothelial progenitor cells (EPC) are an important
fraction of bone-marrow derived cells in addition to
myeloid cells, lymphocytes, and mesenchymal cells. Stu-
dies conducted in Jagged1l-null mice have demonstrated
that Jaggedl activation of Notch signaling is required
for EPC development [41]. Compared to wild-type ani-
mals, Jaggedl null mice show a lower number of
endothelium-specific markers expressing cells and EPC
colony-forming cells [41]. Specific inactivation of
Jaggedl-mediated Notch signals led to inhibition of
postnatal vasculogenesis in hind-limb ischemia via
impairment of proliferation, survival, differentiation, and
mobilization of bone marrow-derived EPCs. Recovery of
hind-limb perfusion was enhanced after transplantation
of Jagged1-stimulated EPCs [41]. One of the mechan-
isms by which activation of Notch signaling enhances
mobilization and homing of EPC to neovascularization
sites may be the regulation of CXCR4 expression.
CXCR4 is the receptor for stromal derived factor 1
(SDEF-1), a cytokine induced by hypoxia and involved in
EPC homing [42]. CSL (RBP-Jx)-deficient EPC from
knockout mice have decreased ability to adhere, migrate,
and form vessel-like structures in three-dimensional cul-
tures. Over-expression of CXCR4 can rescue these
defects [43]. Further evidence showing the critical role
played by Notch signaling in endothelial cell maturation
comes from experiments with cholesterol-lowering sta-
tins. These drugs, as a result of a pleiotropic effect, pro-
mote endothelial differentiation in bone marrow stem
cells (BMSC) [44]. Simvastatin promotes the expression
of endothelial markers and endothelial differentiation in
BMSC. This effect can be prevented by either a y-secre-
tase inhibitor (GSI) or Notchl siRNA. These data sug-
gest that Notchl and Jaggedl may play an important
role in EPC generation and homing to tumors.

Regulation of endothelial cell apoptosis

TNFa, a cytokine abundant in many solid tumors,
cross-talks with Notch signaling in controlling endothe-
lial cell apoptosis. In endothelial cells, TNFo treatment
downregulates Notch4 mRNA and upregulates Notch2
mRNA. These changes are associated with a decrease of
Notch activity, as indicated by reduced levels of Hey2
and Hesl mRNA [45]. TNFa-mediated Notch inhibition
is associated with endothelial cells apoptosis, as shown
by caspase 3 activation in endothelial cells of lung sec-
tions from rats treated with TNFa. [45]. Since
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overexpression of Notch2 in endothelial cells decreases
the levels of survivin, a key antiapoptotic factor, it has
been suggested that TNFa signaling sensitizes endothe-
lial cells to apoptosis by activating Notch2 and thus
decreasing Notch activity [46]. Conversely, constitutively
active Notch4 protects endothelial cells from apoptosis
by increasing the levels of Bcl-2 [47]. Pulsatile flow pro-
motes bovine retinal endothelial cells survival through
Notchl mediated upregulation of Bcl2 and Bax mRNA
levels [48]. Notch signaling is also implicated in the pro-
survival action of VEGF-A on endothelial cells. GSIs
block the anti-apoptotic effect of VEGF-A on endothe-
lial cells exposed to serum deprivation [49]. Addition-
ally, Notchl induces VEGFR-3 expression, which
responds to VEGF-C promoting endothelial cells survi-
val [39]. Thus, in addition to modulating angiogenesis
and vasculogenesis, Notch signaling may control the
survival of endothelial cells in tumors.

Endothelial cells, Notch signaling and the CSC
“niche”

It is becoming widely accepted that many solid tumors
contain relatively rare sub-populations of cells called
cancer stem-like cells (CSC), with properties similar to
those of normal tissue stem cells. While the origin of
these cells is controversial, there is increasing evidence
that these cells are more resistant than “bulk” cancer
cells to conventional therapeutic modalities and that
they may be at the origin of tumor recurrence and
metastasis [50]. The Notch pathway is critical in con-
trolling the fate of CSC from several tumors and a vari-
ety of therapeutic agents targeting Notch signaling in
these cells are being developed [50]. The widest experi-
mental support to date for a role of Notch in CSC
comes from studies in breast cancer [51-55], embryonal
brain tumors [56], and gliomas [57,58]. Notch paralogs
(1, 3 and 4) modulate breast CSC activity, with the
strongest evidence favoring Notch4 [59,60]. Inhibition of
Notch4 has been shown to reduce stem cell activity
[61,62]. GSIs abolish the formation of secondary mam-
mospheres from a variety of human breast cancer cell
lines as well as patient specimens [63]. GSIs in combina-
tion with trastuzumab (Herceptin) abolish recurrence of
Her2/Neu positive xenografts [64]. Since GSIs alone do
not decrease tumor volume in this model, while trastu-
zumab alone drastically decreases tumor volume but
does not prevent recurrence, the curative effects of GSIs
most likely results from an anti-CSC effect.

The stem-like phenotype of CSC, like the stem pheno-
type of normal tissue stem cells, is controlled by microen-
vironmental signals. Endothelial cells are a major
component of the CSC microenvironment, sometimes
defined as a “vascular niche”. It has been suggested that
endothelial cells control the homeostasis of CSC by
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releasing stem cell-active trophogens or by direct cellular
contacts (reviewed in [2]). Evidence for a role of Notch in
endothelial control of CSC has been obtained in glioblas-
toma multiforme (GBM). In three-dimensional explants of
GBM, Notch inhibition blocks the self-renewal of GBM
CSC by decreasing the number of endothelial cells [65].
Conversely, CSC can stimulate angiogenesis, at least in
part by producing VEGF [66-69]. Hypoxia has been sug-
gested to play an important role in maintaining the CSC
niche [70]. Hypoxia activates Notch signalling via HIF-1a
in normal embryonic stem cells [71] and lung cancer cells
[72], and mediates the effects of hypoxia on cancer cell
fate determination in several models [73,74]. Thus, par-
tially effective anti-angiogenic therapy, by inducing
hypoxia may actually activate Notch and preserve CSC.
Another facet of the endothelium/CSC interplay is the
possibility that endothelial cells may be produced from
trans-differentiation of CSC, a phenomenon known as vas-
cular mimicry. This phenomenon was originally described
in melanoma [75,76] and subsequently found in several
other malignancies. Recent evidence indicates that glioma
CSC are capable of vascular mimicry under hypoxic condi-
tions [77], and that a significant fraction of GBM endothe-
lial cells are derived from the tumor rather than from
normal, pre-existing capillaries. A role for Notch in modu-
lating the cell fate decisions underlying vascular mimicry
has been proposed in melanoma [75] but remains poorly
understood.

Cells involved in immunity and inflammation in tumor
microenvironment can potentially affect both angiogenesis
and CSC. Angiogenesis and immune responses are inex-
tricably linked [78-81]. Pro-inflammatory Th17-cells,
interconvertible with Th1 cells, play a crucial and complex
role in tumorigenesis [79]. Tumor-infiltrating lymphocytes
from human breast, ovarian and colorectal cancers contain
high numbers of Th17 cells, attracted by RANTES and
MCP-1 produced by tumor cells and stroma [79]. Th17
polarization requires IL-6 and IL-23, and Th17 cells pro-
duce IL-17, which stimulates angiogenesis [82,83], inva-
sion [84] and production of pro-angiogenic IL-8 [85]. IL-6
and IL-8 have been reported to cause resistance to
RO4929097 GSI [86,87]. IL-6 is a Notch target gene in
tumor stroma in multiple myeloma [88] The Osborne lab
in collaboration with us has shown that Notch signaling is
required for the generation of Thl [89] and Th17 [90]
CD4 cells in vitro and in vivo and that GSIs inhibit Th17
lineage determination [91]. In addition to Th17 cells,
other immune cell types can modulate the CSC niche,
either directly or through endothelial cells. Recent evi-
dence [92] shows that macrophage-derived VEGF-C acti-
vates VEGFR-3 in endothelial tip cells during
lymphangiogenesis. VEGFR3 in turn activates Notch sig-
naling, which promotes the phenotypic conversion of
endothelial cells at fusion points of vessel sprouts. Hence,
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the CSC niche not only relies on endothelial cells but can
itself modulate angiogenesis not only through VEGF pro-
duction by cancer cells but through pro-angiogenic cyto-
kines produced by tumor-infiltrating lymphocytes and
macrophages. Tumor-associated fibroblasts also produce a
variety of pro-angiogenic cytokines that modulate
endothelial cell fate in the CSC niche (reviewed in [93]).
The Notch pathway participates in regulating endothelial
cell fate, CSC cell fate and Th17 cell fate determination,
and thus plays a central role in this complex interplay. Fig-
ure 2 shows a schematic representation of these cellular
interactions.

Therapeutic implications of the cross-talk
between Notch and pro-angiogenic factors in
cancer

The role of Notch signaling in controlling the survival of
cancer cells is well established and small molecule GSI
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are currently being tested in several phase 1 and 2 clini-
cal trials in breast, lung cancer and leukemia with rela-
tively minimal toxicity when administered intermittently
[94]. We have recently concluded a pilot trial in ER+
breast cancer, where doses of GSI that did not cause
significant systemic toxicity were shown to affect the
expression of Notch targets and multiple CSC pathways
in tumor samples [95]. Notch inhibition may block can-
cer growth by inhibiting the survival of both “bulk” can-
cer cells and CSC [5]. Cao et al. have shown that
treatment with VEGF-A and GSI DAPT can re-establish
responsiveness of endothelial cells to VEGF-A [96]. This
implies that single-agent Notch inhibition, especially at
non-cytotoxic doses, may paradoxically increase
endothelial responsiveness to VEGF-A. Hypoxia, which
is a likely result of VEGF inhibition, can activate Notch
signaling through HIF-1a [72,74], thus potentially pro-
tecting endothelial cells from apoptosis and maintaining

IL-23

Notch
——

Ligand

Figure 2 Selected cellular interactions within the CSC niche: Endothelial cells (EC) specialize into “tip” EC, which respond to VEGF-A
signals by expressing DLL4 and activating Notch in “stalk” EC, where Notch prevents further branching. Notch-ligand interactions are
represented by intercellular receptor-ligand pairs (see inset). Notch-ligand interactions can occur between tip EC and stalk EC, between CC and
EC, between CSC and EC. Blood and lymphatic EC contribute to the CSC niche by providing trophic factors and ligand-Notch interactions. Non-
stem cancer cells (CC) produce VEGF-A as well as numerous cytokines, including IL-8, IL-6, TNFo, MCP-1, TGF-§ and RANTES. VEGF-A activates
angiogenesis and has autocrine effects on cancer cells. Some cytokines (e.g., IL-8) act on EC directly, while others (e.g., IL-6, MCP-1) recruit pro-
inflammatory Th17 cells. These are stimulated by IL-23 and produce IL-17, which stimulates angiogenesis. TAM produce cytokines (not shown)
and VEGF-C. The latter activates VEGFR-3 in EC, stimulating Notch activity and inhibiting further branching in the context of lymphangiogenesis.
Additional cells not shown in this diagram include fibroblasts, osteoclasts (in bone metastastases), bone marrow stromal cells, NK cells and
others.
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the integrity of existing tumor vessels, which could
resume angiogenesis once VEGF inhibition is relieved.
Combinations of Notch inhibitors with VEGF signaling
inhibitors may provide superior anti-angiogenic activity
to single-agent VEGF inhibition and deserve further
study. Prolonged administration and/or high doses of
GSI may be sufficient to cause endothelial apoptosis,
but may be less well tolerated than lower doses or inter-
mittent administration in combination with a VEGF
inhibitor.

VEGEF receptors are expressed in some human breast
cancer cells and VEGF directly stimulates breast cancer
progression via autocrine signaling [97,98]. We have
recently reported that VEGFR-1 and -2 are expressed in
a mouse ERa-positive breast cancer cell line [99,100]
and that VEGF-A and VEGFRs land 2 are highly
expressed in triple-negative breast cancer cells compared
to ERa-positive breast cancer cells [100]. Additionally
we confirmed that paracrine effects (especially angiogen-
esis) and autocrine effects (proliferation and migration)
of VEGF contribute to breast cancer progression [100].
Sunitinib (SU11248), an inhibitor of protein kinases
including VEGFRs 1-3, inhibits both paracrine and auto-
crine effects of VEGEF, targeting not only the tumor vas-
culature but also directly inhibiting the proliferation and
migration breast cancer cells in vitro and in vivo [100].
The combination of VEGF and Notch inhibitors in the
treatment of breast cancer is under investigation in our

lab.

Concluding remarks and future directions

The studies presented in this review strongly suggest that
angiogenic and stem cell pathways are inextricably con-
nected in tumor microenvironment, and that the interplay
between Notch and VEGF signals plays a central role in
regulating cell fate within endothelial cells and CSC, as
well as interactions between endothelium and CSC (Figure
2). Additionally, the role Notch-dependent pro-inflamma-
tory Th17 cells and the role of TAM in modulating
endothelial cell fate in the CSC niche requires careful
investigation. Using Notch inhibitors in combination with
anti angiogenic drugs in oncology could introduce a new
approach to the prevention of cancer progression and
recurrence by delivering synergistic anti-angiogenic effects
while disrupting the CSC niche.
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