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Abstract

The cholesterol chelating agent, methyl-b-cyclodextrin (MbCD), alters synaptic function in many systems. At crayfish
neuromuscular junctions, MbCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse
propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological
effects of MbCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to
modify cholesterol levels. MbCD impaired impulse propagation and decreased EJP amplitude by 40% (P,0.05) in
preparations from crayfish acclimatized to 14uC but not from those acclimatized to 21uC. The reduction in EJP amplitude in
the cold-acclimatized group was associated with a 49% reduction in quantal content (P,0.05). MbCD had no effect on input
resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and cold-
acclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold,
P,0.05; 50% reduction in warm, P,0.05). MbCD reduced cholesterol in isolated nerve and muscle from cold- and warm-
acclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P,0.05). This
effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MbCD on glutamate-
sensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude
did not. Our results indicate that MbCD can affect both presynaptic and postsynaptic properties, and that some effects of
MbCD are unrelated to cholesterol chelation.
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Introduction

Cholesterol is an intriguing molecule linked to numerous

fundamental physiological functions; thus, alterations in choles-

terol metabolism are associated with a range of disorders that

include significant current and future healthcare burdens [1,2]. At

least one reason for this extensive linkage of cholesterol to

physiological states is that, in contrast to other lipidic membrane

components, there are a number of reasonably selective pharma-

cological tools available with which to modulate the amount and/

or effects of cholesterol in cellular membranes [3,4]. Indeed, this

ability to target native cholesterol with reasonable selectivity,

coupled with the availability of sensitive quantitative assays, has

led to cholesterol being the first molecule identified as having

a direct role in the essential membrane merger (i.e. fusion) steps of

fast, calcium-triggered exocytosis, as occurs under physiological

conditions, in depolarized nerve terminals [3,4]. In addition, as

a microdomain (i.e. ‘raft’) organizer, cholesterol also plays a critical

role in maintaining the localized presence of other components

critical to targeting, priming, docking, and subsequent fusion [5–

9].

Among the tools used to study cholesterol, perhaps the most

widely applied has been methyl-ß-cyclodextrin (MbCD), a cyclic

oligosaccharide that can deplete cellular membranes of cholesterol

by increasing the water solubility of the sterol [10]. MbCD has

thus been used with increasing frequency to examine the

physiological roles of cholesterol. Studies utilizing MbCD have

implicated cholesterol in mediating or modulating a wide range of

membrane-associated cell properties and functions in a range of

secretory cell types, including neurons. Such cellular processes

include excitability [11–14], ion channel activity [15,16], exo-

cytosis [3,4,17–19], endocytosis / vesicle recycling [20,21],

neurotransmitter uptake and storage [22,23] and postsynaptic

receptor localization [16,24–26]. Such studies make a case that

cholesterol may be a critical membrane component for all the key

steps in chemical synaptic transmission.

The sole use of MbCD to examine and identify cholesterol-

dependent functions, however, poses at least two main limitations.

First, it can be challenging to demonstrate definitively that

a physiological effect is caused by a change in cholesterol level

rather than some non-specific effect of MbCD, such as interaction

with and removal of phospholipids [27,28]. Some studies employ-

ing MbCD do not even report cholesterol levels, although many

do provide corroborating evidence showing the same physiological

effect with inhibitors of cholesterol synthesis, including an
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assessment of gross changes in the levels of cholesterol. Thus, the

second limitation is that such qualitative assessments of global

membrane cholesterol concentration may not correlate with the

local concentrations at the functional sites of interest. The use of

multiple pharmacological tools to confirm the direct role of

cholesterol in any given mechanism thus remains the most secure

approach. Why do these issues exist? As noted above, there is

considerable evidence [29] that cyclodextrins exert pleiotropic

effects on membranes, removing other lipidic (and protein)

components, as well as depleting cholesterol from both fluid and

cholesterol-enriched microdomains. Thus, effects of MbCD on

physiological functions should be interpreted with caution and

always confirmed with alternative approaches.

One such alternative approach to investigating cholesterol-

dependent physiological effects is suggested by observations that

thermal acclimatization for periods of weeks can alter the content

of cholesterol and other lipids in ectothermic animals [30]. This

raised the question of whether or not animals acclimatized to

different temperatures, whose own metabolism would generate

differences in levels of cholesterol and other membrane lipids,

would respond similarly to cholesterol-depletion with MbCD.

Thus, here we used acclimatization temperature as a tool to

address both the acute effects of MbCD and the postulated roles of

cholesterol in the physiology of chemical neurotransmission. We

chose to address this question using crayfish, since these animals

are known to adapt reasonably rapidly to decreases in tempera-

ture, assuming a more ‘quiescent’ state [31]. In addition, MbCD is

recognized to elicit several presynaptic effects on crayfish

neuromuscular preparations, including: (a) failure of impulses to

propagate through axonal branches, (b) reduction in the amplitude

of excitatory junctional potentials (EJPs), (c) modest enhancement

of evoked transmitter release from directly stimulated synaptic

terminals and (d) enhancement of spontaneous transmitter release

[12]. Our results confirm that MbCD elicits presynaptic changes,

but quantitatively show that MßCD also alters the responsiveness

of postsynaptic cells. Both pre- and postsynaptic effects are

modulated by thermal acclimatization. However, differential

effects between thermally acclimatized groups indicate that some

effects of MbCD correlate with its ability to decrease membrane

cholesterol concentrations, but others do not. The complexity of

the physiological effects, in particular during acute treatment with

MbCD, suggest that more defined preparations and the thorough

removal of MbCD are necessary to best assess (i.e. quantitatively)

the potential roles of cholesterol itself in specific physiological

functions.

Results

Effects of MbCD on synaptic transmission
Effects of the cholesterol chelator, methyl-b-cyclodextrin

(MbCD), on neuromuscular synapses were first assessed by

recording excitatory junctional potentials (EJPs) in phasic abdom-

inal extensor muscles (Fig. 1). At the stimulus frequency used

(0.2 Hz) there was a gradual decrease in EJP amplitude over

several minutes, due to low frequency depression [12,32]; such

depression was present in preparations from both cold- and warm-

acclimatized crayfish and was modest (albeit more pronounced in

the former group), decreasing EJP amplitude by ,20–30% during

the 40 min over which recordings were made Fig. 2A–B).

Application of 10 mM MbCD to preparations from cold-

acclimatized crayfish (14uC) elicited two separate effects on EJP

amplitude (Fig. 2A). The first was a small, transient increase

approximately 3 min after beginning perfusion with MbCD, and

the second was a dramatic decrease in EJP amplitude that

occurred at 6–10 min of MbCD exposure. The early effect

increased EJP amplitude by 1864%, which was significantly

different (P,0.05) from parallel control preparations not exposed

to MbCD. At 10 min of MbCD exposure, EJP amplitude had

decreased to,20% of the level observed before application (i.e. an

80% reduction), which was significantly different from the control

group (P,0.05). The reduction in EJP amplitude could not be

recovered either by washing for 10 min with cholesterol-saturated

hydroxypropyl-b-cyclodextrin (Ch-HPbCD; in order to load

exogenous cholesterol into the preparation) or by a subsequent

saline wash (10 min). In contrast, application of 10 mM MbCD to

preparations from warm-acclimatized (20–22uC) crayfish elicited

an almost immediate transient increase in EJP amplitude of

1162% followed by a return to baseline amplitude relative to

parallel control preparations not exposed to MbCD (Fig. 2B).

Thus, the effects of MbCD on EJP amplitude at room temperature

depended on the temperature to which crayfish were previously

acclimatized. Application of MbCD elicited a transient increase in

EJP amplitude of ,10–15%, although this was delayed in

preparations from cold- vs. warm-acclimatized animals; in the

continued presence of MbCD there was a subsequent reduction of

EJP amplitude (13%/minute) only in preparations from the cold-

acclimatized animals.

The reduction in EJP amplitude in preparations from cold-

acclimatized crayfish is similar to that noted in an earlier report

Figure 1. Experimental preparation. A. Deep abdominal extensor
muscles M, L1 and L2 were exposed in abdominal segments 3 and 4. B.
EJPs and synaptic currents were recorded using intracellular and loose
patch electrodes, respectively. C. Iontophoresis was onto muscle
segment 4 as close as possible to the neuromuscular junction.
doi:10.1371/journal.pone.0036395.g001

Cyclodextrin and Neurotransmission

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36395



that found this effect correlated with failure of impulses to

propagate to synaptic terminals [12]. These observations suggested

that EJPs may become smaller because of failure of impulse

propagation down axonal branch points, ultimately reducing the

number of synaptic boutons releasing transmitter [18,33,34]. We

recorded nerve terminal current with a loose patch electrode to

determine whether or not the effects of MbCD on impulse

propagation would be altered by acclimatization temperature in

a manner consistent with the effects on EJP amplitude. Loose

patch signals were acquired simultaneously with the intracellularly

recorded EJPs to ensure that any lost signals were not due to

failure of the stimulus to exceed threshold at the input site. The

nerve terminal signals were typically biphasic, similar to many

observed by Dudel [35] and were followed immediately by quantal

events or failures. Propagation failure was indicated by loss of the

nerve terminal signal and was always accompanied by complete

Figure 2. MbCD causes a reduction in EJPs which coincide with impulse failure only in neuromuscular preparations from cold-
acclimatized animals. Intracellular recordings were made from L1 muscle fibers within the 4th abdominal segment while simultaneously recording
extracellularily through a loose patch electrode placed over a synapse. These recordings detect the propagating action potential (AP) invading the
presynaptic terminal, the postsynaptic current following the AP, and an EJP. A. Cold-acclimatized group (open symbols). Control (no MbCD, open
circles) depicts low-frequency depression, inherent during phasic stimulation. Application of 10 mM MbCD resulted in an initial significant (P,0.05)
transient increase in EJP amplitude followed by a rapid reduction in EJP amplitude (P,0.05) which did not recover following the application of 10mM
Ch-HPbCD or a subsequent saline wash. B. Warm-acclimatized group (closed symbols). Application of 10 mM MbCD resulted in an initial significant
(P,0.05) transient increase in EJP amplitude, which quickly returned to control values, and remained stable for the remainder of the recording period.
Inset (A–B) shows recorded signals of EJPs at selected time points. Scale bars: 5 mV, 5 ms. C. Extracellularily recorded nerve terminal currents from
cold-acclimatized animals. The nerve terminal current remained stable during the pre-application period; application of 10 mM MbCD resulted in
a loss of the nerve terminal signal in 6/7 trials, consequently producing a marked reduction in the amplitude of the nerve terminal current (P,0.05)
which did not recover with the application of 10 mM Ch-HPbCD or a subsequent saline wash. D. Extracellularily recorded nerve terminal currents
from warm-acclimatized animals. Application of 10 mM MbCD had no effect on the amplitude of the nerve terminal current. Inset (C–D) shows traces
from loose patch recordings at selected time points. Initial downward deflection is the nerve terminal current, following by the post-synaptic current.
Scale bars: 0.5 nA, 5ms. N= 7. * indicates P,0.05, { indicates P,0.01.
doi:10.1371/journal.pone.0036395.g002
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loss of quantal events. Preparations from cold-acclimatized

animals exhibited a dramatic decrease in the amplitude of nerve

terminal current, which began after the initial 3 min of exposure

to 10 mM MbCD (Fig 2C). The nerve terminal signal was

completely lost in 6 of the 7 trials, and could not be recovered by

washing with Ch-HPbCD nor with saline. In the remaining trial

the nerve terminal current showed only a slight decrease in

amplitude (5–16% decrease). The gradual reduction to 20% of

initial current amplitude over the 10 min exposure to MbCD was

caused by variations in the time at which nerve terminal signals

were lost in different trials. Nerve terminal current was not lost in

any preparations from warm-acclimatized crayfish during treat-

ment with MbCD (Fig. 2D). Thus, the ability of MbCD to impair

impulse propagation depended on the temperature to which

crayfish were previously acclimatized and, at incubation times

greater than ,3 min, correlated with the reduction in EJP

amplitude (Fig. 2A).

Failure of impulses to propagate to the nerve terminals and the

concomitant reduction in EJP amplitude in cold-acclimatized

crayfish correlated with a reduction in neurotransmitter release.

Quantal content decreased by 54610% (P,0.05) in preparations

from cold-acclimatized crayfish at 10 min of exposure to 10 mM

MbCD (Fig. 3A). Exposure to Ch-HPbCD did not recover quantal

content, nor did a saline wash. In individual trials, the decrease in

quantal content coincided with disappearance of the nerve

terminal signal. No significant change in quantal content was

observed at 3 min of exposure to MbCD, when EJP amplitudes

were transiently elevated. In preparations from warm-acclimatized

crayfish, quantal content increased by 50 64% at 10 min of

exposure to MbCD (Fig. 3B; P,0.05). This finding is consistent

with the fact that impulses were still able to reach the synaptic

terminals (Fig. 2B), and with observations that the presence of

MbCD increased transmitter release from synaptic boutons

activated directly with electrical stimulation or with a calcium

ionophore [12]. Subsequent exposure to Ch-HPbCD resulted in

a return of quantal content to control levels, and a saline wash

resulted in stable release comparable to controls. Control

preparations not exposed to MbCD showed no significant change

in quantal content, indicating that the level of transmitter release

was stable in the neuromuscular preparations throughout the 40

min recording period, regardless of acclimatization temperature

(Fig 3 C, D). Thus, over a 10 min incubation period, MbCD
altered release of neurotransmitter from synaptic terminals, and

the direction of the change depended upon acclimatization

temperature. However, the increase in quantal content observed

at 10 min of MbCD exposure in the warm-acclimatized group

(Fig. 3B) was not accompanied by an increase in EJP amplitude

(Fig. 2B). This suggested that MbCD might also affect factors

downstream of transmitter release, such as input resistance of the

muscle fibers or sensitivity of postsynaptic receptors to the

neurotransmitter, L-glutamate [36,37].

Effects on muscle fibers
In preparations from cold-acclimatized crayfish, treatment with

10 mM MbCD elicited an almost immediate transient increase of

2567% (P,0.05) in the amplitude of depolarization evoked by

exogenous L-glutamate (Fig. 4A). This transient increase was

followed immediately by a rapid drop (17% / min) in the

amplitude of depolarization which plateaued within 6 min of

exposure to MbCD; voltage responses decreased by 6067% and

by 9063% at 5 min and 10 min of MbCD exposure, respectively,

and the effect was statistically significant at both times compared

to control preparations (P,0.01). The reduction in responsiveness

to L-glutamate was not reversed by washing with 10 mM Ch-

HPbCD (10 min) or subsequently with saline (10 min; Fig. 4A). In

preparations from warm-acclimatized crayfish, MbCD appeared

to elicit a small transient increase in responses to glutamate within

2–3 min of application (Fig 4B). When data at this time point were

compared to responses over the entire pre-application period, the

increase approached statistical significance (P= 0.056, ANOVA).

Subsequently, the amplitude of glutamate responses decreased, but

this did not begin until ,2 min after exposure to MbCD and was

both slower (7% / min) and less extensive (,50 % inhibition after

10 min) than in the cold-acclimatized group (Fig 4B). In the warm-

acclimatized group, the decreased responsiveness to L-glutamate

was also largely reversed by washing in Ch-HPbCD (10 min), and

reversed completely upon subsequent washing in saline (P,0.05).

MbCD had no effect on input resistance of the muscle fibers,

estimated as cord resistance (Figs. 4A, B) or as slope resistance

(Table 1), in either warm- or cold-acclimatized crayfish. Control

preparations not exposed to MbCD showed no significant change

in either input resistance or responses to L-glutamate over the

recording time (Fig. 4C, D). MbCD did not alter assayed levels of

glutamate in physiological saline (Figure S1) and, thus, did not

appear to sequester glutamate.

In the warm-acclimatized group the increase in quantal release

in the presence of MbCD did not lead to any change in EJP

amplitude. Since input resistance also did not change, it seems

likely that the responsiveness of postsynaptic receptors was

reduced. The effects of MbCD on responses to iontophoretic

application of glutamate confirm that the responsiveness of the

postsynaptic cell was reduced, but it is not clear if the change in

sensitivity represents effects on junctional receptors or extrajunc-

tional receptors. Unfortunately, spontaneous miniature synaptic

currents are very rare in the deep abdominal extensor muscles,

and we did not observe them. In our loose patch recordings

however, we could generally distinguish single and multiple

quantal events (as reported previously for the deep abdominal

extensor muscles [38]). To address this, we measured the

amplitudes of evoked quantal currents corresponding to single

events (Figure S2). In the warm-acclimatized group, quantal

amplitude decreased by ,10% (P,0.05) after 5–10 min exposure

to MbCD and the effect reversed with cholesterol loading. In the

cold-acclimatized group quantal size also decreased by ,10%

(P,0.05) but the effect did not reverse with cholesterol loading as

impulse propagation did not recover.

Lipid analyses
The removal of cholesterol by MbCD, and the selectivity of this

effect were examined by extracting and assaying total lipids from

the neuromuscular preparations. MbCD reduced total cholesterol

levels in neuromuscular preparations from both cold- and warm-

acclimatized crayfish without altering the level of any other lipids

analysed (phosphatidic acid, phosphatidylcholine, phosphatidyl-

serine, phosphatidylethanolamine and phosphatidylinositol; Fig-

ure S3) except for sphingomyelin in the cold-acclimatized animals

(961% reduction). Preparations from both cold– and warm-

acclimatized crayfish showed a trend toward reduced cholesterol

concentrations within 3 min of MbCD exposure, and by 10 min of

treatment there was a significant decrease in the total cholesterol

in both cold and warm-acclimatized groups (Fig. 5; P,0.05). Both

acclimatization groups had equivalent proportions of cholesterol at

the beginning of the experiment (when exposed only to saline),

suggesting that total cholesterol levels in full neuromuscular

preparations at these acclimatization temperatures were not

significantly altered. Notably, phosphatidylethanolamine levels

were significantly higher in the cold- vs. warm-acclimatized group

(Figure S3). Proportions of cholesterol were also nearly identical

Cyclodextrin and Neurotransmission
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between the two acclimatization groups at the end of the 10 min

exposure to MbCD, indicating that the extent of cholesterol

chelation was comparable in both cases. The two groups, however,

differed following attempts to restore cholesterol to the cells.

Washing for 10 min in Ch-HPbCD failed to increase cholesterol

in the cold-acclimatized group but did increase cholesterol

significantly in the warm-acclimatized group (P,0.05). Following

the saline wash, cholesterol was significantly higher in the warm-

acclimatized group than in the cold-acclimatized group (P,0.05).

Due to differences in cellular mass, the neuromuscular

preparations were comprised mainly of muscle fibers and only

small amounts of nervous tissue. To determine whether MbCD
might have different effects on nerve and muscle, lipids were

extracted separately from isolated nervous tissues (ventral nerve

cords from the crayfish abdomen) and isolated muscles from which

the nerves and their branches had been cut away (Fig. 6). It is

immediately striking that there is substantially more cholesterol in

nerve than in muscle, regardless of acclimatization temperature,

and that there is 2463% more cholesterol in nerves from cold-

relative to warm-acclimatized crayfish. The results showed

essentially the same trends as the neuromuscular preparations

(Fig. 5). Exposure to MbCD for 3 min showed a trend toward

cholesterol reduction that was statistically significant in muscles

from warm-acclimatized crayfish, and a 10 min exposure to

MbCD reduced cholesterol significantly in all tissues. Subsequent

washing with Ch-HPbCD and saline brought cholesterol back to

control levels in tissues from warm-acclimatized crayfish but failed

to cause statistically significant recovery in tissues from cold-

acclimatized crayfish.

Discussion

In the present work acclimatization temperature was used as

a tool to assist in understanding the effects of MbCD on chemical

synapses and to provide insight into how extensively these effects

are related to the depletion of cholesterol from cell membranes.

Multiple pre- and post-synaptic effects, including acute effects of

MbCD that are not linked to the extraction of cholesterol,

complicate efforts to understand the synaptic release mechanism.

Direct assay of cholesterol in the neuromuscular preparations used

for electrophysiological assessments, as well as in separate neural

and muscular tissue, has dissociated some effects of MbCD from

the depletion of cholesterol. It is thus critical to control for the

acute effects of MbCD as a reagent in dissecting the physiological

roles of cholesterol in different molecular mechanisms.

MbCD
While most cyclodextrins exhibit some ability to remove

different lipids from membranes, MbCD has reasonable selectivity

for cholesterol, although this can vary somewhat depending on the

actual composition of the membrane. Importantly, it is now

apparent that interfacial effects including adsorption, local

membrane destabilization, and desorption of the cholesterol-

cyclodextrin complex from the membrane interface (i.e. removal

of cholesterol) occur on very rapid timescales (i.e. hundreds of

nanoseconds) and overcome substantial energy barriers [39].

Thus, after this critical adsorption of MbCD to the membrane and

its subsequent desorption with cholesterol, the sterol is complexed

(i.e. ‘solubilized’), establishing a dynamic equilibrium between

membrane and ‘soluble’ cholesterol during which time cholesterol

Figure 3. MbCD has opposing effects on quantal content in neuromuscular preparations from cold- vs. warm-acclimatized animals.
Extracellular focal recordings were made from nerve branches within abdominal segment IV while stimulating the nerve in segment III. These
recordings detected the presynaptic current and postsynaptic response following nerve stimulation. Quantal content was determined using the
failures method. A. Cold-acclimatized group (open bars). First 10 min reflects saline perfusion. Application of 10 mM MbCD ultimately resulted in
a significant reduction of quantal content after 10 min; this correlated with a reduction in EJP amplitude, and a loss of the nerve terminal signal.
Quantal content could not be recovered with cholesterol loading (10 mM Ch-HPbCD) or a subsequent saline wash B. Warm-acclimatized group
(closed bars). Application of 10 mM MbCD ultimately resulted in a significant increase in quantal content after 10 min. The increase in quantal
content reversed following the application of 10 mM Ch-HPbCD, and stabilized to control levels during the saline wash. C–D. Control recordings from
the cold- and warm-acclimatized groups, respectively, indicate stable quantal content over the 40 min recording period. (Stimulation: 0.2 Hz, data
were averaged into 5 min bins, giving 60 stimuli per bin. N= 7. * indicates P,0.05.).
doi:10.1371/journal.pone.0036395.g003
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can also be inserted at other membrane locations. The removal of

cholesterol will yield a net decrease in local negative curvature and

also result in the rapid equilibration of remaining cholesterol from

the inner to the outer monolayer; thus, there are more structural

effects on the membrane than simply the physical removal of

cholesterol. It is therefore important to realize that there are acute

effects of MbCD–membrane interactions as well as dynamic

responses to cholesterol removal, and both must be considered in

addition to the effect of a net reduction in membrane cholesterol.

Interpretation must thus also take into account the possibility of

cholesterol re-insertion into the membrane from the ‘soluble’ pool.

Figure 4. MbCD alters postsynaptic responsiveness. Intracellular voltage recordings were made from L1 muscle fibers within segment IV while
iontophoretically applying L-glutamate and simultaneously injecting hyperpolarizing current intracellularly. These recordings detected changes in
input resistance of muscle fibers as well as any changes in postsynaptic receptor sensitivity. Under no conditions was there an effect on the input
resistance of muscle fibers (open and closed squares). A. Cold-acclimatized group (open symbols). Responsiveness to iontophoretically applied
glutamate (open circles) revealed a significant (P,0.05) transient increase following the application of 10 mM MbCD, that subsequently resulted in
a 17%/min reduction in the sensitivity to applied glutamate which plateaued within 6 min. Attempts to recover responsiveness, using a cholesterol-
loaded cyclodextrin (Ch-HPbCD) and a saline wash, were unsuccessful. B. Warm-acclimatized group (closed symbols). While there was no immediate
change in responsiveness to applied glutamate (closed circles), a subsequent gradual reduction during exposure to MbCD occurred. Application of
Ch-HPbCD recovered responsiveness to 90% of initial values, and a subsequent saline wash resulted in a return to control values. C-D. Control
recordings from cold- and warm-acclimatized groups were stable throughout the 40min recording period. Insets: recordings of input resistance and
responsiveness to iontophoretically applied glutamate at selected time points. * indicates P,0.05, { indicates P,0.01. N= 7. Scale bars: 15 mV,
250 ms.
doi:10.1371/journal.pone.0036395.g004

Table 1. Input resistances in deep abdominal extensor
muscle fibers, estimated using current pulses of varying
amplitude (i.e. ‘‘slope’’ resistance).

Control MbCD

Cold-acclimatized 115+8 kV 107+10 kV

Warm-acclimatized 85+10 kV 78+11 kV

Input resistance was measured in the same fibers in 23% Ca2+ Saline (‘‘Control’’)
and, subsequently, in the presence of 10 mM MbCD (N= 5 in all cases).
doi:10.1371/journal.pone.0036395.t002

Cyclodextrin and Neurotransmission
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Acclimatization temperature alters the effects of MbCD
We have established quantitatively that treatments with MbCD

result in the selective extraction of cholesterol from the membranes

of crayfish neuromuscular preparations, irrespective of previous

acclimatization temperature. This confirms previous observations

using filipin imaging on preparations from crayfish acclimatized at

15–18uC [12]. There were however several differences between

the effects of MbCD on preparations from warm- and cold-

acclimatized animals when these were assessed at the same

temperature (21uC). First, although application of MbCD elicited

a small, rapid, transient increase in EJP amplitude in both groups,

this effect was almost immediate in the warm-acclimatized group

but delayed in the cold-acclimatized group (Fig. 2). Second,

continued (6–10 min) exposure to MbCD elicited a dramatic

decrease in EJP amplitude and failure of impulse propagation to

synaptic terminals in the cold-acclimatized group, but neither of

these effects occurred in the warm-acclimatized group (Fig. 2).

Third, extended treatment (i.e. 10 min) with MbCD decreased

quantal release in the cold-acclimatized group but increased

release in the warm-acclimatized group (Fig. 3), despite a compa-

rable decrease in the amplitude of evoked single quantal events in

both groups (Figure S2); both effects in the cold-acclimatized

group were irreversible. Fourth, application of MbCD yielded

a rapid, transient increase in the amplitude of muscle de-

polarization evoked by exogenous L-glutamate, but this effect

was only significant in the cold-acclimatized group (Fig. 4). Finally,

although exposure to MbCD subsequently decreased responses of

muscle fibres to L-glutamate in both experimental groups, the

effect was more pronounced and irreversible in preparations from

cold-acclimatized animals. Results from direct, quantitative lipid

analyses enabled assessment of whether some or all of these

differences related to cholesterol levels. The ability of MbCD to

reduce transmitter release in the cold-acclimatized but not in the

warm-acclimatized group was most likely related to its effect(s) on

impulse propagation. Impulses failed to propagate to the synaptic

terminals in preparations from cold-acclimatized crayfish after 6-

10 min of exposure to MbCD, when cholesterol levels were

significantly reduced. In the warm-acclimatized group, however,

impulse propagation was not disrupted, even though cholesterol

levels were significantly reduced by the end of the exposure to

MbCD.

Cholesterol levels
Despite little difference in the ratio of cholesterol to total lipids

in neuromuscular preparations from cold and warm-acclimatized

crayfish, analyzing cholesterol levels separately in nerve and

muscle revealed substantially more cholesterol in nerves, and

comparison between the warm- and cold-acclimatized groups

revealed significantly less neuronal cholesterol in the warm-

acclimatized group (Fig. 6). As cholesterol is important in synapse

formation [40] and is a major component of secretory vesicles

[41,42], the difference in cholesterol content between nerve and

muscle tissues is perhaps not surprising. Similarly, it is known that

cold-acclimatization can result in increased levels of membrane

cholesterol in some ectothermic animals [8,30].

Notably, in preparations from cold-acclimatized crayfish,

treatment with MbCD caused little change (1563 %) in

cholesterol levels from muscle, but a substantial change (2964%)

in cholesterol levels from nervous tissue. In preparations from

warm-acclimatized crayfish, this effect reversed; only in muscle

from warm-acclimatized animals did 3 min of exposure to MbCD
significantly decrease cholesterol levels. Furthermore, in both

muscle and nerve, previous cold-acclimatization resulted in an

inability to take-up exogenous cholesterol; warm-acclimatized

preparations depleted of cholesterol were readily restored to native

cholesterol levels using a standardized protocol for the delivery of

exogenous cholesterol [3,4].

Transient increases in EJP
The transient increase in EJP amplitude (18%) in the cold-

acclimatized group occurred within 1-3 min of exposure to

MbCD, preceding both impulse propagation failure and any

significant reduction in cholesterol levels in nerve or muscle tissue.

The comparable transient increase in EJP amplitude in the warm-

acclimatized group (11%) occurred within seconds of MbCD
application, substantially preceding any other effects, including

cholesterol depletion. Thus, if these transient increases in EJP

amplitude are not directly linked to the loss of cholesterol, there

must be another effect of acute exposure to MbCD. Considering

the rapid interfacial effects of cyclodextrin adsorption [39], this

would indicate that the addition of MbCD yielded localised

destabilisation resulting in the fusion of some vesicles (or perhaps

transient leakage of transmitter). Whether this rapid, transient

increase in EJP is directly attributable to cholesterol removal and/

or to localized interfacial effects remains to be assessed by methods

with more spatial and temporal resolution, likely coupled with

molecular dynamic analyses [39].

Since there was no significant increase in quantal content or

muscle fiber input resistance within 1–3 min of exposure to

MbCD, it also seemed likely that the transient increase in EJP

amplitude was related to some extent to an increase in the

sensitivity of postsynaptic receptors to the transmitter. Notably,

a similar rapid, transient increase in the amplitude of glutamate-

evoked depolarization in muscle was also seen in response to the

application of MbCD. This transient increase was statistically

Figure 5. MbCD caused comparable significant cholesterol
depletion in warm- and cold-acclimatized groups but this
effect was irreversible in the latter. Cholesterol concentrations
were assessed in the same neuromuscular preparations used for the
electrophysiological analyses (Figures 1–4). Cold-acclimatized groups
(open bars). Application of 10 mM MbCD resulted in a significant
reduction in cholesterol after 10 min. Attempts to recover cholesterol
by perfusion with Ch-HPbCD (RECOVERY) were unsuccessful. Warm-
acclimatized groups (solid bars). Application of 10 mM MbCD resulted
in a significant reduction in cholesterol after 10 min, comparable to that
measured in the cold-acclimatized group. Subsequent perfusion with
Ch-HPbCD resulted in recovery to a level comparable to the saline
control group (i.e. baseline). N = 7. * indicates P,0.05.
doi:10.1371/journal.pone.0036395.g005
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significant in cold-acclimatized preparations (25%, P,0.05) and

approached statistical significance in warm-acclimatized prepara-

tions (8%, P= 0.056; Fig. 4). Transient increases in responses to

glutamate can be caused by a decrease in desensitization of

glutamate receptors, as reported for Concanavalin A in locust

skeletal muscle [43]. Thus, it is possible that MbCD might reduce

desensitization to the transmitter, but we cannot rule out other

possible explanations, such as receptor insertion or redistribution

[44–46]. Since the apparent increase in glutamate sensitivity was

just below statistical significance in the warm-acclimatized group,

we cannot rule out the possibility that MbCD might enhance

transmitter release transiently in these preparations (as discussed

above). Such an effect, however, would be small, since EJP

amplitude increased by only 11%. We thus interpret the transient

effects of MbCD on EJP amplitude to represent transient

disruptions of the plasma membrane due to initial interactions

with the cyclodextrin, which may or may not result in local

changes in cholesterol level. Such potentially non-specific, in-

terfacial effects of MbCD should thus be taken into account

whenever physiological assessments are carried out in the presence

of this cyclodextrin. There is clearly a difference between assessing

the acute effects of MbCD as a reagent and the role of cholesterol

in molecular mechanisms underlying specific physiological

changes [3,4,9].

Cholesterol, EJPs and quantal content
In contrast to the rapid transient increases in EJP amplitude

seen early after the addition of MbCD, longer treatments (i.e. 6–

10 min) resulted in significant depletion of nerve and muscle

cholesterol from both acclimatization groups. However, this also

resulted in opposing effects on the quantal content from the two

acclimatization groups (Fig. 3). Thus, the use of two different

acclimatization conditions effectively dissociated quantal content

from total membrane cholesterol levels.

The removal of cholesterol would result in a net increase in local

positive curvature that would not be conducive for membrane

fusion [3,4]; this likely contributed in part to the reduction of EJPs

seen in the cold-acclimatized group as the exposure to MbCD
continued (Fig 2A). However, as membranes in the warm-

acclimatized group readily integrated exogenous cholesterol, it

seems likely that they would also efficiently re-capture some of

their own cholesterol from MbCD complexes which would

contribute to the increased quantal content observed in the

warm-acclimatized group (Fig. 3B).

However, the biggest contributor to the reduction in EJP

amplitude in the cold-acclimatized group is most likely related to

the observed decline in impulse propagation to synaptic terminals,

preventing transmitter release (Figs 2 and 3). We suspect that the

reductions in EJP amplitude mainly reflect the progressive loss of

active axonal branches and, thus, progressive loss of secretion from

synapses on each muscle fibre. Failure of impulse propagation in

crayfish nerve terminals with repeated stimulation has been shown

to occur at distal branch points and to spread toward the primary

axon [47]. This interpretation is consistent with the reported loss

of nerve terminal signal prior to loss of impulse in the primary

axon during treatment with MbCD [12]. Since decreased levels of

cholesterol have been linked to decreased functional efficacy of ion

channels [15,48,49], it is tempting to suggest that impulse

propagation failure correlates with changes in cholesterol. Indeed,

our cholesterol measurements, and previous work with filipin

staining [12], indicate that changes in impulse propagation

correlate with reduced cholesterol levels, but only in cold-

Figure 6. Cholesterol content, depletion, and recovery differ significantly between cold- and warm-acclimatized groups:
comparison of isolated nerve and muscle. Cholesterol concentrations were assessed independently in both isolated nerve and muscle tissue.
Lipids were extracted separately from isolated nervous tissue (ventral nerve cords from the crayfish abdomen) and isolated muscles. Nerve (left):
initial concentrations of cholesterol were significantly reduced in warm- vs. cold-acclimatized animals. Cold-acclimatized group (open bars).
Application of 10 mM MbCD caused a significant reduction in cholesterol after 10 min. Attempts to recover cholesterol by perfusion with Ch-HPbCD
(recovery) and a saline wash were unsuccessful. Warm-acclimatized group (solid bars). Application of 10 mM MßCD also caused a significant
reduction in cholesterol after 10 min. Subsequent perfusion with Ch-HPbCD and saline resulted in recovery of cholesterol to initial levels (i.e.
baseline). Muscle (right): initial cholesterol levels were comparable in both the cold- and warm-acclimatized groups. Application of 10 mM MbCD
caused a significant reduction in cholesterol after 10 min regardless of the acclimatization condition. Again, attempts to recover cholesterol using Ch-
HPbCD and a saline wash were unsuccessful in the cold-acclimatized group. Notably, in the warm-acclimatized group, 3 min exposure to MbCD
already resulted in a significant reduction of muscle cholesterol. Perfusion with Ch-HPbCD and saline was sufficient to return cholesterol levels to
initial (i.e. baseline) levels in the warm-acclimatized group. N = 7.* indicates P,0.05
doi:10.1371/journal.pone.0036395.g006
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acclimatized animals. Impulse propagation is not impaired in the

warm-acclimatized group even though MbCD depletes these

preparations of cholesterol. Thus, our results suggest that the

ability of MbCD to impair impulse propagation depends on

factors associated with prior acclimatization to a lower tempera-

ture.

In the warm-acclimatized group, where impulse propagation

was not impaired, MbCD enhanced transmitter release after 5–

10 min. This effect was consistent with previous observations that

MbCD can enhance release if synaptic terminals are excited

electrically [12]. Enhancement of release in our trials reversed

during subsequent treatment with Ch-HPbCD, suggesting that

this effect may involve cholesterol removal. This interpretation,

however, remains inconsistent with the bulk of literature indicating

that cholesterol loss inhibits the release process (3, 4, 8 and 9+
others). Moreover, we have not ruled out the possibility that

removal of MbCD itself may have reversed the enhancement of

release in our trials.

The apparent increase in transmitter release / quantal content

in the warm-acclimatized group, without a concomitant increase

in EJP amplitude, could be due to reduced sensitivity of

postsynaptic receptors to the transmitter [50]. This is consistent

with the partial decline in post-synaptic responsiveness to

glutamate in the warm-acclimatized group (Figure 4B) and

a significant reduction in the amplitude of single, evoked quantal

currents (Figure S2). Muscle fiber input resistance did not change

and, thus, did not contribute to changes in EJP amplitude.

Considering the pleiotropic effects of MbCD, additional effects on

the pre- and post-synaptic membranes cannot be ruled out.

However, a critical role for cholesterol in the post-synaptic

response is clear: after the washout of MbCD, reduced cholesterol

levels correlate with reduced responsiveness in the cold-acclima-

tized group. Furthermore, washout of MbCD and supplementa-

tion with exogenous cholesterol correlate with the full recovery of

responsiveness in the warm-acclimatized group only. Thus, the

mechanism underlying changes in postsynaptic sensitivity to

glutamate is likely to involve changes in cholesterol and not loss

of a critical protein.

Postsynaptic effects
In contrast with an earlier report indicating that MbCD did not

alter the size or shape of miniature end-plate potentials (mepps) in

crayfish dactyl opener muscle [12], our data indicate that MbCD
affects postsynaptic cells. Although it did not alter input resistance

in muscle fibers, MbCD dramatically reduced responses to local

application of L-glutamate by iontophoresis, suggesting a direct

effect on glutamate receptor function. In the cold-acclimatized

group, the decreased sensitivity of postsynaptic receptors to

glutamate is likely to contribute substantially to the decrease in

EJP amplitude. Taken as a whole, the ability of MbCD to alter so

many synaptic properties makes it difficult to understand the acute

effects of the compound, or to predict how it ultimately alters the

overall input/output relation at chemical synapses.

As noted above, exposure to MbCD decreased responses to L-

glutamate in both experimental groups at times that coincided

with reduction in cholesterol levels in muscle cells. In the warm-

acclimatized group, glutamate-sensitivity returned toward normal

levels with the addition of exogenous cholesterol (Fig 3B). In the

cold-acclimatized group, Ch-HPbCD failed to restore cholesterol

to the cells, and responsiveness to glutamate failed to return. Thus,

the ability of MbCD to impair glutamate responsiveness correlated

well with its ability to remove cholesterol, suggesting that this

postsynaptic effect is mediated at least in part by cellular depletion

of cholesterol. The reduction in glutamate responsiveness,

however, was greater in the cold-acclimatized group, even though

the warm-acclimatized group exhibited a slightly greater degree of

cholesterol depletion and thus slightly lower cholesterol levels.

Thus, factors other than just cholesterol depletion likely influence

the effect of MbCD on glutamate responsiveness.

The inability to recover EJPs, nerve terminal signals or

cholesterol in the cold-acclimatized group is intriguing, particu-

larly because these physiological effects recovered with cholesterol

loading in other crayfish neuromuscular junctions [12]. In that

report, as in ours, crayfish were maintained below room

temperature, but experiments on isolated preparations were

carried out at room temperature. The acclimatization tempera-

tures, however, were slightly different (13–14uC in the present

report and 15–18uC in [12]). At face value, these observations

suggest that reducing acclimatization temperature makes it more

difficult to restore cholesterol to plasma membranes following its

removal with MbCD. It is also curious that acute exposure to

MbCD impairs impulse propagation at room temperature in cold-

acclimatized animals but not in animals acclimatized to room

temperature, despite its ability to remove cholesterol in both cases.

The differential effects of MbCD on physiological responses

from the cold- and warm-acclimatized groups may provide some

insight into the functional nature of cholesterol packing or

domains. For example, why is the transient rise in EJP amplitude

delayed in the cold-acclimatized group following the application of

MbCD (Fig. 2) yet the transient increased sensitivity to glutamate

is almost instantaneous (Fig. 4)? First, the cold-acclimatized group

have substantially more cholesterol in their nerves than do the

warm-acclimatized group. Thus, at the same dose, MbCD would

have to remove far more bulk cholesterol from the cold-

acclimatized group before beginning to effectively impinge upon

the functionally critical pool of cholesterol. In contrast, in muscle,

there is little difference in the cholesterol content between cold-

and warm-acclimatized animals. Furthermore, exogenous choles-

terol can be efficiently incorporated into membranes from warm-

but not cold-acclimatized animals (Figures 5, 6). Together, we

interpret these effects to indicate substantial differences in lipid

packing. In membranes from the cold-acclimatized animals, most

cholesterol may be in larger microdomains that stably localize

functionally critical proteins; thus, upon removal of cholesterol,

domains rapidly dissipate resulting in pronounced effects on

function. It is generally accepted that the major lipidic constituents

of these microdomains are cholesterol and sphingomyelin. It is

noteworthy that the only other significant change in lipid

composition following MbCD application was an ,10% re-

duction in sphingomyelin in cold-acclimatized preparations

(Figure S3). This may at least in part account for the inability of

these tissues from cold-acclimatized animals to take-up exogenous

cholesterol and recover functional microdomains. We note,

however, that this is further evidence of the pleiotropic effects of

MbCD, and urge multiple controls and quantitative assessments of

cholesterol in experiments involving this compound.

Acclimatization temperature has thus proven to be another

important tool to understand the roles of cholesterol in specific

physiological processes, and to highlight the non-specific or acute

effects of treating cellular membranes with MbCD. In order to use

MbCD most effectively to study the roles of cholesterol it is thus

important that it be removed from the assay system prior to

assessing functional and molecular changes; only this will ensure

that correlations with membrane cholesterol content alone are

being analyzed, and that any other potential molecular alterations

can be identified under equilibrium conditions. The distinction is

between assessing the effects of MbCD as a surface-active reagent
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vs. rigorously understanding the roles of cholesterol in physiolog-

ical mechanisms.

Materials and Methods

Crayfish maintenance and dissection
Procambarus clarkii were obtained from Atchafalaya Biological

Supply (Raceland, Louisiana, USA) and had carapace lengths

ranging from 1 K to 3 cm. They were placed randomly into two

holding tanks, one maintained at room temperature (20–22uC)
and the other maintained at 14uC. Crayfish were allowed to

acclimatize to these temperatures for 17–35 days, and were

maintained in a room with 12:12 light/dark cycle during the entire

time course of the study; they were fed artificial crabmeat

(SelectionTM crab flavoured Pollack, from a local grocery store)

three times per week.

Crayfish were cold anaesthetized immediately before being

euthanized. The dorsal side of the abdominal shell containing the

extensor muscles was removed and cut down the midline, and

each half (Fig. 1A) was placed immediately in crayfish saline

containing 50% of the normal calcium concentration and ten

times the normal magnesium concentration (‘‘50% Ca2+ Saline’’,

Table 2) based on physiological concentrations [51]. Each half of

the abdomen was pinned, ventral side up, in a Petri dish lined with

SylgardTM for further dissection. Abdominal segments I, II, VI,

and half of V were removed, and all of the medial (M) muscles in

the remaining segments were removed. The remaining segments

were pinned ventral side up in a rectangular recording chamber

with dimensions 19 mm612 mm63 mm, which was filled with

50% Ca2+ saline to a volume of 684 microlitres. The preparation

was pinned so as to stretch the lateral (L1 and L2) muscles and

expose the nerve in segment III. A peristaltic pump was utilized to

enable the efficient exchange of experimental solutions from the

recording chamber at a rate of 800microliters/min.

Electrophysiological recording
All electrophysiological recordings as well as iontophoresis were

carried out at room temperature (21uC). Excitatory junctional

potentials (EJPs) and synaptic currents were recorded as described

by Mercier and Atwood (1989). A suction electrode was utilized to

stimulate the nerve in segment III, and recordings were made from

muscles L1 in segment IV (Fig. 1B) to ensure that EJPs were

elicited by activating excitatory axon #3 [52]. Stimuli were

generated by a Grass (West Warwick, U.S.A.) S88 stimulator, fed

through a Grass SIU5 stimulus isolation unit, and were delivered

at a frequency of 0.2 Hz. EJPs were recorded using glass

microelectrodes filled with 3 M KCl, connected to an intracellular

electrometer (Warner Instruments, St. Laurent, Quebec, Canada).

Tip resistance was typically 15 MV. Resting membrane potential

(RMP) was recorded at the beginning and end of each trial.

Synaptic currents and nerve terminal signals were recorded

using loose patch electrodes [53] with an outer diameter of

60 micrometers and an inner diameter of 10–15 micrometers,

which were connected to a virtual ground circuit that lacked the

capacity for direct stimulation through the loose patch electrode

[54]. Loose patch signals were recorded simultaneously with EJPs.

Quantal content was estimated using the failures method [55],

according to the equation m = ln(N/No), where m is the quantal

content, N is the number of stimuli in the trial and No is the

number of failures. Data were averaged into 5 min bins giving

60 stimuli per bin. Concentrations of calcium and magnesium in

the extracellular saline were adjusted (Table 1) to ensure that

failure rate was sufficiently high in each trial for the number of

evoked quantal currents to fit a Poisson distribution [55,56]. At

least 10 min was allowed for the solution to wash though the

recording chamber before beginning each experiment. Trials with

Methyl-Beta-cyclodextrin (MßCD) were performed in the 23%

Ca2+ crayfish saline.

Electrophysiological signals were monitored on a storage

oscilloscope. Signals from the intracellular and loose patch

amplifiers were digitized and acquired into data files using

a computerized data acquisition system equipped with data

analysis and recording software (Electronics Division, Brock

University, St. Catharines, Ontario, Canada)[57]. Nerve terminal

signals and EJPs were signal-averaged over 30s intervals, with each

signal representing the average of 6 successive responses. The

number of stimuli failing to elicit quantal currents was assessed by

viewing stored recordings, which were also processed automati-

cally to detect peak values for each signal (nerve terminal, quantal,

and EJP). Peak values were stored in a.txt file and imported into

Microsoft Office Excel 2007 for graphical and statistical analyses.

Input resistance was measured by inserting two glass micro-

electrodes filled with 3 M KCl into the same muscle fiber,

injecting hyperpolarizing current through one microelectrode and

recording voltage responses with the second. The electrodes were

connected to separate electrometers (Warner Instruments, St.

Laurent, Quebec, Canada), at least one of which was equipped

with a bridge circuit for passing current. Injected currents were

150 ms in duration and were applied at a rate of 0.1 Hz. In the

same trials, L-glutamate was applied to the muscle fibers

iontophoretically through an extracellular microelectrode filled

with 1 M L-glutamate. Iontophoretic current was applied through

a Cyot721 Electrometer (World Precision Instruments, Inc.,

Sarasota, Florida, U.S.A.) using a pulse duration of 50 ms. To

estimate cord resistance, current was injected into the muscle

fibers 450 ms before each iontophoretic application of L-

glutamate. In a separate set of trials, slope resistance was estimated

by injecting a series of hyperpolarizing currents of varying

amplitude, recording voltage responses and estimating the slope

of voltage vs. current plots. Signals were acquired using the

Table 2. Chemical composition of salines used. All values are expressed in mM.

50% Ca2+ Saline 26% Ca2+ Saline Ca2+- free Saline 23% Ca2+ Saline MbCD

NaCl 200.7 200.7 200.7 200.7 200.7

KCl 5.4 5.4 5.4 5.4 5.4

CaCl2.2H2O 6.5 3.4 - 3.1 3.1

MgCl2.6H2O 12.3 15.7 19.0 16.0 16.0

HEPES 5.0 5.0 5.0 5.0 5.0

MbCD - - - - 10.0

doi:10.1371/journal.pone.0036395.t001
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computerized data acquisition system, and signals were processed

automatically to identify the amplitude of the glutamate response

as well as the amplitude of the response to hyperpolarizing current.

MßCD and hydroxypropyl-beta-cyclodextrin (HPßCD)(Sigma-

Aldrich Inc., Oakville, Ontario, Canada) were stored in powder

form at room temperature and were dissolved in crayfish saline to

a final concentration of 10 mM in each case. Cholesterol loaded

HPßCD (Ch-HPßCD) was prepared as described previously [3].

The solutions were stirred for 30 min prior to and throughout

each trial. All solutions were adjusted to pH 7.4.

Lipid analyses
Tissues were snap frozen in liquid nitrogen at various stages of

experimental treatment (i.e. before, during, and after exposure to

MßCD) and stored at 280uC. Samples were manually homoge-

nized on ice with a polyethylene pestle in a 1.5 mL tube with

saline buffer (51.3 mM NaCl, 5 mM 4-(2-hydroxyethyl)-1-piper-

azineethanesulfonic acid (HEPES), 4.0 mM CaCl2, 1.7 mM KCl,

1.5 mM MgCl2; pH 7.9). The samples subsequently underwent

lipid extraction according to the method of Bligh and Dyer [58],

with previously described modifications [4], and were split into

two aliquots. One aliquot was dissolved in 16Reaction buffer (for

enzymatic cholesterol determination: 50 mM NaCl, 5 mM cholic

acid, 0.1% Triton X-100, 100 mM potassium phosphate pH 7.4),

and the second aliquot was stored under N2 (230uC) until

required for phospho- and neutral lipid analyses. For automated

high performance thin layer chromatography (HPTLC), lipids

were dissolved into chloroform: methanol (2:1,v/v) and loaded

onto silica gel 60 HPTLC plates (EMD Chemicals, Darmstadt,

Germany) with a parallel dilution series of lipid standards. All lipid

standards were the oleic acid (18:1D9) esters (Avanti Polar Lipids,
Alabaster, Alabama, U.S.A.). Cholesterol in the samples was

determined using the Amplex Red cholesterol assay kit (Invitro-

gen, Carlsbad, California, U.S.A.) according to the manufacturer’s

instructions. Protein content was assessed using a BCA protein

assay (Thermo Scientific, New Hampshire, U.S.A.).

HPLC plates were prewashed with methanol: ethyl acetate (6:4,

v/v) and activated at 110uC for at least 30 min prior to loading.

Dilution series of both native extract and lipid standards in

chloroform: methanol (2:1) were loaded onto HPTLC plates under

N2 using the CAMAG Linomat IV, and developed in the

CAMAG AMD2 (CAMAG Inc., Muttenz, Switzerland) as de-

scribed elsewhere [3,4,7,42]. For neutral lipids, HPTLC plates

were developed in five steps: with dichloromethane: ethyl acetate:

acetone (80:16:4 v/v/v) to 40 and 55 mm, then sequentially with

hexanes: ethyl acetate to 68 mm (9010 v/v), 80 mm (955 v/v), and

90 mm (100:0 v/v). Phospholipids were resolved using a two-step-

separation: to 90 mm with dichloromethane: ethyl acetate:

acetone (80:16:4 v/v/v), dried under vacuum for 6 min, then

developed again to 90 mm with chloroform: ethyl acetate:

acetone: isopropanol: ethanol: methanol: water: acetic acid

(30:6:6:6:16:28:6:2, v/v).

Plates were sprayed uniformly with 10% copper sulfate (Copper

(II) sulfate heptahydrate, Sigma Chemical Co., St. Louis, Missouri,

U.S.A.) in 8% aqueous phosphoric acid, allowed to dry 10 minutes

at room temperature, and then charred at 140uC for 10 minutes.

Densitometric detection of charred plates was carried out using the

CAMAG TLC Scanner 3 (CAMAG Inc, Wilmington, North

Carolina, U.S.A.). Fluorescence was detected using the ProExpress

multiwavelength imager (Perkin Elmer, Boston, Massachusetts,

U.S.A). Copper sulfate signals were assessed with excitation and

emission of 540/30 and 590/20, respectively [7,42]. Digital

images of the chromatograms were analyzed using ImageQuant

5.2 (GE Healthcare, Piscataway, New Jersey, U.S.A.)

Glutamate Assay
Glutamate was assayed using a glutamate dehydrogenase

catalyzed reaction in which glutamate is oxidized and NADH is

formed and coupled to a formazan (MTT)/phenazine methosul-

fate reagent [59]. An assay kit (BioAssay Systems, Hayward, CA)

was used according to the manufacturer’s instructions.

Statistics
For EJP and iontophoresis, statistical significance was de-

termined using a Student’s t-test at each time point. Statistical

significance for lipid analyses were determined using a one-way

ANOVA. Statistical significance for differences in quantal content

was determined using a Mann-Whitney U test.

Supporting Information

Figure S1 MbCD does not sequester glutamate. Gluta-

mate concentrations were assayed at various concentrations to

determine if the reduction in responsiveness to iontophoretically

applied glutamate was due to chelation/sequestration by MbCD.

Glutamate concentrations were not altered by the presence of

MbCD.

(TIF)

Figure S2 MbCD significantly decreased the amplitude
of evoked single quantal events in both acclimatization
groups. Extracellular focal recordings were made from nerve

branches within abdominal segment IV while stimulating the

nerve in segment III. These recordings detected the presynaptic

current and postsynaptic response following nerve stimulation. We

used the amplitude of single quantal events to determine

postsynaptic changes. A. Cold-acclimatized group (open bars).

First 10 min reflects saline perfusion. Application of 10 mM

MbCD resulted in a significant reduction in the amplitude of

single quanta. Since the nerve terminal signal was lost in 6 of

7 trials of the cold-acclimatized group, not enough data could be

generated to accurately determine the amplitude of single quantal

events after 5 min of MbCD. B. Warm-acclimatized group (closed

bars). Application of 10 mM MbCD ultimately resulted in

a significant decrease in amplitude of single quanta after 10 min.

C-D. Control recordings from the cold- and warm-acclimatized

groups, respectively, indicate stable single quantal size over the

40 min recording period. (Stimulation: 0.2 Hz, data were

averaged into 5 min bins, giving 60 stimuli per bin. N= 7. *

indicates P,0.05.)

(TIF)

Figure S3 MbCD does not significantly alter the con-
centrations of other phospholipids in the neuromuscular
preparation. Relative concentrations of phospholipids assessed

from the same neuromuscular preparation used for the electro-

physiological analyses. MbCD did not alter the level of any of the

major phospholipids analysed, with the exception of sphingomye-

lin in the cold-acclimatized group. Noteworthy is the significant

increase in baseline PE in cold-acclimatized animals. (PA,

phosphatidic acid; PC, phosphatidylcholine; PI, phosphatidylcho-

line; PE, phosphatidylethanolamine; PS, phosphatidylserine; SM,

sphingomyelin). * indicates P,0.05.

(TIF)
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