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Abstract

Background: The category B agent of bioterrorism, Entamoeba histolytica has a two-stage life cycle: an infective cyst stage,
and an invasive trophozoite stage. Due to our inability to effectively induce encystation in vitro, our knowledge about the
cyst form remains limited. This also hampers our ability to develop cyst-specific diagnostic tools.

Aims: Three main aims were (i) to identify E. histolytica proteins in cyst samples, (ii) to enrich our knowledge about the cyst
stage, and (iii) to identify candidate proteins to develop cyst-specific diagnostic tools.

Methods: Cysts were purified from the stool of infected individuals using Percoll (gradient) purification. A highly sensitive
LC-MS/MS mass spectrometer (Orbitrap) was used to identify cyst proteins.

Results: A total of 417 non-redundant E. histolytica proteins were identified including 195 proteins that were never detected
in trophozoite-derived proteomes or expressed sequence tag (EST) datasets, consistent with cyst specificity. Cyst-wall
specific glycoproteins Jacob, Jessie and chitinase were positively identified. Antibodies produced against Jacob identified
cysts in fecal specimens and have potential utility as a diagnostic reagent. Several protein kinases, small GTPase signaling
molecules, DNA repair proteins, epigenetic regulators, and surface associated proteins were also identified. Proteins we
identified are likely to be among the most abundant in excreted cysts, and therefore show promise as diagnostic targets.

Major Conclusions: The proteome data generated here are a first for naturally-occurring E. histolytica cysts, and they
provide important insights into the infectious cyst form. Additionally, numerous unique candidate proteins were identified
which will aid the development of new diagnostic tools for identification of E. histolytica cysts.
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Introduction

The parasitic protozoan Entamoeba histolytica is the causative

agent of amebic colitis and amebic liver abscesses in humans [1,2].

The World Health Organization estimates up to 50 million

invasive infections world-wide annually [3]. E. histolytica has a

simple, two-stage life cycle, consisting of the infective cyst and

colon-invasive trophozoite forms. E. histolytica infections occur

when cysts are ingested through contaminated food or water. In

the lower intestine trophozoites emerge from cysts (a process

known as excystation). As a result of unknown stimuli in the

intestine, trophozoites again can differentiate into cysts (a process

known as encystation), which may be excreted in feces to infect

other humans. Although the cyst is the only form to transmit

infections, most studies on E. histolytica have focused on the

trophozoite form, which is the only form that can be readily

cultured. The inability to encyst trophozoites in vitro has severely

impaired our knowledge on the infectious stage of E. histolytica.

There is an increasing recognition of the burden of infection due

to this protozoan parasite. Carefully conducted serologic studies in

Mexico, where amebiasis is endemic, demonstrated antibody to E.

histolytica in 8.4% of the population [4]. In the urban slum of

Fortaleza, Brazil, 25% of the people tested carried antibody to E.

histolytica; the prevalence of anti-amebic antibodies in children aged

six to fourteen years was 40% [5]. A prospective study of preschool

children in a slum of Dhaka, Bangladesh demonstrated new E.

histolytica infection in 39% of children over a one year period of

observation, with 10% of the children having an E. histolytica

infection associated with diarrhea and 3% with dysentery [6].

The diagnosis of E. histolytica infection in endemic areas still

relies on microscopy, which is neither sensitive nor specific [7].

PCR-based diagnostic methods have not replaced microscopy in

endemic areas, as they require skilled people and sophisticated

laboratory settings which are absent in these areas. Although there

are simple (ELISA-based) diagnostic tools available to detect the

trophozoite form of E. histolytica, none are designed to detect the
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cyst form of parasite. There are two reasons to produce tests that

detect the cyst form of E. histolytica. First, the cyst is the infectious

form of the parasite, and therefore of greatest importance for

detection in potential food- or water-borne outbreaks, both natural

and man-made. Second, cyst antigens are expected to be more

abundant, stable, and readily detectable in stool samples, including

formalin-preserved samples. Lack of such stability is the major

limitation of the current E. histolytica antigen-detection test by

TechLab [8]. However our understanding of E. histolytica cyst

proteins remains the major factor limiting our ability to develop

cyst specific diagnostic reagents.

Relatively more is known about the cyst stage of the reptilian

parasite Entamoeba invadens [9]. E. invadens can be induced to encyst

in vitro [10–12], a phenomenon that has made it a model system to

study encystation. Studies have identified osmotic shock [13], low

glucose [12] or carbon source [14], and levels of serum and mucin

[15] as potential triggers of encystation in E. invadens in vitro.

Additionally, cyst- and cyst-wall specific genes have been identified

including chitin synthetase [16], chitinase [17], chitosan [18], and

the lectins Jessie and Jacobs [19]. A 70-kDa heat shock protein

[20], and proteins involved in proteasome function [21] were also

found to be linked to encystation in E. invadens.

E. histolytica strains can undergo spontaneous encystation,

although very inefficiently, when grown in presence of bacteria

[22]. A pioneering microarray analysis of this process identified

about 15% of all genes in the genome as developmentally

regulated based on their mRNA transcript levels (.3-fold change,

p-value,0.01) including 672 genes referred to as cyst-specific and

767 genes referred to as trophozoite-specific. The cyst-specific

genes included cysteine proteases, putative DNA-binding or

transcription factor-related proteins (such as Myb domain

proteins) and signal transduction-related transmembrane protein

kinases. The promoter motif for one of the Myb domain proteins

was later characterized for and this motif appeared to function in

the regulation of a subset of cyst-specific genes [23].

In contrast to transcriptomic data, no proteomic data are

currently available for E. histolytica cysts. Proteomic analysis of cysts

and trophozoites of E. invadens using high resolution 2D PAGE and

digitized video image analysis of silver stained gels identified a total

of 155 proteins unique to trophozoites and a total of 72 proteins

unique to cysts [24]. Lack of knowledge of the E. histolytica cyst

proteome hampers our ability to develop cyst-targeted diagnostic

tools and to investigate stage conversion in this parasite. In this

study, we applied mass spectrometry based whole genome shotgun

sequencing approaches to 5 purified cyst samples in order to

identify proteins expressed in E. histolytica cysts in vivo. Here we

present for the first time the identification of 417 proteins

(representing ,5.1% of all 8201 predicted proteins) in the purified

cyst samples. Out of the 417 proteins identified, 195 have never

been detected in the E. histolytica trophozoite specific proteome or

EST databases. This is the first proteomic analysis of naturally-

occurring E. histolytica cysts.

Methods

Ethics statement
The collection of clinical samples used in this study has been

approved by the Ethical Review Committee (ERC) of ICDDR,B.

Since the study participants were minors (aged 2–6 years), parents

or legal guardians provided written informed consent on behalf of

all child participants. All clinical investigation has been conducted

according to the principles expressed in the Declaration of

Helsinki.

Screening of E. histolytica cysts
Fecal specimens were collected from children enrolled in an

ongoing field study of human immunity to amebiasis in an urban

slum community at Mirpur, Dhaka, Bangladesh. They were

screened for the presence of E. histolytica cysts in their stools.

Initially, fresh stool samples were checked by microscopy for cysts

of E. histolytica/E. dispar/E. moshkovskii. Positive stools were then

subject to E. histolytica-specific antigen detection by E. histolytica-II

ELISA (TechLab, Blackburg, VA) as described previously [25].

Since this ELISA was incapable of distinguishing between a mixed

infection of E. histolytica/E. dispar and a single infection of E.

histolytica, ELISA positive stool samples were further subject to

DNA purification and diagnostic PCR for E. histolytica and E.

dispar. PCR was also performed for E. moshkovskii-specific DNA.

Cysts were only purified from stool samples that were PCR

positive solely for E. histolytica.

Cyst purification
Cysts were purified from stool samples as described previously

with some modifications [26–28]. In brief, about 4–5 g of stool

was dissolved in PBS, filtered through two layers of gauges,

centrifuged at 32206g for 20 minutes, and the supernatant

discarded. After washing 3 times with PBS at 32206g for

20 minutes, the pellet was suspended in 5 mL of ethyl acetate

(to separate the cyst and the fecal debris) and centrifuged at

32206g for 20 minutes. The supernatant was discarded and the

pellet was washed 3 more times with PBS (at 32206g for

20 minutes), and the pellet was resuspended in 2 mL of PBS. This

was then carefully layered using a Pasteur pipette on top of a

previously prepared 10–80% Percoll gradient in 176120 mm,

15 mL high-clarity polypropylene conical tubes by layering 2 mLs

each of 80% Percoll (in PBS), followed by 50%, 40%, 30%, 20%

and 10% Percoll solutions. This was centrifuged at 32206g for

20 minutes. The content between 80% and 40% of the Percoll

gradient was transferred to a new tube, washed 3 times with PBS

and checked by microscopy for purified cysts.

Production of polyclonal antibodies against Jacob
The rabbit sera developed against one member of E. histolytica

Jacob (EHI_044500), which shows 83.1% identity and 88.1%

similarity with the E. dispar Jacob at amino acid level, were

purchased from the Cocalico Biologicals, Inc. (project number

2010-0158). This protocol has been approved by the Animal Care

Author Summary

We used tandem mass spectrometry to identify E. histolytica
cyst proteins in 5 cyst positive stool samples. We report the
identification of 417 non-redundant E. histolytica proteins
including 195 proteins that were not identified in existing
trophozoite derived proteome or EST datasets, consistent
with cyst specificity. Because the cysts were derived directly
from patient samples with incomplete purification, a limited
number of proteins were identified (N = 417) that probably
represent only a partial proteome. Nevertheless, the study
succeeded in identifying proteins that are likely to be
abundant in the cyst stage of the parasite. Several of these
proteins may play roles in E. histolytica stage conversion or
cyst function. Proteins identified in this study may be useful
markers for diagnostic detection of E. histolytica cysts.
Overall, the data generated in this study promises to aid the
understanding of the cyst stage of the parasite which is vital
for disease transmission and pathogenesis in E. histolytica.

Entamoeba histolytica Cyst Proteome
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and Use Committee of Cocalico Biologicals, Inc. who follows the

USDA and NIH guidelines. The Office of the Laboratory of

Animal Welfare, Division of Assurance, National Institute of

Health has approved the Animal Welfare Assurance (#A3669-01)

of Cocalico Biologicals, Inc.

Fluorescence microscopy with the purified cysts
About 50 ml of the E. histolytica cysts purified using the Percoll

gradient centrifugation were fixed on a microscopic slide by

adding 4% formaldehyde solution for 1 hour at 37uC. After

washing with 16 PBS containing 0.1% Triton X-100, cysts were

treated with either 1:200 diluted post-immune or pre-immune

antisera against E. histolytica cyst-wall specific Jacob protein raised

in rabbits. They were then stained with 1:200 diluted Fluorescein

isothiocyanate (FITC)-conjugated goat anti-rabbit secondary

antibody and examined by immunofluorescence microscopy.

Preparation of E. histolytica proteins from the purified
cysts

Crude proteins from purified cyst samples were isolated in either

of two ways. In the first protocol, cysts were subject to 5 freeze-

and-thaw cycles to facilitate the breakage of cyst wall, followed by

20–25 minutes of sonication (30-second pulse followed by 30-

second rest) in presence of protease inhibitor (Sigma-Aldrich). This

procedure was followed for only one sample, AM951. In the

second protocol, cysts were subject to 20–25 minutes of sonication

(30-second pulse followed by 30-second rest) in presence of

protease inhibitor (Sigma-Aldrich) eliminating the first freeze-and-

thaw cycles as above. This procedure was followed for all 5

samples, including AM951. Protein concentration was measured

using the Bio-Rad Protein Assay (Bio-Rad, USA) according to the

manufacturer’s instructions.

Mass spectrometry
All the cyst samples (after extraction of crude proteins) were

divided into two parts (except for one, sample 4268, which had too

little protein to divide into two parts) – supernatant (which should

contain soluble proteins) and pellet (which should contain

insoluble proteins).

The sample supernatant was removed, dried, and suspended in

SDS-PAGE loading buffer. The remaining pellet was soaked in

SDS-PAGE loading buffer. For sample 4268, the whole sample

(containing both the supernatant and the beads) was dried, and

suspended in SDS-PAGE loading buffer. They were loaded on a

gel and run until the dye front was ,1 cm into the gel. This

1 cm61 cm area of gel was cut for processing (2 gel pieces for each

sample, except sample 4268). For sample 4268, the entire sample

(containing both the supernatant and the beads) was dried,

suspended in SDS-PAGE loading buffer, and processed as above

as single gel piece.

The gel piece for each sample was cubed and transferred to a

siliconized tube and washed and destained in 200 mL 50%

methanol for 4 h. The gel pieces were dehydrated in acetonitrile,

rehydrated in 30 mL of 10 mM dithiolthreitol in 0.1 M ammoni-

um bicarbonate and reduced at room temperature for 0.5 h. The

DTT solution was removed and the sample alkylated in 30 mL

50 mM iodoacetamide in 0.1 M ammonium bicarbonate at room

temperature for 0.5 h. The reagent was removed and the gel

pieces dehydrated in 100 mL acetonitrile. The acetonitrile was

removed and the gel pieces rehydrated in 100 mL 0.1 M

ammonium bicarbonate. The pieces were dehydrated in 100 mL

acetonitrile, the acetonitrile removed and the pieces completely

dried by vacuum centrifugation. The gel pieces were rehydrated in

20 ng/mL trypsin in 50 mM ammonium bicarbonate on ice for

10 min. Any excess enzyme solution was removed and 20 mL

50 mM ammonium bicarbonate added. The sample was digested

overnight at 37uC and the peptides formed extracted from the

polyacrylamide in two 50 mL aliquots of 50% acetonitrile/5%

formic acid. These extracts were combined and evaporated to

15 mL for MS analysis.

The LC-MS/MS system consisted of a Thermo Electron

Orbitrap Velos ETD mass spectrometer system with a Protana

nanospray ion source interfaced to a self-packed 8 cm675 um id

Phenomenex Jupiter 10 um C18 reversed-phase capillary column.

Seven microliters of the extract was injected and the peptides

eluted from the column by an acetonitrile/0.1 M acetic acid

gradient at a flow rate of 0.5 mL/min over 1 hr. The nanospray

ion source was operated at 2.5 kV. The digest was analyzed using

the double play capability of the instrument acquiring a full scan

mass spectrum (MS – Orbitrap 60K resolution) to determine

peptide molecular weights and 20 product ion spectra (MS/MS –

Ion trap) to determine amino acid sequence over the gradient

elution.

Mass spectrometry data analysis
The mass spectrometry data were analyzed by database

searching using the Sequest search algorithm (Bioworks 3.3.1)

against E. histolytica (downloaded from NCBI Oct 2010), IPI

Human (Ver 3.78), and NCBI NR (downloaded Jan 2011). The

data were loaded in Scaffold v3 and minimal filters were set

(Peptide score .60%, Protein score .90%, Xcorr .1.8 (+1), 2.2

(+2), 2.5(+3) and 3.5 (+4 or greater)). The p-values were

determined using the two-tailed Fisher’s exact test.

Results

Five E. histolytica cyst positive samples were selected for
proteomic study

In order to identify E. histolytica cyst positive samples, we

performed microscopical examination of stool specimens from

children enrolled in an ongoing study on amebiasis. However,

since the cyst of E. histolytica is morphologically indistinguishable

from that of E. dispar and E. moshkovskii, microscopy-positive

samples were then subject to species-specific E. histolytica II ELISA

(TechLab, Blacksburg, VA). One limitation of E. histolytica II

ELISA is that it cannot differentiate between a co-infection of E.

histolytica with E. dispar or E. moshkovskii and a single infection of E.

histolytica. Therefore, microscopy/ELISA positive samples were

then subject to E. histolytica-, E. dispar- and E. moshkovskii-specific

PCRs. Using these methods, we identified 5 stool specimens that

were positive only for E. histolytica (data not shown). Microscopy

revealed that 4 of these samples had only the cyst form of the

parasite, while the 5th sample (4268) had both cyst and trophozoite

forms in the original stool sample, although cysts were the

predominant form. Five samples were derived from children aged

2–6 years, three of them were from males (4268, AM951, and

AM797), and two of them were from females (8076 and CMS33-

7132).

Verification of cyst structures after Percoll purification
Following a positive microscopical identification, Percoll puri-

fication was used to significantly enrich the cyst form of the

parasite (data not shown). In order to verify that the cyst-like

structures in the cyst sample after Percoll purification were indeed

E. histolytica cysts, we performed immunofluorescence assay using a

polyclonal antibody developed in rabbits against a highly

abundant cyst protein Jacob (EHI_044500). While the rabbit

Entamoeba histolytica Cyst Proteome
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preimmune sera could not recognize cyst structures, the immune

sera clearly stained the round-shaped cyst wall of E. histolytica in the

Percoll-purified sample as expected (Figure 1).

In order to investigate whether the Percoll gradient cyst

purification protocol may have also co-purified the trophozoite

form of the parasite, we added 0, 100, and 1000 E. histolytica

trophozoites into 1 g each of three E. histolytica-negative stool

samples (by microscopy, culture, ELISA and PCR), and they

were subject to identical Percoll gradient cyst purification as

performed with the five test samples. We then performed E.

histolytica II ELISA using the contents from the 40–80% fractions

of Percoll gradient to detect lectin antigen (which expresses most

abundantly in the trophozoite form), and found that all three

samples were negative for E. histolytica lectin (data not shown).

This suggested that the Percoll gradient purification of stool

specimens selectively enriched cysts but not trophozoites. Since

only 1 out of 5 cyst samples (ID: 4268) had microscopically

positive trophozoite in the initial stool examination, and the

number of trophozoites in this sample was much smaller than

that of cysts (data not shown), we conclude that our proteomic

data was comprised predominantly (if not entirely) of proteins

expressed in cysts.

In order to determine which method of lysate preparation

worked best for mass spectrometry analysis, we applied two

methods on 1 of the 5 cyst samples (ID: AM951). The first method

was sonication only, while the second method employed freeze-

thaw followed by sonication. Mass spectrometry results suggested

that a simple sonication-only approach was able to identify more

proteins than an alternative approach involving a prior freeze-

thaw step. Samples processed by sonication yielded about 20%

more identifiable E. histolytica proteins (total 101) than samples

processed by the freeze-thaw-sonication approach, which yielded

only 81 identifiable E. histolytica proteins. Fifty-two proteins

overlapped between the two approaches (Tables S1 and S2). We

investigated if there were any qualitative differences in proteins

identified by the two different methods of lysate preparation. Two

calcium binding or signal related proteins, and two cyst wall

specific proteins were detected in both methods of lysate

preparations (Table S2). In contrary, out of 3 DNA repair proteins

2 were identified in the sonication only method and the third one

was identified by freeze-thaw-sonication method only. The only

surface associated protein (EHI_065330) was isolated by the

sonication only method. Proportionately more proteins with

putative enzymatic function were identified by freeze-thaw-

sonication (19/81 or 23.5%) compared to sonication only (18/

101 or 17.8%). In contrast, slightly more actin-related proteins

were identified in sonication only method (7/101 or 6.9%)

compared to freeze-thaw-sonication method (3/81 or 3.7%).

However, these differences were not statistically significant. So, we

conclude that there was no particular trend that could be detected

in differentiating protein categories identified by sonication only or

freeze-thaw-sonication methods.

Mass spectrometry was carried out for 4 out of 5 cyst samples in

such a way as to detect both soluble and insoluble proteins (for

details, see the materials and methods section). For the 5th sample

(4268), there was not enough cyst material to separate soluble and

insoluble proteins and the two fractions were analyzed together. In

most cases more proteins were identified in insoluble fraction than

soluble fraction (59/48 for AM951, 99/42 for AM797, and 57/35

for CMS33-7132; Figure S1).

Figure 1. Detection of Entamoeba histolytica cysts in Percoll purified cyst samples by immunofluorescence to the Jacob protein. E.
histolytica cysts were purified using the Percoll density gradient centrifugation [26–28], and about 50 mL of the purified cysts were fixed in
microscopic slides by adding 4% formaldehyde solution for 1 hour at 37uC. After washing with 16 PBS containing 0.1% Triton X-100, cells were
treated with either 1:200 diluted post-immune or pre-immune antisera against E. histolytica cyst-wall specific Jacob protein raised in rabbits. They
were then labeled with 1:200 diluted FITC-conjugated goat anti-rabbit secondary antibody and examined by immunofluorescence microscopy. (a)
Anti-Jacob antisera stained the cyst wall (shown by white arrows), (b) while pre-immune antisera failed to stain cyst wall. White bar is approximately
10 microns.
doi:10.1371/journal.pntd.0001643.g001
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Identification of E. histolytica proteins in cyst samples
A total of 417 unique E. histolytica proteins were identified in the

5 cyst preparations. Human, bacterial, and rice-related proteins

comprised about 90% of all proteins identified in the purified cyst

samples (Figure 2). Human and rice-related proteins were

abundant because of the source of cyst material (human feces)

and nutritional habit of people in that region of the world (Dhaka,

Bangladesh). Bacteria attached to the surfaces of cysts or inside the

cysts might be the predominant source of bacterial proteins in the

proteomic data. The proportions of human or rice related proteins

may be reduced by using more stringent washing steps (from large

amount of initial stool volume). However, cyst protein yields would

be reduced and it would be very difficult, if not impossible, to get

rid of bacteria that are attached to or ingested by the cysts. The 5

cyst samples came from 5 children aged 2–6 years, as a result, the

amount of original stools that could be collected was very low,

which was a limitation of this work. Nevertheless, E. histolytica

proteins were identified in each of the 5 cyst samples as expected.

The percentage of total proteins identified that were E. histolytica

proteins in various cyst samples ranged from 6.9 to 10.2%

(Figure 2).

Comparison of proteomic data with other E. histolytica
data

Since the total number of proteins identified in the naturally-

occurring cyst samples was small, we asked how unique these

proteins are in comparison with the publicly available protein

datasets in AmoebaDB (http://amoebadb.org/amoeba/). Two

LC-MS/MS proteomic datasets were available for the trophozoite

stage of E. histolytica comprising a total of 1825 proteins (as of

November 30, 2011) [29,30]. There was also available an EST

database for E. histolytica trophozoite comprising a total of 1223

proteins (as of October 1, 2011; from a total of 20,812

public entries at http://www.ncbi.nlm.nih.gov/dbEST/dbEST_

summary.html). A three-way comparison of protein overlaps

between the three datasets (i.e. cyst proteome, trophozoite

proteome, and trophozoite EST) was done using the freely

available software in the internet (http://www.cmbi.ru.nl/cdd/

biovenn/index.php) [31]. The Venn diagram shows that a total of

191 proteins overlapped between the cyst proteomic and

trophozoite proteomic (LC-MS/MS) datasets, 109 proteins

overlapped between the cyst proteomic and trophozoite EST

datasets, and 78 proteins overlapped between all three datasets

(Figure 3). It was surprising to see that only 515 proteins

overlapped between the trophozoite proteome (515/1825 or

28.2%) and the EST datasets (515/1223 or 42.1%). This disparity

is probably because only limited numbers of trophozoite-derived

proteome data are available for E. histolytica. The two proteome

works available at the AmoebaDB public database when this

manuscript was being written (November 2011) were highly

specific in nature - one attempted to identify trophozoite proteins

from phagosome [29], while the other attempted to identify

Concavalin A-enriched glycoproteins from the E. histolytica

trophozoite [30]. So, we think many of the trophozoite-specific

proteins are not represented in them, resulted in showing poor

overlap with the trophozoite-derive EST datasets from E.

histolytica. Nevertheless, a unique set of 195 proteins in the cyst

proteomic dataset did not overlap with the other two datasets. This

set might include E. histolytica cyst-specific proteins.

The cyst proteomic data was also compared with the only

available mRNA transcriptome data for encysting cultures grown

in vitro [22]. The encysting transcriptome was performed on

recently isolated E. histolytica strains that can spontaneously encyst

in vitro when grown in complex diphasic Robinson’s medium. Six

Figure 2. Total number of E. histolytica, human and other proteins detected in 5 cyst samples. In 5 cyst samples, the total number of
proteins detected by MS/MS analysis ranged from 982 (in sample 4268) to 1725 (in sample AM951). The maximum number of E. histolytica proteins
detected in a sample was 167 (sample AM797), while the least number of E. histolytica protein was 75 (sample 4268). The percentages of total
proteins belong to E. histolytica are shown inside the bar graphs for each sample, which ranged from 6.9% (for sample CMS33-7133 to 10.2% (for
sample AM797).
doi:10.1371/journal.pntd.0001643.g002
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hundred and seventy two genes were identified to be up-regulated

in E. histolytica cysts (based on $3-fold expression change and p-

value of ,0.05). Out of 417 cyst proteins detected in this study, 23

had no mRNA expression data available. Forty-seven of the

remaining 394 proteins identified here overlapped with the 672

cyst-specific genes identified by transcriptomics (p-value 0.0058)

(Figure S2). We then asked whether the unique set of 195 proteins

that did not overlap with the trophozoite proteomic and the EST

datasets exhibited a stronger overlap with the 672 cyst-specific

genes. Out of 195 unique cyst proteins, 10 had no mRNA

expression data available. However, 28 of the remaining 185

proteins identified by cyst proteomic analysis overlapped with the

672 cyst-specific genes identified by transcriptomic analysis. As

expected, this overlap between cyst-specific transcripts and unique

cyst proteins was stronger (p-value 0.0014) than the overlap

between cyst-specific transcripts and cyst proteins in general (p-

value 0.0058) (Figure S3). Despite the fact that there was a

statistically significant overlap between the cyst-specific transcripts

[22] and cyst proteins of this study, we did notice a large

discrepancy between the two datasets. Several factors could

explain this discrepancy: (i) our cyst proteomic data was based on

naturally occurring cyst samples, while the Ehrenkaufer and

colleague’s cyst transcriptome data was based on cyst-like cultures

obtained in vitro; (ii) the number of proteins identified in the cyst

proteome was very low, and they represent only ,5.1% (417/

8201) of all proteins; (iii) cyst-specific genes were categorized based

on .3-fold higher mRNA levels compared to that of trophozoites,

as a result, there will be some proteins that are expressed in lower

(.3-fold or more) levels in cysts compared to trophozoites, but will

still be regarded as cyst-specific by Ehrenkaufer et al; and (iv) some

mRNA transcript levels may not correspond to protein levels due

to post-transcriptional regulation or protein degradation.

Comparison of proteomic data with the Entamoeba
invadens data

The cyst proteomic data was also compared with available data

from developmental studies on the reptilian species E. invadens,

whose encystation can be induced easily in vitro. Two E. histolytica

chitinases, EHI_109890 and EHI_152170, show 79% and 47%

identities with the E. invadens chitinases, EiChit1 and EiChit4,

respectively [32]. In E. invadens, the mRNA expression of 4

chitinases was studied by Makioka and colleagues [32] during in

vitro encystation and excystation. In the early phase of encystation,

mRNA expression of all 4 chitinases increased although the

greatest increase was seen for EiChit1 and EiChit4. However,

following 5 hours of excystation, mRNA levels of these two

chitinases dropped sharply compared to pre-induction stage,

suggesting that these are highly cyst-specific. Both of these

chitinase homologues (EHI_109890 and EHI_152170) were

detected in our cyst samples as expected. Three actin depolymer-

Figure 3. Venn diagram for 3-way comparison between the proteins of this study, proteins from the trophozoite proteome and the
EST data on trophozoite. Overlaps between the E. histolytica cyst proteomic data (N = 417), trophozoite proteomic data (N = 1825), and the
trophozoite specific EST data (N = 1223) were checked. A total of 191 proteins overlapped between the cyst proteomic and trophozoite proteomic
datasets. A total of 109 proteins overlapped between the cyst proteomic and the trophozoite EST datasets. Seventy eight proteins overlapped
between all three datasets. A total of 195 proteins of cyst proteomic study did not show any overlaps with other two datasets derived from
trophozoites of E. histolytica, suggesting these are E. histolytica cyst-specific proteins.
doi:10.1371/journal.pntd.0001643.g003
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izing factor (ADF) family proteins have been identified in E.

invadens [33]. These proteins are thought to be important in actin

cytoskeleton reorganization during development of E. invadens, and

can be detected in both trophozoite and cyst stages of this parasite.

The single member of ADF family protein in E. histolytica

(actophorin/EHI_197480), which shows virtually no mRNA

differences between trophozoite and cyst stages (Table S3; [22])

was identified in our cyst proteome, consistent with a similar role

in the development of E. histolytica. An E. histolytica glycolytic

enzyme enolase (EHI_130700) shows 85% identity with the E.

invadens enolase (EIN_093390). This protein was present in the

cytoplasmic vesicles as well as in the cyst wall of E. invadens as

revealed by immunofluorescence microscopy [34]. However, this

protein was present only in the cytoplasmic vesicles of E. histolytica

trophozoites recovered from amebic liver lesions of experimental

animals [34]. Additionally, enolase was detected in the mature cyst

wall of E. histolytica in samples derived from human infections.

Consistent with this finding, we could also detect enolase in 3 out

of 5 cyst samples in our proteomic study. An earlier study has

shown that heat shock treatment of E. invadens can result in strong

induction of cyst-specific chitinase and Jacob mRNAs, and

moderate induction of heat shock protein mRNAs, including a

70-kDa heat shock protein known as BiP (AF252299) [20].

Although heat shock alone cannot produce matured, chitin-walled

cysts, these authors suggest that amebic heat shock proteins are

involved in degradation of cytoskeletal proteins during encystation.

In our cyst proteome study, 5 putative heat shock proteins were

detected (Table S3), and one of these (EHI_199590) is a

homoologue of E. invadens BiP (with 88% identity), suggesting a

similar role of heat shock proteins in E. histolytica encystation.

However, other proteins that appeared to be important in E.

invadens development were not detected in our study. For example,

the E. histolytica homologue of one of the cysteine proteases EiCP-

B9 [35], or profilins (such as EiPFN1 and EiPFN4; [36]) that are

expressed in the cyst stage of E. invadens, were not detected in our

proteome study. These discrepancies could be due to the fact that

we were only able to identify a fraction of all cyst-specific proteins.

Alternatively, they might reflect differences between parasite

species and/or between cysts generated in hosts and in vitro.

Functional categories of proteins identified in the E.
histolytica cyst preparations

The 417 E. histolytica proteins (Table S3) fell into several broad

functional groups. About 28% (117 proteins) did not have a known

function and are referred to as ‘hypothetical proteins’ (Figure 4).

About 12.9% (54 proteins) contained putative transmembrane

(TM) domains (Table S3). Perhaps the most important were the

categories of 195 unique proteins that showed no overlaps with the

trophozoite specific proteome or EST datasets (Figure 5). About

39.5% of these proteins (77 proteins) did not have a known

function.

The E. invadens cyst wall is composed of chitin (a homopolymer

of ß-1,4-linked GlcNAc), and chitin-binding Jacob and Jessie

lectins and chitinases [37–39]. The prior transcriptome data from

encysting cultures in vitro supported that these proteins were

components of the E. histolytica cyst [22]. In this study, among the

195 unique cyst proteins, we identified one member of the Jacob

gene family (EHI_028930), two chitinases (EHI_109890 and

EHI_152170), and one chitin synthetase 2 (EHI_044840)

supporting prior suppositions as to the composition of the cyst

wall [22,39]. Besides cyst wall proteins, 4 putative surface

associated proteins were identified in the 195 cyst proteins. Three

of these belonged to the BspA-like leucine rich repeat (LRR)

protein family. An important aspect of BspA family proteins is to

mediate protein-protein interactions [40]. In E. histolytica, more

than 70 proteins belong to BspA-like LRR protein family,

although only 4 of these were previously identified as being cyst-

specific based on mRNA transcriptome data [22]. One BspA

family member (EAL42510/849.m00008) was previously reported

to be primarily located on the plasma membrane of E. histolytica

trophozoite [41]. Consistent with the trophozoite-specificity of this

protein, we could not identify this protein in the present cyst

proteome. Another BspA family protein has been implicated in

trifluoromethionine resistance [42]. Immunofluorescence studies

with the episomal overexpression of this protein suggest that it is

expressed in the cytoplasm of the E. histolytica trophozoites. Again,

this protein was not identified in our cyst proteome, consistent with

trophozoite-specificity. The other potential surface protein iden-

tified was a putative member of lectin family protein

(EHI_110830).

Actin is one of the most conserved and ubiquitous proteins in

eukaryotes. During encystation, morphological changes occur in

the trophozoite structure of E. histolytica, and elongated trophozo-

ites become spherical cysts. We anticipate a reorganization of the

actin cytoskeleton during this process. One study shows that

jasplakinolide, an actin-polymerizing and filament-stabilizing

drug, inhibits both growth and encystation of E. histolytica and E.

invadens through perturbation of the actin cytoskeleton [43]. Four

actin or actin-related proteins were identified in the cyst proteome

that might be involved in these morphological and structural

changes, and deserve further studies.

Transmembrane domain containing protein kinases (TMKs)

are involved in signal transduction in higher eukaryotes. Over 100

TMKs have been identified in the E. histolytica genome [44]. Since

these proteins have extracellular domains coupled to cytoplasmic

kinase domains, they have the potential to sense environmental

cues. Fourteen of these TMKs showed significantly differential

mRNA expression in encystating E. histolytica cultures compared to

that of trophozoites [22]. Additionally, a number of cytoplasmic

protein kinases have also been identified to be cyst-specific [22].

The E. histolytica genome encodes for about 343 protein kinases

(including .100 TMKs), and 19 of these were identified in the 195

unique cyst proteins. Protein kinases regulate cellular pathways,

especially those involved in signal transduction. More than half of

these protein kinases (11/19) were predicted to have transmem-

brane domains, suggesting their potential roles in sensing outside

clues for stage conversion (Table S3) [44].

GTPases are a large family of GTP-binding hydrolase enzymes

involved in various biological functions including signal transduc-

tion, protein biosynthesis, cell division, translocation of proteins

through membranes and transport of vesicles within the cell. The

GTP-binding proteins are classified into five families – Ras, Rho,

Rab, Arf and Ran [45]. Recent data suggest that the E. histolytica

genome codes for 17, 22, 73, 12 and 1 member(s) of Ras, Rho,

Rab, Arf and Ran proteins, respectively [45]. Additionally there

are 41 unclassified small G proteins in the E. histolytica genome.

The Ras proteins are mainly involved in cell proliferation. The

Rho proteins are implicated in cytoskeleton regulation. Both Rab

and Arf proteins are involved in membrane trafficking in the

cytosol. The Ran proteins are implicated in nuclear-cytosol

transport. It is anticipated that a dramatic change of cellular

components occurs in a rapid, yet highly regulated fashion during

encystation, involving de novo synthesis of new proteins and

degradation of unwanted proteins. In order to achieve this, the

amoeba is expected to have a developmental–specific system of

membrane trafficking. The transcriptomic changes of Rab genes

have been studied during the encystation of E. invadens, and 23

cyst-specific, 36-trophozoite-specific and 31 constitutively ex-
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pressed Rab genes were identified [46]. In the 195 unique cyst

proteins, we identified 10 GTPases (including members of Rab or

related proteins) that may have stage-specific functions in E.

histolytica (Figure 5; Table S3).

Four DNA repair proteins, including two DNA double-strand

break repair proteins (EHI_053200 and EHI_125910), one DNA

mismatch repair protein (EHI_126120) and a type A flavoproteins

(EHI_129890) were identified in the 195 cyst proteins. We also

found 8 vesicle coating (or trafficking) related proteins including 3

putative clathrin proteins which are generally involved in shaping

rounded vesicles in the cytoplasm for intracellular trafficking [47].

In addition, a SET domain containing histone lysine methyltrans-

ferase (EHI_0319060) that adds methylmarks on histone tails, and

two chromodomain-containing proteins (EHI_000780 and

EHI_031370) that bind methylmarks on histone tails and facilitate

the recruitment of transcriptional effector molecules were also

identified, suggesting a role for epigenetic machineries in the

development of E. histolytica.

E. histolytica cyst proteins with diagnostic potential
Among various species of Entamoeba that can infect humans,

only E. histolytica can cause intestinal and extraintestinal diseases

in humans. At least two other human-infecting Entamoeba species,

E. dispar and E. moshkovskii, are morphologically identical to E.

histolytica. These commensal species create diagnostic challenges.

Although E. dispar has never been documented to cause diseases,

some emerging data suggest E. moshkovskii may cause diseases in

humans [48,49]. It is recommended that individuals with E.

histolytica infection regardless of clinical status be treated due to

the risk of the development of invasive amebiasis even in

asymptomatic individuals. However, no simple E. histolytica cyst-

specific diagnostic test is currently available to detect carriers.

Here, we developed an immunofluorescence assay (IFA) using

rabbit anti-Jacob antiserum that could detect E. histolytica cysts

(Figure 1); however this polyclonal antibody might not be specific

to E. histolytica. We conclude that proteins identified in this study

are likely to be at least partially specific to E. histolytica, and

Figure 4. Categories of all 417 proteins detected in 5 cyst samples. E. histolytica proteins that were present in 1 or more cyst preparations fell
into functional categories based on their annotations in the database. Out of 417 proteins, 117 did not have known function and are designated as
hypothetical proteins. Four E. histolytica cyst-wall specific proteins (such as Jacob, two chitinases and chitin synthetase) were present in 1 or more
cyst preparations. A total of 133 various enzymes (mostly protein kinases and GTPases) were also detected. Among other proteins, 18 transcription or
translation related proteins (important for understanding of encystation biology), 12 surface associated proteins, 15 ribosomal proteins, 10 protein-
protein interacting proteins, 12 vesicle coating or trafficking protein, 10 calcium signal related proteins, and 6 DNA repair proteins are notable.
doi:10.1371/journal.pntd.0001643.g004
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therefore warrant further investigation as to their diagnostic

potential.

In order to identify candidate diagnostic targets, we focused

initially on the list of 195 unique proteins that were not detected in

any trophozoite specific proteome or EST datasets. Twenty-five of

these proteins showed 80% or less identity on the amino acid level

compared to homologues in E. dispar (Table 1). These proteins

displayed even lower identities with other proteins in the database

including E. moshkovskii and human proteins. Over half (13/25) of

the 25 proteins have no known functions and are annotated as

hypothetical proteins. Five of these had previously shown 141- to

1012-fold higher mRNA transcript levels in cyst-like cultures

compared to cultured trophozoite of E. histolytica [22]. Three out of

25 proteins in the list have no homologues in E. dispar including

two that are putative reverse transcriptases (416.m00035 and

453.m00043) and one hypothetical protein (112.m00115).

For diagnostic purposes, proteins that were identified in a

majority of the cyst samples are hypothesized to be consistently

expressed in excreted cysts at detectable levels, and therefore

potentially interesting as candidate diagnostic targets. Eight

proteins were identified (from the list of 195 unique proteins) in

3 or more (out of 5) cyst samples (Table 2). Four of the 8 proteins

displayed 90% or less amino acid level homologies with proteins

from E. dispar. Two of these were putative cyst-wall specific

proteins: chitinase (EHI_109890, which showed 87-fold higher

mRNA transcript in encysting culture) and chitinase Jessie 3

(EHI_152170, which showed 44-fold higher mRNA transcript in

encysting culture).

Figure 5. Categories of 195 unique cyst specific proteins. E. histolytica proteins that were present in 1 or more cyst preparations and those
that were not found in trophozoite proteome or trophozoite EST datasets were categorized in various functional categories based on their
annotations in the database. Out of a total 195 proteins, 77 did not have any known function, and they are designated as hypothetical proteins. Four
E. histolytica cyst-wall specific proteins (such as Jacob, 2 chitinases and chitin synthetase) were present in 1 or more cyst preparations. A total of 60
various enzymes (including 19 protein kinases, 10 GTPases, 2 chitinase and a chitin synthetase) were also detected. Among other proteins, 8 vesicle
coating or trafficking protein, 4 DNA repair proteins, 5 transcription or translation related proteins, 4 surface associated proteins, are notable.
doi:10.1371/journal.pntd.0001643.g005
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Proteins detected in our study have variable number of

spectrum counts as detected by the LC-MS/MS experiments.

For diagnostic purposes, proteins with greater numbers of

spectrum counts may be better candidates for diagnostic assay

development, as they may be more stable and more abundant in

samples. Seven proteins were identified (from the list of 195

unique proteins) with more than 10 spectrum counts (Table 3).

Four of the 7 proteins displayed 90% or less amino acid level

identities with proteins from E. dispar. Two of these are chitinase

(EHI_109890) and chitinase Jessie 3 (EHI_152170) with 52 and

24 spectrums detected, respectively, while the remaining two are

hypothetical proteins (EHI_146120, 36 spectrums; and

EHI_019630, 15 spectrums). Overall, Tables 1, 2, and 3 describe

a total of 32 unique (non-redundant) proteins with diagnostic

potential.

In addition to candidate proteins for cyst specific diagnosis, we

also identified proteins in the remaining 222 proteins out of the

417 (that were also present in the trophozoite specific proteome

and EST datasets). These may also be useful to develop diagnostic

tools to detect both cysts and trophozoites of E. histolytica. These

proteins are listed in Tables S4, S5, S6.

Host (human) proteins and bacterial species identified in
at least 3 out of 5 cyst samples

Thirty-one human proteins were identified in at least 3 out of 5

cyst samples including 7 that were identified across all 5 samples,

and 10 that were identified in 4 samples (Table S7). Multiple

lectin- or sugar-binding proteins such as galectin-3 (IPI00023673),

galectin-4 (IPI00009750), intelectin-1 (IPI00291737), intelectin-2

(IPI00103436), glycoprotein 2 (IPI01014468), and proteoglycan 3

(IPI00005778) were detected. The possible interaction of some of

these proteins with the cyst or trophozoite surface and their

potential roles in stage-conversion may warrant further investiga-

tion. Additional proteins detected in the cyst samples derived from

bacterial origins (Table S8).

Table 1. E. histolytica cyst proteins that show 80% or less identity with E. dispar proteins.

E. histolytica Locus ID
*Detected
in samples Annotation Transcriptome data** E. dispar homolog

p-value
fold change:
cyst/troph HM-1 expr Locus ID

%
identity

416.m00035 2 reverse transcriptase, putative NF NF NF None N/A

453.m00043 2 reverse transcriptase, putative NF NF NF None N/A

112.m00115 2, 4 hypothetical protein NF NF NF None N/A

EHI_117680 3 protein kinase, putative 0.1170 2.9 0.05 EDI_160040 34

EHI_087690 3 hypothetical protein 0.0282 140.8 0.05 EDI_102140 44

EHI_075310 1, 2 hypothetical protein 0.2720 382.5 0.04 EDI_204760 47

EHI_182030 2 EhRabF2 0.1280 21.7 1.96 EDI_154730 48

EHI_133790 1, 2 hypothetical protein 0.0161 84.9 0.04 EDI_063010 49

EHI_066720 4 MAEBL, putative 0.3900 21.6 2.27 EDI_281920 54

EHI_019630 1, 4, 5 hypothetical protein 0.0001 515.8 0.08 EDI_199570 54

EHI_174540 5 Tyrosyl-DNA phosphodiesterase,
putative

0.5250 1.6 0.04 EDI_259130 59

EHI_113200 1 hypothetical protein 0.3480 2.5 0.04 EDI_078590 59

EHI_047820 2 BspA-like leucine rich repeat protein,
putative

0.2670 1.8 0.05 EDI_238280 63

EHI_104230 1 hypothetical protein 0.0001 1012.0 0.05 EDI_083080 64

EHI_146120 1, 2, 4 hypothetical protein 0.0001 59.1 0.04 EDI_105270 65

EHI_133780 1 hypothetical protein 0.0001 1012.0 0.05 EDI_083080 66

EHI_158620 1 Opioid growth factor receptor (OGFr)
conserved region

0.3260 1.7 0.26 EDI_036800 69

EHI_059040 3 protein kinase domain containing
protein

NF NF NF EDI_142140 70

EHI_126120 1, 2 DNA mismatch repair protein mutL 0.4520 1.7 0.06 EDI_012590 72

EHI_034210 2 Protein kinase, putative 0.0450 21.6 0.05 EDI_142140 72

EHI_174190 1, 2 hypothetical protein 0.1110 23.4 0.54 EDI_018190 72

EHI_175920 4 protein kinase, putative NF NF NF EDI_280160 74

EHI_092210 3 hypothetical protein 0.1160 2.9 0.04 EDI_154030 75

EHI_163520 4 hypothetical protein 256.t00008 0.0563 22.5 1.60 EDI_222270 80

EHI_138010 1 hypothetical protein 0.3790 1.9 0.20 EDI_134120 80

*Detected in samples: 1 = 8076; 2 = 4268; 3 = AM951; 4 = AM797; and 5 = CMS33-7132;
**From [22], 2007; NF = not found; troph = trophozoite; expr = expression; N/A = Not applicable. NB. During the revision of this manuscript, two new trophozoite-specific
proteome datasets became available at the AmoebaDB on January 25, 2012. However, none of the proteins listed in Table 1 could be detected in any of the 4
trophozoite-specific proteome datasets available at the AmoebaDB or EST datasets (as of February, 2012).
doi:10.1371/journal.pntd.0001643.t001

Entamoeba histolytica Cyst Proteome

www.plosntds.org 10 May 2012 | Volume 6 | Issue 5 | e1643



Annotation of the genome of E. histolytica
The E. histolytica gene annotation is limited at present, although

it is improving through the combined efforts of biostatisticians and

researchers [50]. More than half of the genes (53.8%; 4413 genes

out of a total predicted 8201 genes) are designated as ‘‘hypothet-

ical’’ proteins of unknown function [50]. This is mainly because

the E. histolytica genes are highly diverse in sequence compared to

other organisms, which makes prediction of gene function difficult.

One hundred and seventeen (or 28%) of 417 proteins identified in

this study were predicted ‘‘hypothetical’’ proteins including 40 that

were previously identified in trophozoite derived proteome or EST

datasets. For the remaining 77 cyst specific ‘‘hypothetical’’ genes

we now have evidence of protein level expression. We also found

that 9 out of 417 protein genes identified in this study were missing

in the most recent genome annotation (http://amoebadb.org/

amoeba/). Three of these are putative clathrin heavy chain

containing proteins (gi|103484580, found in sample AM951;

200.m00090, found in samples 8076, AM797, CMS33-7132; and

141.m00078, found in sample AM797) that are involved in vesicle

trafficking in other organisms. Additional non-annotated genes

Table 2. E. histolytica cyst proteins detected in 3 or more cyst samples.

E. histolytica Locus ID
*Detected in
samples Annotation Transcriptome data** E. dispar homolog

p-value
fold change:
cyst/troph HM-1 expr Locus ID % identity

EHI_012500 3, 4, 5 coatomer gamma subunit,
putative

0.0881 22.7 1.90 EDI_129270 92

EHI_038630 2, 3, 4, 5 TBC domain containing
protein, putative

0.3190 1.7 0.06 EDI_259490 91

EHI_019630 1, 4, 5 hypothetical protein 0.0001 515.8 0.08 EDI_199570 54

200.m00090 1, 4, 5 clathrin heavy chain, putative 0.7530 21.0 32.75 EDI_237980 92

EHI_109890 1, 3, 4, 5 chitinase, putative 0.0001 87.4 0.20 EDI_120190 82

EHI_152170 1, 3, 4, 5 chitinase Jessie 3,
putative

0.0001 43.5 0.67 EDI_038370 90

EHI_146120 1, 2, 4 hypothetical protein 0.0001 59.1 0.04 EDI_105270 65

EHI_196570 1, 2, 3, 4, 5 hypothetical protein 0.0001 37.2 0.55 EDI_039770 93

*Detected in samples: 1 = 8076; 2 = 4268; 3 = AM951; 4 = AM797; and 5 = CMS33-7132;
**From [22]; NF = not found; troph = trophozoite; expr = expression; N/A = Not applicable; shown in bold fonts are those that show 90% or less identity with E. dispar
proteins; ideal candidates for E. histolytica specific diagnostic tool development. NB. None of the proteins listed in Table 2 could be detected in any of the 4 trophozoite-
specific proteome datasets available at the AmoebaDB or EST datasets (as of February, 2012).
doi:10.1371/journal.pntd.0001643.t002

Table 3. E. histolytica cyst proteins with more than 10 spectrum counts detected in MS/MS experiments.

E. histolytica
Locus ID

*Detected
in samples Annotation Transcriptome data** E. dispar homolog

No. of spectrum
counts in LC-MS/MS

p-value
fold change:
cyst/troph HM-1 expr Locus ID % identity Total

10.m00319 4, 5 actin 0.2720 1.1 127.75 EDI_251490 100 193

EHI_109890 1, 3, 4, 5 chitinase, putative 0.0001 87.4 0.20 EDI_120190 82 52

EHI_146120 1, 2, 4 hypothetical protein 0.0001 59.1 0.04 EDI_105270 65 36

EHI_196570 1, 2, 3, 4, 5 hypothetical protein 0.0001 37.2 0.55 EDI_039770 93 36

EHI_152170 1, 3, 4, 5 chitinase Jessie 3,
putative

0.0001 43.5 0.67 EDI_038370 90 24

EHI_019630 1, 4, 5 hypothetical protein 0.0001 515.8 0.08 EDI_199570 54 15

200.m00090 1, 4, 5 clathrin heavy chain,
putative

0.7530 21.0 32.75 EDI_237980 92 11

*Detected in samples: 1 = 8076; 2 = 4268; 3 = AM951; 4 = AM797; and 5 = CMS33-7132;
**From [22]; NF = not found; troph = trophozoite; expr = expression; N/A = Not applicable; shown in bold fonts are those that show 90% or less identity with E. dispar
proteins; ideal candidates for E. histolytica specific diagnostic tool development.
NB. Only a single spectrum was detected for a high proportion of 195 cyst proteins (137 or 70%) compared to that detected in 914/1825 (or 50%) of trophozoite MS/MS
proteins deposited into the AmoebaDB database (http://amoebadb.org/amoeba/). In fact, other proteins other than E. histolytica in the cyst samples hampered an
efficient identification of cyst specific proteins. The sources of these other proteins include (1) numerous bacteria that were attached to the surface of the cyst, or
ingested by the cyst, and (2) the human feces, which was the original source of cyst material contributed the human proteins and diet-related (mainly rice) proteins. In
contrast, the trophozoite MS/MS data in the AmoebaDB was coming from two studies that used axenically grown E. histolytica trophozoites, which should be free from
all other organisms including bacteria [29,30]. Also, note that none of the proteins listed in Table 3 could be detected in any of the 4 trophozoite-specific proteome
datasets available at the AmoebaDB or EST datasets (as of February, 2012).
doi:10.1371/journal.pntd.0001643.t003
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encode 2 putative reverse transcriptases (416.m00035 and

453.m00043, both found in sample 4268), a putative Sec61 alpha

subunit (gi|52352493, found in sample AM951), an actin

(10.m00319, found in samples AM797 and CMS33-7132), and

two hypothetical proteins (112.m00115, found in samples 4268

and AM797; and 270.m00054, found in sample CMS33-7132).

We now have evidence that these genes are expressed as proteins

in E. histolytica cysts.

Discussion

Previous studies characterized gene expression in E. histolytica

and E. invadens cells that have encysted under laboratory

conditions. The goal of the present study was to obtain the

proteomic profiles of E. histolytica cells that have encysted under

natural conditions. To achieve this we employed a highly sensitive,

whole genome shotgun sequencing approach using mass spectro-

metric methods. We successfully identified 417 proteins represent-

ing 5.1% of all predicted proteins in E. histolytica. Of these 417

proteins 191 overlapped with the proteins previously identified in

trophozoite proteome. Similarly, 109 proteins overlapped with the

previously identified trophozoite specific EST datasets (Figure 3).

The remaining195 proteins have not been seen in trophozoite

proteomes and are likely to be specific to cyst stage of the parasite.

Analysis of each of the cyst preparations identified 195 unique

proteins, many of which warrant further investigation as potential

diagnostic targets. The 417 identified proteins comprise approx-

imately 5.1% of all predicted proteins in E. histolytica, suggesting

that the proteomic data constitutes a partial representation of all

proteins present in cysts. However, we cannot know the true

percentage of representation since the total number of proteins

upregulated during encystation is not known. Part of the difficulty

in identifying cyst-specific proteins lies in part to the low

proportion of E. histolytica proteins in the Percoll-purified cyst

samples, with $90% of the proteins identified of human, rice,

bacteria or other origin. An improved method of separation of E.

histolytica cysts from other materials present in stool samples should

be considered in future proteomic work. Although this study may

not represent a comprehensive proteome of E. histolytica cysts, it

succeeded in identifying some of the most abundant proteins in the

naturally occurring cysts. These proteins will likely be useful

targets for developing improved diagnostic tests for E. histolytica

infection, as demonstrated by the ability to identify cysts in fecal

specimens using antibodies directed to the cyst-specific Jacob

protein.

There were several sample-based and technical limitations in

this work. First, 5 asymptomatically infected 2–6 year-old

children provided all the E. histolytica cyst positive stool samples.

As a result, the amount of stool was small in each case. Efforts to

collect additional samples from these patients were not successful

as the number of cysts usually decreased in successive stools.

Second, due to the nature of source material (human stool),

unwanted host proteins, diet related (e.g., rice) proteins, and

bacterial proteins co-purified with cysts despite our efforts to

reduce these by using vigorous washing steps. Bacterial proteins

may have been derived from bacteria attached to the surface of

cysts; these would be extremely difficult (if not impossible) to

exclude. Overall, the presence of contaminating proteins com-

promised the identification of E. histolytica cyst proteins. An

alternate approach to Percoll gradient purification (such as CsCl

gradient) should be considered in future cyst purification.

However, despite these technical limitations, 195 novel E.

histolytica proteins were still identified marking a significant

advancement in our knowledge of the cyst proteome.

The E. histolytica cyst is a biodefense threat to water and food

supplies due to its resistance to chlorination and low infectious

dose (,10 cysts). It is also a public health threat, especially as a

cause of diarrhea in children in Africa, Asia, and Latin America.

However, the presence of morphologically indistinguishable cysts

of non-pathogenic species E. dispar and E. moshkovskii severely

complicates current microscopy based diagnosis which is neither

sensitive nor specific. E. histolytica infections lead to intestinal and

extra-intestinal amebiasis. Each year 40 to 50 million cases of

colitis and liver abscess due to the pathogenic E. histolytica occur,

causing up to 100,000 deaths. So, the development of sensitive

molecular based techniques to detect E. histolytica cyst is a priority.

In this study, we have been successful in identifying several target

proteins that may lead to develop improved diagnostic tools to

detect cysts in asymptomatic cyst passers (Tables 1, 2, 3). It is

worth mentioning here that two new trophozoite-derived

proteome works became available at the AmoebaDB public

database (on January 25, 2012) while this manuscript was under

revision [51,52]. However, none of the 32 (non-redundant) cyst-

specific candidate proteins listed in Tables 1, 2, and 3 could be

detected in the new trophozoite-derived proteomic datasets. So,

we are confident that some of these proteins would be highly useful

as cyst-specific diagnostic targets. In addition, some of the proteins

identified in this study will help to develop diagnostic tools capable

of detecting both cyst and trophozoite forms of the parasite (Tables

S4, S5, S6). A recent study shows that sera of amebic liver abscess

patients can recognize a 110 kDa protein (annotated as pyruvate

phosphate dikinase, EHI_009530) [53]. This protein was identi-

fied in all 5 cyst samples in our study (see Table 2 or Table S3),

supporting the notion that proteins identified in this study have

promise as candidate diagnostic targets.

Our knowledge about the cyst stage of E. histolytica is very

limited due in part to our inability to induce encystation in vitro.

We do not know if the involvement of host proteins is a necessary

factor. It appears likely that bacterial involvement is essential for

encystation to take place as encystation cannot be induced in

axenic (bacteria-free) culture. However, we do not know the

mechanism of bacterial association in encystation. For example,

we do not know if certain bacterial species are essential or if

certain bacterial proteins can efficiently induce encystation.

Carefully designed functional studies using some of the human

and bacterial proteins detected in this study (Tables S7, S8)

may provide clues as to their involvement in encystation of

E. histolytica.

This study provides evidence of protein level expression of

several genes that are missing in the current gene annotation.

Likewise, this study also provides evidence of expression at the

protein level for over a hundred genes that were annotated as

‘‘hypothetical’’ in the current gene annotation. Therefore these

data will help improve the present gene annotation. These data

will be made publicly available through the AmoebaDB.

The data generated may aid the understanding of biochemistry

and physiology of cysts and the developmental switch between

the trophozoite and cyst stage in E. histolytica, a process that is

vital for disease transmission and pathogenesis in this parasite.

Among the cyst specific 195 proteins, it is intriguing to find

numerous transmembrane domain containing protein kinases,

vesicle coating or trafficking related proteins, DNA repair

proteins, and GTPase-based signal molecules in the present

study. Further functional work on these cyst proteins may provide

insight into the signaling pathways that trigger encystation, as

well as mechanisms of stage conversion, which will aid in

developing better therapeutic agents and preventive measures to

control amebiasis.
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List of genes/proteins discussed in this paper
E. histolytica: EHI_044500, EHI_065330, EHI_109890,

EHI_152170, EHI_197480, EHI_130700, EHI_028930, EHI_

044840, EAL42510, EHI_110830, EHI_199590, EHI_053200,

EHI_125910, EHI_126120, EHI_129890, 416.m00035, 453.

m00043, 112.m00115, EHI_146120, EHI_019630, gi|10-

3484580, 200.m00090, 141.m00078, gi|52352493, 10.m00319,

270.m00054, EHI_0319060, EHI_000780 and EHI_031370.

E. invadens: EiChit1, EiChit4, AF252299/BiP, EIN_093390,

EiCP-B9, EiPFN1, and EiPFN4. Human: galectin-3/IPI00023673,

galectine-4/IPI00009750, intelectin-1/IPI00291737, intelectin-2/

IPI00103436, glycoprotein 2/IPI01014468, and proteoglycan 3/

IPI00005778.

Supporting Information

Figure S1 Total number of E. histolytica proteins
detected in soluble, insoluble or both fractions of mass
spectrometry experiments for 4 cyst samples. The mass

spectrometry was carried out for 4 out of 5 cyst samples in such a

way that it could detect both soluble and insoluble proteins (for

details, see the Methods section). For the 5th sample (4268), there

was not enough cyst material to proceed by this method, and

proteins identified in this sample represented both soluble and

insoluble proteins. Except for the sample 8076 (which has a

protein distribution such as 48 in soluble fraction, 43 in insoluble

fraction, and 18 in both fractions), there was a general trend that

relatively more proteins were identified in the insoluble fraction

compared with the soluble fraction (59/48 for AM951, 99/42 for

AM797, and 57/35 for CMS33-7132).

(TIF)

Figure S2 Overlap between the 417 proteins (from this
study) and the cyst-specific mRNA transcripts (from
[22]). The overlap between 672 cyst-specific transcripts (p-

value,0.05 and fold-change $3) and 394 proteins out of all 417

proteins from cyst proteomic study (except for the remaining 23

proteins, that were not found in microarray data) was tested using the

Venn diagram. The overlap between the cyst protein data and the

cyst-specific mRNA transcript data was statistically significant (p-value

0.0058). The p-value was determined using the two-tailed Fisher’s

exact test using the GraphPad software freely available in the internet

at http://www.graphpad.com/quickcalcs/contingency1.cfm.

(TIF)

Figure S3 Overlap between the 195 cyst –specific
proteins (from this study) and the cyst-specific mRNA
transcripts (from [22]). The overlap between 672 cyst-specific

transcripts (p-value,0.05 and fold-change $3) and the 185

proteins out of 195 proteins from the cyst proteomic study that

were not identified in trophozoite-specific proteome or EST

datasets (except for the remaining 10 proteins, that were not found

in the microarray data) was tested using the Venn diagram. The

overlap was statistically significant (p-value 0.0014). The p-value

for the overlap of this comparison is better than the previous

comparison shown in Figure S2 (0.0014 versus 0.0058, respec-

tively) as expected. The p-values were determined using the two-

tailed Fisher’s exact test using the GraphPad software freely

available in the internet at http://www.graphpad.com/quickcalcs/

contingency1.cfm.

(TIF)

Table S1 Proteins detected in sample AM951 using two
different processing methods prior to LC-MS/MS
experiments.

(XLSX)

Table S2 Categories of proteins identified in sonication
only and freeze-thaw-sonication, or both approaches for
sample AM951.

(XLSX)

Table S3 All the E. histolytica proteins detected in 5 E.
histolytica cyst samples (N = 417).

(XLSX)

Table S4 E. histolytica proteins detected in cyst sam-
ples that show 80% or less identity with E. dispar
proteins. These are candidate proteins for development of

diagnostic tool for both trophozoites and cysts of E. histolytica.

(XLSX)

Table S5 E. histolytica proteins detected in 3 or more of
5 cyst samples. These are candidate proteins for development

of diagnostic tool for both trophozoites and cysts of E. histolytica.

(XLSX)

Table S6 E. histolytica proteins with maximum number
of spectrum counts detected in cyst samples by LC-MS/
MS experiments. These are candidate proteins for development

of diagnostic tool for both trophozoites and cysts of E. histolytica.

(XLSX)

Table S7 Host (human) proteins detected in cyst
samples. Human proteins that were identified in at least 3 out

of 5 E. histolytica cyst samples are shown in this Table.

(XLSX)

Table S8 Bacterial species detected in 3 or more E.
histolytica cyst samples. Many bacterial peptides were

identified in the E. histolytica cyst samples by LC-MS/MS

experiments. From the database search using the peptide

sequences, the bacterial species were identified. At least 19

bacterial species were detected in 3 or more E. histolytica cyst

samples.

(XLSX)
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