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Abstract
Activation of rat adenosine 2A receptors (A2A R) dilates preglomerular microvessels, an effect
mediated by epoxyeicosatrienoic acids (EETs). High salt (HS) intake increases epoxygenase
activity and adenosine levels and greater vasodilator response to a stable adenosine analog, 2-
chloroadenosine (2-CA), was seen in kidneys obtained from HS-fed rats which was mediated by
increased EET release. Because this pathway is antipressor, we examined the role of the A2A R-
EET pathway in a genetic model of salt-sensitive hypertension, the Dahl salt-sensitive (SS) rats.
Dahl S resistant (R) rats fed a HS diet demonstrated a greater renal vasodilator response to 2-CA.
In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether
fed normal salt (NS) or HS diet. In Dahl SR but not Dahl SS rats, HS intake significantly
increased purine flux, augmented the protein expression of A2A R and cytochrome P450 2C23 and
2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to
respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have
exhausted its ability to increase EET synthesis above the levels observed on NS intake. In vivo
inhibition of the A2A R-EET pathway in Dahl SR rats fed a HS diet results in reduced renal EETs
levels, diminished natriuretic capacity and hypertension, thus supporting a role for the A2A R-EET
pathway in the adaptive natriuretic response to modulate blood pressure during salt loading. An
inability of Dahl SS rats to upregulate the A2A R-EET pathway in response to salt loading may
contribute to the development of salt-sensitive hypertension.
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1. Introduction
Salt-sensitivity, as defined by blood pressure elevation in response to a dietary salt load, is
not only a causative factor for a subgroup of humans with essential hypertension, but has
also been reported to be an independent cardiovascular risk factor in patients with
hypertension (1). Therefore, understanding the mechanisms that contribute to the
development of salt-sensitivity and identifying potential therapeutic targets for the
management of salt-sensitive hypertension should provide novel approaches to treat elevated
blood pressure. It has been recognized for many years that sodium chloride intake is one of
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the main environmental factors responsible for the development of hypertension (2).
Increased sodium chloride intake results in increased renal sodium chloride excretion. This
adaptive process prevents progressive salt retention and volume expansion, with elevation of
blood pressure; thus, an impaired ability of the kidney to excrete sodium requires an increase
in blood pressure to increase natriuresis and correct the sodium balance, resulting in
hypertension (3).

2. Renal Adenosine Receptors
The physiological effects of adenosine, a metabolite of ATP, are observed in nearly every
tissue and modulates cellular and organ function by binding to specific cell-surface P1
purinergic receptors (R), of which there are four known subtypes (A1, A2A, A2B and A3) (4).
These receptors are members of the large family of seven transmembrane spanning
heterotrimeric G protein-coupled receptors (5).

The renal localization of the adenosine receptor subtypes is well documented, but the
reported distribution throughout the kidney vasculature and tubular segments varies
depending on the technique employed. A1 R have a high affinity for adenosine and are
expressed in preglomerular microvessels (PGMV), including the afferent arterioles, in
glomeruli including mesangial cells, juxtaglomerular cells and vasa recta (6;7). The A1 R
mRNA is expressed throughout every nephron segment (8–11). The A2A R and the A2B R,
which possess a high and a low adenosine affinity, respectively, have been demonstrated in
whole kidney preparations (6) and in glomeruli of rat and mouse kidney, in the outer
medullary descending vasa recta and in the papilla (9;12;13). Although expression of A2A R
was not detected in rat PGMV (7), using primer-specific polymerase chain reaction A2A R
were found to be expressed in microdissected mouse efferent arterioles (14). Expression of
A2B R was reported in rat PGMV (7) and have been implicated in the efferent arteriole
tubular glomerular feedback (TGF) response (14–16). In addition, A2B R mRNA has been
detected in the cortical thick ascending loop of Henle (TALH) and in the distal convoluted
tubule as well as in the outer medullary descending vasa recta (9;12;13). There is scant
information on the distinct intrarenal localization of A3 R, although both the mRNA and
protein are present in whole kidney preparations of various species (6). The A3 R protein
and mRNA was undetectable in PGMV (7), but was found in rat cortical and medullary
tissue (17).

The kidney plays an integral role in the maintenance of extracellular fluid volume and
electrolyte balance and thus, contributes to the long-term control of arterial pressure (18). In
the kidney, adenosine plays a critical role in the regulation of renal vascular tone and
reactivity, and additionally affects tubular transport (19;20). Adenosine also inhibits renin
release, sympathetic neurotransmission, platelet aggregation, and lipolysis (20). Stimulation
of A1 R constricts the renal vasculature and inhibits renin release and enhances proximal
tubular NaCl reabsorption (21;22). The vasoconstrictor effects of A1 R activation in the
afferent arteriole is a major focus as adenosine is a primary mediator of TGF (22–25).
Stimulation of A2 R results in endothelium-dependent relaxation via stimulation of adenylyl
cyclase (26–28), thus increasing renal blood flow (29) and decreasing blood pressure (30).
Stimulation of A2A R promotes natriuresis by reducing NaCl reabsorption in the TALH and
collecting duct (31–33) and A2 R activation attenuated TGF responses by stimulation of
endothelial NOS (34). In afferent arterioles, A2R activation has been shown to counteract
the A1 R-induced constriction leading to dilation and decreased autoregulation (35;36).
Activation of A2B R dilates renal arteries in a NO-dependent manner (37) and in
juxtamedullary afferent arterioles, functional expression of both A2A R and A2B R was
observed, but the opposing vasodilator effect during adenosine-mediated afferent arteriolar
vasoconstriction was predominantly via activation of A2B R (38). The renal function of the
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A3 R is poorly characterized. It may play a role in sodium and fluid balance by regulating
the Na+/H+ exchanger (39) and may exacerbate renal ischemia-reperfusion injury (40).
Interestingly A3 R expression increase with age and expression upregulated by high salt
(HS) intake (6;17).

As production of adenosine is increased under stressful conditions such as hypoxia,
ischemia, and inflammation, adenosine has traditionally been implicated in the renal
functional responses to pathological events (41;42). However, there is now evidence
supporting the contribution of adenosine to renal mechanisms that respond to
nonpathological challenges to renal function. Adenosine levels have been shown to correlate
with salt intake; switching rats from a normal salt (NS) to a HS or low-salt diet results in
parallel changes in renal interstitial and urinary adenosine levels (43). The increase in
adenosine concentration during HS intake may contribute to a reduction of macula densa-
mediated renin secretion and enhance sodium excretion (44).

3. Cytochrome P450-derived arachidonic acid metabolites
The cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites, 20-
hydroxyeicosatetraenoic acids (20-HETE) and four regioisomeric cis-epoxyeicosatrienoic
acids (EETs), 5,6-, 8,9-, 11,12- and 14,15-EETs, generated by hydroxylases and
epoxygenases, respectively, occupy a key position in the regulation of renal vascular tone
(45;46). The constrictor effect of 20-HETE on PGMV established its importance as a
modulator of TGF and renal autoregulation (47). In contrast, EETs are important modulators
of cardiovascular function and have been recognized for their vasodilator, antiinflammatory,
antiproliferative, and profibrinolytic properties (48–53). These lipid derived metabolites
mediate/modulate the vascular responses of many vasoactive peptides, for example,
angiotensin II (54;55), endothelin-1 (56) and bradykinin (57;58).

Furthermore, the contribution of EETs to blood pressure regulation has been established in
several different animal models (59–61). It is well documented that the activity of renal
epoxygenase is increased with dietary salt loading (62;63). EETs are thought to be
natriuretic by virtue of their ability to dilate the renal vasculature (54;64;65), as well as
regulating Na+ transport in proximal and distal tubules (66–68). Thus, an increase in the
production of natriuretic EETs is one of the significant components of the kidney's adaptive
response to prevent elevation of blood pressure in response to HS intake (60;69).

Although there is much evidence showing an increase in epoxygenase activity and
subsequent increased production of antihypertensive EETs in response to salt loading, the
stimulus for this increased epoxygenase activity has not been identified. We have linked
A2A R activation to EET production in rat arcuate arteries (70) and have reported that
activation of A2A R is coupled to EET release upstream of adenylyl cyclase activation and
that EETs stimulate mono-ADP ribosyltransferase resulting in Gsα protein activation (28).

4. The renal A2A R – EET pathway
As adenosine levels are increased by dietary salt intake, we proposed that adenosine is the
stimulus for increased renal epoxygenase activity in response to salt loading. More
specifically, we hypothesized that HS intake increases the renal response to adenosine,
resulting in increased epoxygenase activity and EET levels (71).

We examined the renal response to adenosine in isolated, perfused kidneys obtained from
Spraque-Dawley (SD) rats fed a 4% HS diet or NS diet for 7 days (71). To define the
vascular responses to adenosine, we used a stable adenosine analog, 2-chloroadenosine (2-
CA) that is not subject to inactivation by either adenosine deaminase/kinase or rapid
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removal by nucleoside carriers. Bolus injections of 2-CA elicited biphasic responses: a
transient vasoconstriction followed by a prolonged dilation (Fig. 1). The dilator responses to
2-CA were dose-dependent and were exaggerated in kidneys from rats fed a HS diet
compared with those receiving a NS diet for 7 days. Under both conditions of NS and HS, 2-
CA resulted in dilation, but the magnitude of the response was enhanced in kidneys obtained
from rats fed HS for 7 days. As seen in Fig. 1, the inhibitory effect of a selective
epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-
PPOH), was greater under HS conditions. However, MS-PPOH did not completely abolish
the response; thus EETs may not be the sole mediators of adenosine-induced dilation in
isolated, perfused rat kidneys. Our study was performed in the presence of nitric oxide
synthetase (NOS) and cyclooxygenase (COX) inhibition, which eliminated the contribution
of NO and prostaglandins (i.e., PGI2 and PGE2) to the 2-CA response. In a previous study,
we showed that the renal responses to 2-CA in the perfused kidney were not dependent on
NO or PG synthesis (70). A possible candidate mediator of the epoxygenase-independent
dilation in response to adenosine is carbon monoxide (CO), a product of heme degradation
by heme oxygenase. An interaction between CO and adenosine in the nucleus of the solitary
tract of rats has been reported: adenosine receptor antagonism attenuated the vasodepressor
effect of hemin, while heme oxygenase inhibition attenuated the vasodepressor effect of
adenosine (72).

As salt loading increases renal epoxygenase activity (62;63), we assessed the role of EETs in
the enhanced dilator response to 2-CA seen in kidneys from HS-fed rats (Fig. 2). Although
EETs can be metabolized via a number of different pathways (73;74), the rapid hydrolysis to
their corresponding dihydroxyeicosatrienoic acids (DHTs) by soluble epoxide hydrolase
(sEH) seems to be the dominant pathway in the kidney (75;76). Thus total EET and DHT
release was measured, to account for total epoxygenase activity. Compared with NS intake,
salt loading significantly augmented epoxygenase activity, as reflected by an increase in
EET and DHT release, without affecting 20-HETE levels, in response to 10 µg of 2-CA.
Epoxygenase inhibition abolished this increase, suggesting that de novo synthesis of EETs,
rather than release of preformed EETs from storage in phospholipids (54), is responsible for
this enhanced renal response.

Because all four adenosine receptor subtypes are expressed within the kidney (6) and 2-CA
is a nonselective agonist of the adenosine receptors, it was necessary to elucidate which
receptor isoform mediated the 2-CA-induced vasodilation and EET stimulation in the
isolated, perfused rat kidney. Previously, we showed that the A2A R-selective agonist,
CGS-21680, induced dilation of rat renal PGMV was mediated by stimulation of EET
synthesis (70). Adenosine-dependent vasodilation is mediated by increased cAMP levels via
stimulation of A2 R subtypes (A2A R and/or A2B R) (28). Our data revealed that as with the
pressurized arcuate artery preparation (70), 2-CA-induced vasodilation of the isolated,
perfused rat kidney was also mediated through activation of A2A R, a finding confirmed by
experiments with ZM-241385, a selective A2A R antagonist. As seen in Fig. 3A in the
presence of ZM-241385, the dilator response to 2-CA was abolished; in fact, only a transient
vasoconstriction was observed. This suggests that 2-CA-induced dilation in the isolated,
perfused rat kidney is solely mediated by A2A R activation. The abrogated dilator response
was accompanied by a significant reduction in total EET and DHT release after ZM-241385
(Fig. 3B). As activation of A2B R dilates renal arteries in a NO-dependent manner (37), we
eliminated this pathway as a mediator of 2-CA-induced dilation by inhibition of NOS. The
association between A2A R activation and EET release in arcuate arteries and isolated,
perfused kidney experiments was based on the pharmacological studies using an A2A R-
selective agonist, CGS-21680 and A2A R antagonism with ZM-241385. It is feasible that
ZM-241385 may antagonize both A2A R and A2B R, under our experimental conditions. The
expression of A2 receptors in arcuate arteries has not has been addressed and further studies
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exploring the contribution of the A2A R and A2B R are required to reconcile the differences
in the functional responses to adenosine in the arcuate artery versus the afferent arteriole
(38;70). The vasodilator link between A2A R and EETs was confirmed with A2A R knockout
mice. Relaxation responses to A2A R agonists of aorta obtained from wild type mice were
abrogated in aorta of A2A R knockout mice and epoxygenase expression and activity was
also reduced in A2A R knockout mice (77). Further, greater dilation to A2A R agonists was
observed with HS intake and A1 R was downregulated, whereas A2A R was upregulated
with HS compared with NS intake (78).

5. Upregulation of CYP2C23 and A2A R under conditions of salt loading
Most renal EET biosynthesis has been attributed to the CYP2C and 2J epoxygenase families
(79–81). In the rat kidney, CYP2C23 has been identified as the major 2C arachidonate
epoxygenase and the isoform of the 2C family that is subject to regulation by dietary salt
(79). In agreement with other studies (79;82), renal CYP2C23 expression was upregulated
with increased dietary salt intake. We showed that HS increased medullary CYP2C23
protein expression, without affecting levels of cortical CYP2C23. In contrast to Zhao et al.
(82), who reported that an 8% NaCl diet for 14 days increased CYP2C11 cortical protein
expression, we did not detect changes in either cortical or medullary homogenates under our
experimental conditions of 4% NaCl intake for 7 days. Changes in adenosine receptor
protein expression in response to dietary salt intake have also been observed (17). Under
conditions of low salt, the renal expression of A1 R was increased, whereas HS diet
downregulated A1 R expression (17;73). Similarly, we showed that the expression of
cortical A1 R protein was decreased by ~20%, whereas in medullary homogenates, A2A R
expression was increased from HS-fed rats compared with NS-fed rats (71). Thus the
enhanced dilator response to 2-CA seen in kidneys obtained from HS-fed rats is mediated by
increased EET and DHT release and is associated with a downregulation of cortical A1 R
protein expression and increased medullary A2A R and CYP2C23 protein expression.

In summary in normotensive SD rats, HS intake augmented renovascular responses to a non-
selective adenosine receptor agonist, 2-CA, associated with increased renal protein
expression of the A2A R and CYP2C23, a salt-inducible epoxygenase, that promotes
increased renal efflux of EETs and the hydrolysis products of EETs and DHTs.

6. Inability of Dahl salt-sensitive (SS) rats to upregulate the A2A R-EET
pathway may contribute to the development of salt-sensitive hypertension

We have reported that adenosine-activated renovascular dilatation is mediated by
stimulating the A2A R that is linked to increasing EET synthesis, the latter mediating
adenosine actions on the renal vasculature and that A2A R-EET pathway is upregulated by
HS intake in normotensive rats (71). As this pathway is antipressor, we examined the role of
the adenosine-epoxygenase pathway in Dahl salt-sensitive (SS) hypertensive rats. The Dahl
SS rat is a genetic model of salt-dependent hypertension (83), that exhibits a rightward shift
in the pressure-natriuresis curve (84), the hallmark of salt-sensitive hypertension. A common
underlying adaptation in hypertension is an increase in vascular resistance, although the
mechanisms of the changes of vascular reactivity induced by a HS intake are not fully
known. Many mechanisms have been proposed to contribute to the development of
hypertension; enhanced reactivity to constrictors such as norepinephrine, endothelin and
angiotensin II as well as increased tissue oxygen delivery have been reported, whereas,
endothelium-dependent relaxations to hypoxia, acetylcholine, and sodium nitroprusside are
depressed (85). In addition, in Dahl SS rats, a deficiency of 20-HETE production by TALH
(59), an inability to increase renal epoxygenase activity in response to dietary salt intake
(60;86) has been documented, as well as an inability to produce or release eicosanoid
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precursors from phospholipid stores in response to dietary salt (87). Interactions between
NO and CYP metabolites have been described; both NO and CYP metabolites contribute to
the regulation of kidney function and blood pressure control, however, the role of 20-HETE
and EETs increases with HS intake or after NOS inhibition (88). 20-HETE has been shown
to result in endothelium dysfunction by reducing NO release and increasing superoxide
production (89), whereas, CYP epoxygenases are directly inhibited by hydrogen peroxide,
and this interaction may modulate vascular EET bioavailability (90). Increased NO
production may suppress 20-HETE synthesis yet permit EETs-dependent vasodilation (91).

We studied Dahl salt-resistant (SR) and SS rats with the expectation of demonstrating
abnormalities in the adenosine A2A R-epoxygenase pathway in the Dahl SS rat (92). Dahl
SS rats challenged with HS intake, in contrast to Dahl SR rats, failed to respond to 2-CA
elicited renal vasodilation above the levels produced by 2-CA in Dahl SS rats on NS intake.
Thus, the renal vasodilator dose-response curves to 2-CA and the efflux of EETs in response
to 2-CA did not differ in Dahl SS rats irrespective of salt intake, whether fed NS or HS.
Moreover, differences in the renal vasodilator effect of 2-CA demonstrated by Dahl SS and
SR rats on either NS or HS intake were entirely accounted for by their ability to release
EETs because inhibition of epoxygenase activity with MS-PPOH eliminated differences in
renal vasodilator responses to 2-CA observed in Dahl SR rats on NS vs. HS intake, as well
as differences in the renal vasodilator responses to 2-CA occurring between Dahl SR rats
and Dahl SS rats. Thus, inhibiting EET synthesis obliterated all differences in renal
vasodilator responses between NS and HS-fed Dahl SS rats produced by 2-CA as well as
those between Dahl SR and SS rats, demonstrating the crucial role of EETs as mediators of
renovascular responses on activating the renal adenosine system. The dilator response to 2-
CA was abolished in both Dahl SR and SS rats in the presence of A2A R antagonism with
ZM 241385.

The role of adenosine in cardiovascular regulation of blood pressure has been evaluated in
the Dahl SS model of hypertension (93). Plasma adenosine concentrations were significantly
higher in Dahl SS than in Dahl SR rats, irrespective of the NaCl content of the diet and
adenosine levels positively correlated with blood pressure, data indicating that an
abnormality in adenosine signaling may play a role in the pathophysiology of hypertension
of Dahl SS rats. In our study, total purines, which reflect increased flux through the
adenosine pathway, were also higher in Dahl SS rats than in Dahl SR rats on NS intake (Fig.
4) and Dahl SS rats exhibited an inability to upregulate the A2A R, suggesting that an
abnormality in adenosine signaling contributes to the development of hypertension in Dahl
SS rats. In Dahl SR rats, HS intake did increase urinary purine excretion in contrast to the
unresponsiveness to additional increases of urinary purine excretion that occurred in Dahl
SS rats on HS intake (92). As renal purine excretion increased in Dahl SR rats on HS intake,
the upregulation of A2A R was unexpected. Adenosine receptors are G-protein coupled
receptors, which typically exhibit desensitization. However, an increased A2A R expression
in the face of increased purine levels in Dahl SR rats does not conform to typical G-protein
coupled receptor pharmacology, and instead displays a feed-forward mechanism. Expression
A2B R was not significantly affected by salt intake in Dahl SR rats or in Dahl SS rats. In
agreement with other studies (17), the renal expression of A1 R decreased with HS intake in
both cortex and medulla of Dahl SS rats but not in Dahl SR rats. Spontaneously
hypertensive rats (SHR) develop tolerance to chronic administration of a selective A1 R
agonist, but not a selective A2A R agonist, over the course of 21 days (94). Although the
functional relevance remains unknown, HS intake has also been shown to increase the
expression of A3 R (17).

Renal efflux of EETs and DHTs in response to 2-CA was greater in Dahl SR rats fed a HS
diet than a NS diet (Fig. 5). Epoxygenase inhibition abolished the HS-induced increase in
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EET/DHT release in Dahl SR rats, indicating that de novo synthesis of EETs rather than
release of preformed EETs from storage in phospholipids (54), was responsible for the
enhanced renovascular response. In contrast to Dahl SR rats, salt-loading of Dahl SS rats
failed to increase the renal protein expression of either CYP2C23 or CYP2C11. Rather,
levels of medullary CYP2C23 and CYP2C11 tended to decrease with HS intake in Dahl SS
rats. The functional significance of this reduction in CYP2C protein is unknown, as the
renovascular responsiveness of Dahl SS kidneys to 2-CA mediated by EETs was not
decreased with HS feeding compared to NS intake.

As we did not observe any significant change in the EET to DHT ratios with salt-loading, it
is unlikely that the increased EET levels seen with HS intake in Dahl SR rats can be
accounted for by decreased sEH activity. In view of the antagonistic effects of 20-HETE on
EET-induced renal vasodilation (64), we also examined the effects of HS diet on 2-CA
elicited renal release of 20-HETE. Salt-loading did not affect 20-HETE renal release in
response to 2-CA thereby eliminating the potential contribution of changes in 20-HETE
production to the altered renal vasodilator effects of 2-CA in Dahl SS and SR rats. Deficient
medullary TALH 20-HETE production associated with deficient cortical EETs have been
proposed to contribute to hypertension in Dahl SS rats (86). A 20-HETE deficiency in the
outer medulla of Dahl SS rats may promote increased TALH sodium and chloride
reabsorption with elevation of blood pressure (59). In contrast to our findings, the
production of 20-HETE and EETs by renal cortical microsomes actually fell in Dahl SS rats
fed a HS diet (86). Further, we did not find differences in renal 20-HETE production by
Dahl SR and SS rats, which reflect critical differences in the assays between our study and
that of Ma et al., (59). Namely, we measured renal efflux of CYP-AA metabolites from the
isolated, perfused kidney in response to an adenosine analog, whereas they measured the
synthesis of EETs and 20-HETE by renal microsomes in the presence of AA, which is an
index of CYP450 enzyme synthetic capability rather than an index of the response of
endogenous CYP products to experimental conditions, such as changes in salt intake.

Our findings suggest a ceiling imposed on both Dahl SR and SS rats that limited the ability
of Dahl SS rats to recruit epoxygenase activity as indicated by renal EET release/efflux.
Several factors that relate to the adenosine-epoxygenase system have been identified in our
study that may explain the inability of HS intake to mobilize increased EET production in
the Dahl SS rat, in response to HS intake. Namely: 1) purine levels reflecting activity of the
adenosine pathway were fixed at levels found in NS-fed Dahl SS rats; 2) protein expression
of the preeminent CYP2C isozyme, CYP2C23, responsible for increased EET synthesis in
HS-fed rats was unresponsive to HS feeding in Dahl SS rats; 3) expression of the A2A R
linked to epoxygenase activity was also unresponsive to HS intake in the Dahl SS rat.

7. Inhibition of the A2A R-EET pathway renders Dahl salt-resistant rats (SR)
hypertensive

Single nucleotide polymorphisms in the CYP2J2 epoxygenase gene have been associated
with a hypertensive phenotype in humans (95). The inability to upregulate CYP2C
epoxygenases in response to salt-loading has been associated with the development of salt-
sensitive hypertension (60;82) and inhibition of the epoxygenase pathway with MS-PPOH,
has been reported to increase blood pressure in pregnant rats (96). Although adenosine has
traditionally been implicated in the renal functional responses to pathological events such as
ischemia and inflammation (41;42), its role in the adaptation of the kidney to enhance salt
excretion has only recently become appreciated (44;71). It has been reported that treatment
of Wistar rats with 1,3-dipropyl-8-sulphophenylxanthine (DPSPX), a non-selective
adenosine receptor antagonist, results in hypertension (97). Furthermore, blood pressure was
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elevated in transgenic A2A R knockout mice on a NS diet (30), suggesting that A2A R
activation can serve in mechanisms that contribute to the basal regulation of blood pressure.

In Dahl SR rats, salt-loading augmented renovascular responses to an adenosine analog, an
effect associated with upregulation of the protein expression of the CYP2C23 and
CYP2C11, as well as A2A R, changes that were not observed in Dahl SS rats (92).
Therefore, we examined the effect of in vivo inhibition of the A2A R-epoxygenase pathway
on the adaptive natriuretic response to salt-loading in Dahl SR rats, both at the level of
epoxygenase inhibition and A2A R antagonism. In agreement with Makita et al. (60), we saw
an increase in blood pressure in salt-loaded Dahl SR rats treated with an epoxygenase
inhibitor. In the study by Makita et al., clotrimazole, a non-selective inhibitor of CYP
epoxygenases was used, whereas we used MS-PPOH, an inhibitor selective for CYP
epoxygenases. In addition, in our study we examined the first 3 days of HS intake (i.e. the
early, adaptive natriuretic response to salt-loading) after epoxygenase inhibition, whereas
Makita et al. examined the effect of epoxygenase inhibition after rats were maintained for 6
weeks on a HS diet. We observed a similar increase in blood pressure in salt-loaded Dahl SR
rats treated with a selective A2A R antagonist, ZM 241385. In vivo administration of ZM
241385 to SHR attenuated the hypotensive response produced by exogenous adenosine (98).
Moreover, oral administration of a selective A2A R adenosine agonist elicited a sustained
hypotensive response in SHR (99).

The increase in blood pressure in response to salt-loading seen in both MS-PPOH- and ZM
241385-treated Dahl SR rats was associated with a more positive sodium balance (as
assessed by the daily difference between sodium intake and urinary sodium excretion),
compared with vehicle-treated Dahl SR rats, during the first two days of salt-loading. By the
third day of HS intake however, no differences in sodium balance were detected among the
three groups, indicating that either in vivo epoxygenase inhibition or antagonism of A2A R
results in a delay in the natriuretic response to salt-loading. On Day 3 of HS intake, MS-
PPOH- and ZM-241385-treated rats, plasma Na+ levels were significantly increased (163.3
± 1.2 and 158.1 ± 4.5 mEq/L, respectively) compared with vehicle-treated rats (142.1 ± 1
mEq/L), reflecting a diminished natriuretic capacity. Such increases in plasma Na+

concentration are not without precedent, as previous studies have shown similar changes in
rats rendered salt-sensitive by uninephrectomy and DOCA (100). To our knowledge, our
observations provide the first evidence for a role of the A2A R-EET pathway in the early,
adaptive natriuretic response to salt-loading, as we have been able to render Dahl SR rats
salt-sensitive, by either in vivo epoxygenase inhibition or A2A R antagonism.

Compared with vehicle-treated Dahl SR rats, in Dahl SR rats treated with MS-PPOH
showed a tendency for urinary K+ excretion to be reduced, as reflected by the positive
difference between K+ intake and urinary K+ excretion, irrespective of salt diet. These
results are in agreement with those of Sun et. al. (101), who showed that EETs activate
large-conductance calcium-activated K+ (BKCa) channels and flow-stimulated K+ secretion
in the cortical collecting duct, thereby regulating K+ secretion. Moreover, in that study,
epoxygenase inhibition abolished K+ secretion mediated by BKCa and renal outer medullary
K+ channels.

Dahl SR rats treated with either a CYP epoxygenase inhibitor or antagonist of A2A R were
unable to increase plasma levels of EETs and DHTs to the same extent as vehicle-treated
Dahl SR rats, in response to salt-loading (Fig. 7). In fact, in Dahl SR rats treated with an
A2A R antagonist, the concentration of plasma EETs and DHTs declined to levels below the
basal levels on NS diet. Renal levels of EETs and DHTs were also significantly lower with
either CYP epoxygenase inhibition or A2AR antagonism, thus further supporting a role for
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the A2A R-EET pathway in the adaptive natriuretic response to salt-loading in normotensive,
Dahl SR rats.

8. Concluding Remarks
The stimulation of adenosine levels with salt loading and downregulation of A1 R, with
increased adenylyl cyclase activity via A2A R stimulation, may play an important role in the
adaptation of the kidney to enhance salt excretion. Indeed, there is evidence linking changes
in A2A R-coupled activity to blood pressure regulation: 1) blood pressure is elevated in
transgenic A2A R knockout mice and 2) A2A R wild-type mice exhibit a decrease in blood
pressure in response to an A2A R agonist. The central finding of this study is that the renal
response to adenosine is exaggerated in rats fed a HS diet, presumably via A2AR activation
and subsequent increased production of EETs. Unlike Dahl SR rats, Dahl SS rats exhibit an
inability to upregulate the A2A R-EET pathway with salt loading. With inhibition of the A2A
R or epoxygenase pathway, Dahl SR rats exhibited a positive sodium balance, reflecting a
diminished natriuretic capacity and became hypertensive. These studies support a role for
the A2A R -EET pathway in the adaptive natriuretic response to modulate blood pressure
during salt loading. As salt-sensitivity is an important characteristic of a subgroup of
humans with essential hypertension and other forms of salt-dependent hypertension that
occurs in African-Americans, diabetics, and the aged (102), identification of potential
targets for the management of salt-sensitive hypertension may be of therapeutic benefit. The
adenosine-A2A R-EET pathway may be an important therapeutic target for managing salt-
sensitive hypertension.

Highlights

• Epoxyeicosatrienoic acids (EETs) are renal vasodilator and natriuretic
eicosanoids.

• Adenosine-activated renovascular dilatation is mediated via A2A receptor (R)
which is linked to increasing EET synthesis.

• The A2AR-EET pathway is upregulated in normotensive rats and contributes to
the adaptive response to high salt intake.

• Failure to upregulate the A2AR-EET pathway may contribute to the
development of salt-sensitive hypertension
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Figure 1. Responsiveness of isolated, perfused rat kidneys to 10 µg 2-chloroadenosine (2-CA)
Changes in perfusion pressure and area of response to a bolus injection of 10 µg 2-CA were
compared in kidneys obtained from normal salt (NS)-fed rats vs. high salt (HS)-fed rats for 7
days in the absence and presence of MS-PPOH (12 µM). Data expressed as means ± SE; n =
4. *P < 0.05 vs. control (i.e., NS vs. NS + MS-PPOH or HS vs. HS + MS-PPOH). #P < 0.05
NS vs. HS. *#P < 0.05 HS vs. NS + MS-PPOH.
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Figure 2. Renal release of CYP epoxygenase metabolites in response to 10 µg 2-CA
Release of total EETs + DHTs in response to 10 µg 2-CA was compared in NS- and HS-fed
rats in the absence and presence of MS-PPOH. Total EET + DHT release in response to
sodium nitroprusside (SNP; 25 ng) in HS-fed rats was also measured. Data are expressed as
means ± SE; n = 4–5. *P < 0.05 vs. control (i.e., HS vs. HS + MS-PPOH). #P < 0.05 NS vs.
HS.
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Figure 3. Effect of A2A R inhibition on the responsiveness of isolated, perfused rat kidneys to 10
µg 2-CA under NS intake
A: vascular response to 10 µg 2-CA was assessed before and after A2AR blockade by
ZM-241385 (10 µM). B: total release of EET + DHT in response to 10 µg 2-CA was
compared in the absence and presence of ZM-241385. Data are expressed as means ± SE; n
= 3. *P < 0.05 vs. control.
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Figure 4. Urinary purine levels after 7 days of HS diet in Dahl SR and SS rats
Levels of urinary purines (i.e., adenosine, hypoxanthine, xanthine, and inosine) were
measured in Dahl SR and SS rats on NS diet and after 7 days of HS diet. Data are means ±
SE; n = 5–7. *P < 0.05.
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Figure 5. Renal release of cytochrome P-450 (CYP) epoxygenase metabolites in response to 2-CA
in Dahl SR and SS rats
Data are means ± SE; n = 4–5. *P < 0.05 vs. control (i.e., HS vs. HS + MS-PPOH). #P <
0.05 NS vs. HS.

Carroll Page 19

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. Effect of epoxygenase inhibition or A2A R antagonism on systolic BP of Dahl SR rats
after 3 days treatment
Dahl SR rats on NS diet were pretreated with the epoxygenase inhibitor, MS-PPOH (20 mg/
Kg/day), for 3 days prior to switching rats to a HS (2% saline drinking water) intake. After 3
days of HS intake with MS-PPOH treatment, MS-PPOH was withdrawn while rats remained
on HS intake for 3 more days. Rats were then switched to NS diet for 7 days. The selective
A2A R antagonist, ZM 241385 (5 mg/Kg/day), was then given for 3 days prior to switching
rats back to HS intake. ZM 241385 treatment continued during 3 days of HS intake. Data are
expressed as means ± SEM; n = 6–7; *** p<0.001 vs. NS.
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Figure 7. Effect of epoxygenase inhibition or A2A R antagonism on plasma levels of CYP-AA
metabolites in Dahl SR rats
Plasma levels of CYP-AA metabolites were measured rats during NS (0.4% NaCl) diet, and
after 3 days of HS (2% saline drinking water) intake or 3 days of HS intake with either
epoxygenase inhibition (HS + MS-PPOH; 20 mg/Kg/day) or A2A R antagonism (HS + ZM
241385; 5 mg/Kg/day). Data are expressed as means ± SEM; n = 4–6; *** p<0.001 vs. NS,
†† p<0.001 vs. HS.
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