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Abstract MicroRNAs (miRs) are short non-coding RNA
molecules involved in post-transcriptional gene regulation
by binding to the 3′ untranslated region of a messenger RNA
(mRNA), thereby inhibiting the translation or inducing
mRNA destabilization. MiRs are generally considered to
act as intracellular mediators essential for normal cardiac
function, and their deregulated expression profiles have
been associated with cardiovascular diseases. Recent studies
have revealed the existence of freely circulating miRs in
human peripheral blood, which are present in a stable nature.
This has raised the possibility that miRsmay be released in the
circulation and can serve as novel diagnostic markers for acute
or chronic human disorders, including myocardial infarction
(MI). This review summarizes the recent findings of miRs that
fulfill the criteria of candidate biomarkers for MI.
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Introduction

Acute myocardial infarction (MI) is a major cause of mor-
tality and morbidity in Western hemisphere. Annually,
around 15 million patients in the United States and Europe
are presented to the emergency department with chest pain
or other symptoms indicative of MI [1, 2]. Early diagnosis
and treatment of patients with acute MI could prevent or
reduce ischemic damage to the myocardium and, therefore,
could prevent subsequent cardiac remodeling and failure.

MI reflects cardiomyocyte death (necrosis) as a conse-
quence of prolonged ischemia [3], which results from acute
thrombotic occlusion of a coronary artery. Myocardial cell
death can be detected by release of multiple proteins from
the damaged cells into the circulation [4]. Cardiac troponin
(Tn) I and T are structural proteins predominantly expressed
in the heart, and are currently considered as the “gold
standard” for acute MI (AMI) [4]. Their detection in peripheral
blood indicates cardiomyocyte necrosis, and in combination
with 12-lead electrocardiogram (ECG) and creatine kinase
isoenzyme MB (CK-MB) they form the diagnostic corner-
stones for MI [2, 5, 6]. However, although elevated biomarkers
in the blood indicate myocardial damage, they do not diagnose
the underlying mechanisms. For example, elevated values of
the biomarkers in the absence of clinical evidence of ischemia
could also occur as a consequence of other causes of cardiac
injury, such as myocarditis, sepsis, cardioversion, or ablation
[7–10]. Cardiac troponins are superior to all other biomarkers
that have been clinically available in the diagnosis of MI
[11–14] and they directly correlate with the size of MI [15,
16]. A major drawback of the contemporary Tn assays is their
inadequate sensitivity during the first few hours after the onset
of MI, as they are released slowly from damaged cardiomyo-
cytes and do not peak until 6 to 12 h after the onset of
symptoms [17]. Therefore, sampling is needed every 6 h.
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However, high-sensitive Tn assays are already on the market,
and recent multicenter studies [18•, 19•] have shown that these
assays improved the early diagnosis of MI, even if patients are
presented within 3 h after the onset of chest pain. These assays
contributed to safely “rule out” or “rule in” coronary causes of
acute chest pain.

microRNAs (miRs) are evolutionary conserved, short, non-
coding (~ 22 nucleotides) RNA molecules involved in post-
transcriptional gene regulation [20–22]. Their binding poten-
cy to the 3′ untranslated region (UTR) of messenger RNAs
(mRNAs) determines their mode of action: translational inhi-
bition and/or augmented mRNA degradation, both pathways
resulting in endogenous gene silencing. Around 1500 human
miRs (http://www.mirbase.org/ v 18.0) have been cloned and
sequenced and it is estimated that they regulate up to 50% of
the protein-coding genes [23–25].

MiRs are generally considered to act as intracellular
mediators essential for normal cardiac function [26] and
their deregulated expression profiles have been associated
with cardiovascular diseases [26–29]. Recent studies have
revealed existence of freely circulating miRs in human
peripheral blood that are stably expressed [30–32]. This
has raised the possibility that microRNAs may be probed
in the circulation and can serve as novel diagnostic markers
for cardiovascular diseases. An important characteristic of
miRs is their tissue and cell specificity [33] providing
unique signature with diagnostic opportunities for diverse
diseases [34]. In line with this, several studies have demon-
strated circulating miRs reflecting pathologic condition,
such as cancer and liver injury indicating that miRs could
be used as sensitive and specific biomarkers of various
pathologies and tissue injuries [35, 36]. In addition, another
advantage is the relative ease with which miRs can be
measured: polymerase chain reaction (PCR) allows being
more sensitive and specific than classic antibody-based
assays. A major improvement comes within reach to mea-
sure dozens of circulating miRs at once. This could become
feasible against reasonable costs, comparable to the costs of
measurement of only two or three protein markers. This
induces a completely novel way of designing and using
biomarkers in heart disease: instead of seeking one or two
gold standard diagnostics, a more complete profile can be
routinely measured to allow sensitive characterization of
subtypes of disease. It is already known for classical bio-
markers that adding a novel marker to the existing ones adds
information and increases diagnostic power but also sharply
increases the associated costs. Designing oligonucleotides
for miRs and performing subsequent quantitative reverse
transcriptase (qRT)-PCRs are much less time- and cost-
consuming processes when compared to the development
and production of new and specific antibodies and enzyme-
linked immunosorbent assays (ELISAs). Therefore, circu-
lating miRs as biomarkers for MI could increase the number

of markers measured and continue to increase diagnostic
power without increasing costs to a larger extent.

Ideal blood biomarkers of MI should comprehend the fol-
lowing characteristics: they should be 1) abundant and prefer-
ably exclusively expressed in the tissue of interest, 2) expressed
at low levels in the blood under normal/healthy circumstances,
3) released into the circulation after tissue injury, 4) stable in the
circulation, and 5) easily detected with high sensitivity and
specificity. Here we will review the recent findings of circulat-
ing miRs that fulfill the mentioned criteria and discuss their
potential to be used as biomarkers for MI (Table 1).

miR-1 and miR-133

miR-1-1/miR-133a-2 and miR-1-2/miR-133a-1 are two bi-
cistronic miR clusters expressed in both skeletal and cardiac
muscle. The sequence of mature miR-1-1 and miR-1-2 is
identical and the same holds true for miR-133a-1 and miR-
133-2.MiR-133b differs frommiR-133a in the 2 nucleotides at
the 3′ terminus and is specifically expressed in skeletal muscle.

miR-1 is the most abundantly expressed miR in the heart.
Both miR-1 and miR-133 are anti-hypertrophic miRs, in-
volved in regulation of signaling cascades and sarcomeric
organization [37]. Six hours after coronary artery occlusion
in mice, miR-1 and miR-133 levels were decreased in in-
farcted and border zone area of the heart whereas their levels
were increased in the peripheral blood [38], indicating re-
lease of these miRs into the circulation after tissue injury.
Also, in AMI patients, significantly higher circulating levels
of miR-1 and miR-133 levels could be detected in the
circulation [38••, 39••, 40••, 41••, 42••, 43••, 44••] as soon
as 5 h after the onset of symptoms [40••]. In addition, when
plasma samples were obtained 156 min after the onset of
symptoms, miR-1 and miR-133 levels had a significantly
higher peak than TnI, indicating their early release after MI
[38]. However, one study showed no significant differences
in miR-1 expression between AMI and controls [44••],
which could be explained by possible renal elimination of
miR-1 [39••] or by conceivable presence of higher skeletal
muscle turnover in the control patients [40••]. In addition,
enhanced miR-1 and miR-133 levels in the circulation were
detected after sham operated hearts [40••], demonstrating
that damaged muscle could also contribute to induced levels
of mR-1 and miR-133 in the circulation.

Both miR-1 and miR-133 levels augment in the circula-
tion of the ST-elevated MI (STEMI) patients compared to
the healthy controls within the first 12 h after the onset of
the symptoms, followed by a return to adjacent baseline
levels after 12 to 24 h [39••]. In contrast, one study demon-
strated significantly high levels of miR-133 in the plasma
after 20 h of the onset of the symptoms [35], although not
precisely describing which miR-133 isoform was studied. In
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Table 1 Circulating microRNAs in acute myocardial infarction studies

microRNA Fold change,
increase or decrease

ROC (AUC) Correlation Time of blood sampling No. samples Species Reference

miR-1 300↑ 0.98 TnT < 12 h, > 12 h, day 2,
day 3, > 1 month

25 STEMI, Human [39••]
miR-133a 70↑ 0.86 11 healthy Pig
miR-208b 3000↑ 1.00 6 closed

miR-499 250↑ 0.99 chest MI
miR-208a nd

miR-1 60↑ 0, 30, 60, 90, 120
and 150 minmiR-133a 60↑

miR-208b 80↑

miR-499 60↑

miR-1 All four significantly ↑ 0.85 4.8±3.82 33 AMI, Human [40••]
miR-133a 0.87 17 non-CHD,

16 CHD

miR-208a 0.97 6 non-op,

miR-499 0.82 6 sham-op,

miR-1 500↑ 1, 3, 6, 12, and 24 h
after the ligation

6 coronary
artery ligation

Rat
miR-133a 750↑

miR-208a 850↑

miR-499 40↑

miR-1 ns < 12 h 32 AMI, Human [44••]
miR-133a 4↑ 36 controls
miR-208b 1600↑ 0.94 TnT

miR-499 100↑ 0.92 TnT

miR-1 16↑ 517±309 min 33 STEMI,
17 healthy donors

Human [38••]
miR-133a 140↑

miR-133b 60↑

miR-499-5p 100↑

miR-208a nd

miR-1 6↑ 15 min to 5 d 4–5 coronary artery ligation
and sham operated

Mouse
miR-133a 13↑

miR-133b 5↑

miR-499-5p 60↑

miR-208a ↑

miR-499 62↑ CK-MB 48 h 9 AMI, 5 UAP, 9 CHF_III,
CHF_II, normal controls

Human [49]

miR-1 61%↑ 0.77 QRS widening 93 AMI, 66 controls Human [41••]
mir-133 ns

miR-1 20–100↑ CK-MB 8.5±3.82 31 AMI, 20 controls Human [42••]
200↑ Infarct size in vivo 0, 1 h, 3 h, 6 h, 12 h,

24 h, 3 d, 7 d, 14 d,
21 d, and 28 d

8–12 LAD ligation,
8–12, sham operated

Rat
Cell damage in vitro

miR-133 4.4↑ 0.89 5.24±1.38 h, 20 h, 7 d 51 AMI, Human [69]
miR-328 10.9–16.1↑ 0.81 28 controls

miR-145 2↑ Hs-TnT 3.0±2.3 h, 3 d, 4 d 20 STEMI, Human [52•]
miR-30c 1.3 ↑ Hs-TnT 20 controls,

miR-1291 4.5 ↓ 0.91 20 internal control
miR-663b 2 ↓ 0.94

miR-1 ↑ eGFR, hs-TnT 117 UAP, Human [43••]
miR-133a ↑ eGFR, age,hs-TnT 131 NSTEMI,

miR-133b ns hs-TnT 196 STEMI

miR-208a ns -

miR-208b ↑ age, smoking, hs-TnT

miR-499 ns male gender

AMI acute myocardial infarction; AUC area under the curve; CHD coronary heart disease; CHF_II congestive heart failure, NYHA class II;
CHF_III congestive heart failure, NYHA class III; CK-MB creatine kinase isoenzyme MB; eGFR estimated glomerular filtration rate; hs-TnT high-
sensitive TnT; LAD left anterior descending artery; MI myocardial infarction; miR microRNA; nd not detected; non-op non-operated; ns not
significant; NSTEMI non-ST elevation MI; ROC receiver operator characteristics; sham-op sham operated; STEMI ST elevation myocardial
infarction; TnI troponin I; TnT troponin T; UAP unstable angina pectoris.
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8 of 25 STEMI patients, miR-1 and miR-133a could be
detected in the urine within 24 h after the onset of symptoms
indicating renal elimination. This is in line with another study
showing a correlation between miR-1 and miR-133a and
estimated glomerular filtration rate (eGFR) in STEMI patients
but not between miR-133b and eGFR [43••]. Furthermore,
both miR-1 and miR-133 correlated with TnT [43••] implying
myocardial damage. Moreover, miR-1 also positively corre-
lates with creatine kinase-MB [42••] and QRS widening
in AMI patients [41], with infarct size in an animal
model of MI and with cell damage in vitro [42••].

Receiver operator characteristics (ROC) curves for miR-1
demonstrate area under the curve (AUC) varying from 0.77
[41••] to 0.98 [39••, 40••] indicating fair to excellent accu-
racy of this miR for the use of a biomarker in MI. For miR-
133, the ROC analysis reveal AUC values between 0.86 and
0.89 indicating good sensitivity and specificity distinguish-
ing between STEMI patients and healthy controls [39••,
40••]. Together with their high expression in the heart, and
increased levels in the blood after the MI, miR-1 and miR-
133 could be suitable candidates as biomarkers for the MI.
However, other injuries to the skeletal muscle should be
preferably excluded to rule out the non-specific effects. In
addition, the oscillations of these miRs after MI should be
studied accurately to reveal their exact times of increase and
decrease in the circulation and to study to which extent they
could contribute to the already existing biomarkers. Finally,
larger study populations are essential to make correct conclu-
sions if miR-1 andmiR-133 could be used as biomarkers inMI.

miR-499 and miR-208

miR-499 is an evolutionary conserved muscle-specific miR
that is located in an intronic region of the MYH7B gene and
plays a role in myosin gene regulation [45, 46]. Although
miR-499 is highly expressed under normal conditions in the
heart [45, 47], its expression decreases in the ischemic heart
[48], suggesting its release from the damaged tissue. Indeed,
miR-499 levels could be detected in plasma of AMI patients
[38••, 39••, 40••, 44••, 49], whereas one study did not detect
differences in miR-499 expression between STEMI, non–
ST-elevated MI (NSTEMI), and patients with unstable an-
gina [43••]. Although miR-1 and miR-133a peaked around
156 min after the onset of MI symptoms, miR-499 is at its
highest point around 12 h [38••, 39••], suggesting possible
slower kinetics compared to miR-1 and miR-133. However,
similar to miR-1 and miR-133, miR-499 levels increase in the
circulation in the sham operated hearts, indicating that damaged
muscle contributes to enhanced circulating miR-499 levels.

Besides parallel expression ofmiR-499 and TnI in an animal
model of MI [38••], miR-499 correlates with TnT [44••] and
CK-MB [49] in AMI patients. ROC analysis demonstrates

AUC values varying between 0.82 and 0.99, indicating good
to excellent sensitivity and specificity [39••, 40••, 44••].

Other miRs encoded by the myosin genes are miR-208a
and miR-208b, which are located inMYH6 andMYH7 genes,
respectively. MiR-208a and miR-208b are abundantly and
exclusively expressed in the heart, making themmost suitable
candidates to be used as biomarkers for the MI. Indeed, miR-
208a [40••] and miR-208b [39••, 43••, 44••] levels are in-
creased in the circulation after the MI. Two studies showed
that miR-208b was the most abundantly elevated miR in the
plasma, with 1600 [44••] and 3000 [39••] times more expres-
sion in the AMI patients than in the controls. Furthermore,
miR-208b levels correlated with TnT levels reflecting myo-
cardial damage [39••, 43••, 44••]. Moreover, the amount of
miR-208b in blood inversely correlates with left ventricular
ejection fraction, raising the possibility in using this miR not
only for diagnostic purposes but also for potential prognostic
use in long-term cardiac function and probability of develop-
ing heart failure. Nevertheless, one larger population study of
444 subjects revealed that although circulating levels of miR-
208b were associated with all-cause mortality at 6 months,
after adjustment for TnT levels, its association was lost with
the outcome. This implies that miR-208b does not add prog-
nostic information to an already sensitive necrosis marker.
However, it should be taken into account that this does not
exclude the potential of miR-208b to augment its prognostic
value when measuring at an earlier or later time point.

Only one study detected significantly higher circulating
miR-208a levels in the AMI patients [40••] in contrast to the
others [38••, 39••, 49]. This could have several explanations.
The first is related to the time point of sampling and could
explain why miR-208a was not detected in the circulation
[49]. In this study, blood sampling occurred within 48 h
after the onset of symptoms [49], although miR-208a peaks
around 3 h after the AMI [38••, 40••] and is restored to the
baseline after 24 h [40••]. The second explanation is related
to the myosin isoform expression between a mouse and a
human heart. miR-208a is abundantly and exclusively
expressed in the adult mouse heart, whereas miR-208b is
more expressed during development and in response to
stress. However,MYH7, harboring miR-208b, is the primary
isoform in the human cardiac muscle [50, 51], providing an
explanation why miR-208b is abundantly present in the
human heart. This could explain why two studies could
not detect miR-208a in the circulation, although sampling
the blood within the appropriate time line [38••, 39••].

Specificity and sensitivity analysis for miR-208b reveal
AUCs between 0.94 and 1.00, indicating excellent accuracy
for discrimination between AMI patients and the controls [39••,
44••]. In combination with its exclusive expression in the heart,
and high increase in blood after the MI, miR-208b could be a
suitable candidate as a biomarker for the MI. Nevertheless, the
kinetics of miR-208a should be studied extensively and in
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bigger populations to reveal its exact incline and decline after
the MI and to decide what its contribution could be to the
already existing biomarkers such as hs-TnT and TnI.

Non-specific Cardiac and Skeletal Muscle miRs

In theory, candidate biomarkers for MI should display cardiac
specific expression patterns. Recently, one study revealed
miR-663b and miR-1291 as the most predictive miRs for the
MI with 92.5% and 85% accuracy, respectively [52•]. In
addition, miR-30c and smooth muscle cell-enriched miR-
145 were significantly increased in these STEMI patients
and correlated with hs-TnT, indicting their potency to reflect
cell death. Moreover, the same study reported an miRs signa-
ture, which could serve as a new class of biomarkers [52•].
This signature represents a combination of 20 most up- and
down-regulated miRs in 20 STEMI patients in contrast to the
controls and could enhance diagnostic discrimination of
STEMI patients from the control with 96% specificity, 90%
sensitivity, and the AUC of 0.99, indicating excellent accura-
cy. These results are promising, but because these miRs are
not cardiac specific, other pathologic processes could underlie
the effects seen in this study. Furthermore, the patient popu-
lation is too small to drawn correct conclusions about this
particular miRs signature and because these miRs are isolated
from the whole peripheral blood, circulating cells could also
contribute to the miRs expression levels. Nevertheless, such a
multi-marker approach could be of interest to increase diag-
nostic power and to gain more information about the time line
of MI, which in turn could lead to faster and accurate treat-
ments and prevent subsequent cardiac remodeling and failure.

Stability of Circulating miRs

Extracellular miRs have been found recently in multiple
human body fluids, such as blood plasma, urine, and saliva
[30, 53, 54]. MiRs are surprisingly stable in the plasma
regardless of high RNAase activity [30], contributing to
the possibility that that miRs could be used as new class
of blood-based biomarkers. Several mechanisms influencing
the miR stability in the circulation are discussed below.

Circulating miRs can be carried in different types of
vesicles, such as exosomes [55•] and microvesicles [56•].
Exosomes are small (50–90 nm) vesicles that are released into
the extracellular environment by fusion of the multivesicular
bodies and the plasma membrane. Production of exosomes
occurs through the inward budding of the endosomes. One
study showed that 121 miRs are associated with exosomes
and that several miRs were abundantly expressed in exosomes
compared to the cells, suggesting packing regulation [55•].
These miRs are not localized on the external structures or

macromolecules, but instead are restricted to the inner part
[55•]. Besides exosomes, microvesicles can also contain miRs
[56•]. These particles are larger (up to 1um) and shed from the
cell membrane. In addition, microvesicles are enriched in bio-
active molecules and contain nucleic acids and/or proteins
[57]. MiRs located in exosomes or microvesicles are extreme-
ly resistant to RNAase-dependent degradation with necessity
to first destroy the lipid bilayer of the vesicles before miRs can
become accessible for RNAase degradation [55•].

Previous studies have shown that nucleic acids can bind
and form stable complexes with specific lipids found on lip-
oproteins [58–60] by divalent cation bridging [61]. High-
density lipoproteins (HDL) are used as carrier to deliver
lipophilic anti-tumor drug to human hepatocellular carcinoma
cells in vitro [62]. In animal models, liposomes containing
apolipoprotein A-I, which is the main protein component of
HDL, have been used to the delivery of several siRNAs to the
liver [63]. Recently, one study revealed that HDL (8–12 nm)
isolated from patients with hypercholesterolemia contained
small RNAs including miRs [64•]. The exact mechanism of
how miRs are loaded into the HDL particles and how they are
protected from the external RNAases has to be elucidated.

miRs can also be stabilized in the circulation when local-
ized in the apoptotic bodies. One study demonstrated that
endothelial cell-derived apoptotic bodies, which are produced
during atherosclerosis, carry miR-126 as well as other miRs
[65]. The majority of extracellular miRs in blood plasma are
bound to protein complexes protecting these miRs from deg-
radation. In line with this, one study has shown that a RNA
binding protein, nucleophosmin 1 (NPM1), and nucleolin
were highly abundant in the fibroblast medium after serum
deprivation and that especially NPM1 could bind and protect
miR-122 against degradation [66]. However, it needs to be
investigated if NPM1 is present and operative in binding and
protecting miRs in the human circulation.

Very recently, two studies have demonstrated that vesicle-
encapsuledmiRs represent only aminor fragment of circulating
miRs and that over 90% of circulating miRs are exosome free
and bound to Argonaute proteins [67•, 68]. These proteins are
naturally occurring within the cell and are a part of RNA-
induced silencing complex. Argonaute 2 (Ago2) plays an espe-
cially important role in stabilizing miRs in the plasma as Ago2/
miRs complexes are extremely nuclease and protease resistant.

In conclusion, several mechanisms are described for
miRs export and their subsequent stabilization in the circu-
lation. Export of most miRs is energy dependent and active
transport, suggesting complex regulation of this process
[66]. However, miR release after an AMI would reflect a
rather passive form due to necrosis. Mature miRs in the cells
that are Ago2 bound and necessary for the stabilization are
localized in the cytoplasm or in the P-bodies, suggesting that
extracellular miRs detected in the plasma after an AMI
would represent Ago2-bound miRs.
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Conclusions

Myocardial-derived miRs, such as miR-1, miR-133, miR-499,
and miR-208, might be useful as potential biomarkers for MI.
These miRs are abundantly expressed in the heart but less so in
the circulation under normal/healthy circumstances. In addi-
tion, they are released into the circulation after the MI, where
they are in a stable conformation and can be detected with high
accuracy. Larger study populations and exact time points of
blood sampling are required to study the kinetics of these
myocardial-derived miRs in AMI patients and to investigate
their potential to be used as new biomarkers in MI. It is already
known for classical biomarkers that adding a novel marker to
the existing ones adds information and increases diagnostic
power but also sharply increases the associated costs. Design-
ing primers for miRs and performing subsequent qRT-PCRs are
much less time- and cost-consuming processes when compared
to the development and production of new and specific anti-
bodies and ELISAs. In this way, a multi-miRs marker approach
also becomes attractive, which could lead to increased diagnos-
tic power and provide more information about the time line of
MI, with the faster and accurate treatments with the subsequent
improvement of the clinical outcome. To promote the use of
miRs as biomarkers, it is essential to develop new techniques
that can provide quick detection of miRs in the circulation.
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