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MANY theories have been presented over the last 
several decades to explain exceptional longevity in 

animals and humans. Perhaps, the most robust of these to 
date focuses on three interrelated endocrine systems: the 
growth hormone (GH), insulin and its hormone homologs, 
and insulin-like growth factor (IGF) pathways. As far 
down the evolutionary ladder as yeast, there is strong evi-
dence that a carbohydrate regulatory system exists and 
that if perturbed, life span extension is observed. As one 
moves up the ladder to nematodes and fruit flies, both in-
sulin and IGF become important in the maintenance of 
metabolism. Similar to yeast, if ligand or receptor expres-
sion or signaling factors in these pathways are disrupted 
(ie, nematode daf-2; Drosophila chico), an extension of 
life span is observed. In the mammalian system, the endo-
crine system becomes more complex with the addition of 
GH, a hormone that controls circulating IGF1 levels and 
thus has somatic actions yet also exhibits key metabolic 
functions that are independent of IGF1. Disturbing the GH 
pathway either by severely reducing plasma levels or by 
receptor disruption significantly extends health span and 
life span in mice.

Key Characteristics of Long-Lived GH-Related 
Mutants

The Ames dwarf, Snell dwarf, and GH receptor knock-
out (Ghr–/–) mice are the longest living mouse mutants 
discovered to date (1–3). The Ames and Snell dwarfs are 
phenotypically identical with similar hormone deficits 
caused by loss-of-function mutations that affect proper  
differentiation of the same pituitary cell types. Mutations 
in Prop-1 and Pit-1 result in deficient circulating GH, prolac-
tin, and thyrotropin in Ames and Snell mice, respectively 
(4,5). As a consequence of the lack of plasma GH stimula-
tion, plasma IGF1 levels are barely discernable in these mice 
(6). On average, Ames mice live 49%–69% longer (males 
and females, respectively), whereas Snell dwarfs live nearly 
50% longer than their normal counterparts (1,2,7). The dif-
ferences in life span between these dwarf mice result from 
differences in genetic background rather than the pituitary 
deficiencies. The other long-living GH mutant, the Ghr–/– 
mouse, was generated by targeted disruption of the GH 
receptor and GH-binding protein (8). These mice live up to 
46% longer than wild-type siblings and also exhibit undetect-
able circulating levels of IGF1 owing to dysfunctional GH 
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receptors (no liver IGF1 stimulus; (3)). The current record 
for the longest-lived Ghr–/– mouse is 1,819 days (Bartke, 
personal communication 2003). Hence, the major physiolog-
ical difference between these long-living mice is the presence 
(Ames and Snell) and absence (Ghr–/–) of an intact GH 
signaling system. This difference, in turn, results in some 
heterogeneity in downstream targeting of GH and IGF1 
between these mice (comprehensive review in (9)).

Several aspects of GH and IGF status as they relate to 
energy metabolism have been explored in GH mutant mice 
and include insulin signaling, adipose tissue metabolism/
inflammation, body temperature, and mitochondrial and 
oxidative pathways. The mitochondria play a central role  
in energy metabolism through oxidative phosphorylation 
and ATP synthesis, apoptosis, and in the generation of free 
radicals (produced as byproducts). These reactive oxygen 
species induce oxidative stress but have also been shown to 
regulate cellular signaling and integrate energy state, stress 
signaling, and survival (10). The oxidative damage resulting 
from reactive oxygen species and incurred by mitochondria 
and other cellular components results in disturbed energy 
budgets at the cellular and tissue levels and likely contrib-
utes to the aging phenotype (11–13). Moreover, it has been 
shown that defects in the electron transport chain (ETC) 
contribute to the etiology of several disease states (reviewed 
in (14)). The mitochondria thus drive energy metabolism in 
the cells and tissues and likely contribute to cellular aging.

Mitochondrial Function
Examination of individual oxidative phosphorylation 

(OXPHOS) components has the potential to uncover areas 
of altered function that may result from differences in circu-
lating levels of hormones and contribute to longevity differ-
ences between mutant and wild-type mice. Complex I of the 
OXPHOS system is the largest of the multimeric ETC pro-
teins and contributes significantly to the generation of free 
radicals, respiration rate, and overall control of the ETC in 
mammalian species (15,16). Inhibition of complex I (as 
little as 25%) can profoundly impact energy metabolism 
and contribute to less efficient energy production in aging 
(17–19). Many reports documented significant declines in 
complex I activity with aging (20–23). In GH-deficient 
Ames mice, several alterations in OXPHOS complexes have 
been observed. Increased complex I activity and protein  
levels have been demonstrated in liver tissues from healthy old 
dwarf mice in comparison to age-matched wild-type mice 
(20 months of age; (24)). In addition, greater declines in 
activity with age were observed in GH-sufficient wild-type 
mice versus Ames mice in liver, skeletal muscle, and kidney 
tissues (24). The liver tissue is a key player in metabolism, 
as it orchestrates the supply of energy substrates to other 
tissues. Thus, increased liver complex I activity and protein 
in old dwarf mice suggest that mitochondrial function is 
better preserved in these long-living dwarf mice at old ages.

Considering that complex I governs overall ETC function, 
then the differences observed in complex I in the dwarf mice 
may underlie the elevated levels of other downstream  
enzymes in the OXPHOS system (III, IV, and V) of these mice. 
However, ATP synthase (complex V) is not coupled to ETC 
processes, so the higher level of complex V in dwarf tissues 
is not a result of a generalized upregulation of OXPHOS pro-
teins. Instead, it may be indicative of ample energy availabil-
ity versus energy deficits observed in diseases with decreased 
ATP synthase protein levels and/or mutations in genes encod-
ing components of the ATP synthase complex (25,26). Ames 
mouse tissues also exhibited elevated levels of the adenine 
nucleotide translocator (messenger RNA or protein), a protein 
involved in both the transport of ATP and the maintenance of 
the mitochondrial permeability transition pore complex (and 
thus, apoptosis). If complex I is the major controller of over-
all ETC function as reported (21) and a decline in activity 
contributes to decreased energy production and aging pro-
cesses, then Ames mice exhibit an advantage in many tissues 
over wild-type mice. This advantage may contribute to the 
delayed aging phenotype enjoyed by Ames mice (24). 
A major regulator of mitochondrial biogenesis, peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha, has 
also been shown to be upregulated in tissues of Ames mice 
(and Ghr–/– mice; (24,27–29)). However, an increase in 
mitochondrial numbers is not evident as indicated by similar 
mitochondrial DNA:nuclear DNA ratios between dwarf and 
wild-type mice (24). Therefore, this nuclear hormone activa-
tion likely contributes to other aspects of metabolism including 
antioxidant defense, insulin sensitivity, and b-oxidation.

It has been reported that overall mitochondrial protein 
synthesis decreases by middle age in humans (30), a finding 
associated with decreasing plasma GH concentrations (31). 
Factors that regulate the synthesis and activities of the mito-
chondrial ETC complexes, however, are largely unknown 
(32). Cellular metabolism is stimulated by anabolic hor-
mones, increasing metabolic activity (oxygen consumption 
and glucose oxidation), oxidative phosphorylation, and  
reactive oxygen species production. However, neither GH 
nor IGF1 have been shown to directly modulate the expres-
sion or activities of the OXPHOS proteins. Thus, the pre-
diction that anabolic hormones stimulate mitochondrial 
function via oxidative phosphorylation activities is tenuous. 
To examine this assertion directly, we treated Ames mice 
with GH (25 mg porcine GH/injection, subcutaneous; two 
times daily; (33)) for 7 days, a treatment regimen has been 
shown to significantly increase circulating levels of IGF1 
(6,33). Body and liver weights increased in response to GH 
injection (p < .0001; Figure 1A and B), indicative of IGF1 
action. We observed a significant suppression in liver com-
plex I protein (12-month-old GH-treated dwarf mice −1.989 ± 
0.39 versus saline-treated dwarf mice 4.034 ± 0.79 rela-
tive optical density units; n = 6 per treatment; p = .0408) 
suggesting that GH influences OXPHOS and thus mitochon-
drial metabolism. Although the electron flow through 
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complexes I and III (I + III activity) was not altered signifi-
cantly by GH treatment in 12-month-old dwarf mice, electron 
flow through complexes II + III (II + III activity) was sup-
pressed 45% in comparison to dwarf mice treated with saline 
(p < .01; Figure 1C). GH treatment also decreased the activity 
of cytochrome c oxidase (complex IV) by 25% when com-
pared with the saline-treated mice (p = .06; Figure 1D). No 
differences in complex protein levels were observed in 
3-month-old dwarf mice similarly treated with GH. Further-
more, levels of gene expression for complexes II, III, and V 
as well as protein levels of complexes I, II, and V are mark-
edly decreased in mice with high circulating levels of GH 
(GH transgenic mice; Figures 2 and 3) and shortened life 
spans. Taken together, these data are compelling and sug-
gest that the metabolic actions of GH decrease the expres-
sion and activities of OXPHOS components. There is also 
the possibility that GH’s actions are secondary to increased 
insulin (as insulin promotes mitochondrial activity) in these 
mice. Nevertheless, Ames mice exhibit negligible levels of 
plasma GH and IGF1 and reduced levels of insulin, and it is 
this lack of anabolic activity that may result in the upregu-
lation in OXPHOS and mitochondrial metabolism, potential 
underlying factors in their long life.

Extremely low thyroid hormone concentrations in Ames 
dwarf mice also preclude the assertion that enhanced meta-
bolic activity may be responsible for the elevated OXPHOS 
output in older dwarf mice. We found that treatment of 
Ames mice with thyroxine (2 mg in 0.9% saline) every other 
day for 1 week did not affect liver gene expression of the 
OXPHOS complexes but did reduce the activity of liver 
complex II + III by 43% (p < .0001; Figure 4). In contrast to 
Ames mice, hypothyroid rats exhibit reduced complex V 

activity compared with euthyroid animals and short-term 
3,5-l-diiodothyronine injection enhanced this activity (34). 
As additional information, Panici and coworkers (35) reported 
that short-term (6-week) T4 administration to Ames mice had 
no affect on longevity. Although lifelong treatment of Snell 
dwarf mice with thyroxine reduced their life span (36).

Antioxidative Defenses and Oxidative Damage
Oxidative metabolism is closely linked to mitochondrial 

metabolism as this system counters the metabolic by-products 
(free radicals) produced during the oxidative phosphorylation 
process. Moreover, oxidative stress underlies mitochondrial 
dysfunction and impaired energetics. Several lines of evi-
dence demonstrate that GH plays a role in antioxidative  
defense. The high plasma GH and IGF1 concentrations 
found in short-living GH transgenic mice are strongly associ-
ated with increased superoxide radicals, increased oxidative 
damage, and significantly suppressed tissue antioxidative 
enzyme levels (MnSOD, CuZnSOD, catalase, and GPX; 
(37–40)). Both direct and specific effects of GH and IGF1 
in vitro (primary hepatocytes) support the in vivo evidence 
demonstrating that these two hormones downregulate the 
expression of antioxidative enzymes (41). Therefore, the 
significant downregulation of oxidative defense capacity 
and the multiple indices of physiological decline associated 
with premature aging (early reproductive senescence, 
glomerulonephritis, glomerulosclerosis, early onset, and  
increased incidence of tumors, etc) likely lead to the reported 
50% reduction in life span in animals with pharmacological 
levels of plasma GH (42). In comparison, IGF1 transgenic 
mice do not experience this severe renal pathology suggesting 
that GH is the main culprit (43).
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Figure 1. Body and liver weights and complex enzyme activities in liver tissue from Ames dwarf mice following a short-term 7-day treatment with growth  

hormone (GH; 25 mg porcine GH per injection × two injections per day for 7 days). Top left: Body weight change (g); top right: Liver weights (g); bottom left: Liver 
complex II + III activity (ng/min × mg protein) in 12-month-old Ames mice; and bottom right: Liver complex IV activity (nmol/min × mg protein) in 12-month-old 
Ames mice. Details of enzyme assays described in (24). Values represent means ± SEM, n = 7–8 mice per treatment.
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Figure 2. Gene expression of complex enzymes in 3-month-old male liver tissue from GH transgenic and wild-type control mice. Primer pairs and real-time  
reverse transcription-PCR conditions described in (24). Values represent means ± SEM, n = 6–7 mice per genotype.

In striking contrast, GH deficiency in dwarf mice results 
in significantly enhanced antioxidative defense capacity. 
Ames mice exhibit elevated catalase, SOD, and GPX in 

multiple tissues (activities, protein and/or messenger RNA; 
(38–40,44)). GH administration to dwarf mice suppresses 
these same enzymes when compared with saline-injected 
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Figure 3. Liver protein levels of complexes I, II, and V in 3- and 12-month-old male tissue from growth hormone transgenic and wild-type control mice. Protein 
extraction and immunoblotting assays and antibodies are described in (24). Values represent means ± SEM, n = 7–8 mice per age per genotype.
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dwarf mice (33). Nonenzymatic antioxidative defense mecha-
nisms such as glutathione and metallothionein are also elevated 
in dwarf mice. The lack of anabolic stimulation of mitochon-
drial metabolism and the elevated oxidative defense mecha-
nisms in these mice result in lower liver hydrogen peroxide 
generation and lower oxidative damage to nuclear and mito-
chondrial DNA, proteins, and lipids in several tissues (45–48).

Mitochondria play an important role in metabolic rate 
and energy metabolism as oxidative phosphorylation is  
responsible for the majority of whole-animal oxygen con-
sumption and in the control of cellular respiration (49). 
Mitochondrial metabolism is suppressed in many mammals 
(including mice) during fasting and daily torpor and is 
mechanistically linked to reductions in reactive oxygen spe-
cies production and body temperature (50).

Body Temperature
Hunter and his colleagues (51) reported in 1999 that core 

body temperature (Tco) was significantly lower in Ames 
dwarf mice than in normal animals from the same strain. In 
this study, Tco was continuously monitored in singly housed 
animals at an ambient temperature of 26°C using intraperi-
toneally placed transmitters and telemetric recording. The 
difference in Tco between normal and dwarf animals was 
large, approximately 1.6°C. In addition, some dwarf animals 
in this study exhibited periods of hypothermia with Tco 
dropping to values near or below 33°C for periods of up to 
6 hours (51). Subsequently, we reported that Tco in Ghr–/– 
animals was also reduced, although the reduction was much 
smaller than in Ames dwarf mice (approximately 0.4°C) 
and statistically significant only at some phases of the 
24-hour Tco rhythm (52). Major reduction of Tco in Ames 
dwarfs and a more modest effect in Ghr–/– can be readily 
related to the reduced action of calorigenic hormones,  
thyroxine, GH, and insulin in these mutants: Ames dwarfs 
are severely hypothyroid due to thyroid stimulating hor-
mone deficiency and do not produce GH; Ghr–/– mice are 
GH resistant and both are hypoinsulinemic.

We propose that reduced Tco contributes to extended 
longevity of Ames dwarf and Ghr–/– mice. In an elegant 
study of Conti and colleagues (53), reducing body tempera-
ture of mice by hypothalamic overexpression of uncoupling 

protein 2 led to a significant increase of life span. Associa-
tion of reduced body temperature with increased longevity 
was also reported in the human (54). Forced restriction of 
food intake (calorie restriction, CR) leads to reductions in 
the levels of thyroid hormones and in body temperature. In 
mice, CR can induce periods of torpor with associated  
hypothermia (55,56). Additionally, an enlargement of inter-
scapular brown adipose tissue was observed in Ghr–/– mice 
over that of wild-type mice as well as elevated levels of 
uncoupling protein-1 in this tissue (57).

Oxygen Consumption and Respiratory Quotient
Although lower Tco would seem to imply a downward 

shift in energy and metabolism, studies by indirect calorim-
etry revealed that oxygen consumption per unit of body 
mass is significantly increased in both Ames dwarf and  
Ghr–/– mice in comparison to the corresponding normal 
controls (58). This finding was not expected. Animals sub-
jected to CR show an initial decrease in metabolic rate but 
after a period of adaptation and weight loss, consume the 
same amount of oxygen per unit of lean body mass as con-
trols with unlimited access to food (59). Reporting results 
of studies of energy metabolism in terms of lean body mass 
is supported by evidence that metabolic rate scales more 
closely with this value (generally calculated as body 
weight0.67 or body weight 0.75) rather than with body weight. 
However, the differences between findings in long-lived 
mice with GH-related mutations and in genetically normal 
animals subjected to CR are not a simple reflection of  
different ways of presenting the results because the adjust-
ments to “lean body mass” are based on the assumption that 
smaller animals are leaner, whereas adiposity (body fat as 
percent of body weight) in long-living dwarf mice is either 
significantly increased or near normal (60,61). The interpre-
tation of findings from studies of energy metabolism in 
mice and common laboratory rodents is further complicated 
by the fact that basal or resting metabolic rates in these 
animals are difficult to measure, and the average metabolic 
rate that can be fairly precisely determined over periods of 
12 or 24 hours includes energy used for thermogenesis and 
maintaining body temperature. In mice, thermoneutral envi-
ronmental temperature is approximately 30°C (86°F) (62), 

3 months 12 months

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
saline
T4

p=0.0236

Body Weight Change

ch
an

ge
in

w
ei

gh
t(

gm
)

Complex II & III Activity

0

2

4

6

T4
saline

p<0.0001

n
m

o
l/m

in
*m

g

Figure 4. Body weight change (g) and liver complex II + III activity (nmol/min × mg) in Ames dwarf mice following short-term treatment with thyroxine or saline. 
Details of complex II + III activity assay described in (24). Values represent means ± SEM, n = 6–8 mice per treatment.
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and thus, standard housing conditions (usually about 22°C) 
represent a thermal stress. For dwarf mice, which are much 
smaller than normal mice and thus have higher body surface to 
body mass ratio, the loss of heat by radiation can be assumed 
to be greater (in spite of increased or normal insulation by sub-
cutaneous fat), and thus, the energy demand for thermogenesis 
is presumably further increased at “room temperature.”

An increase in oxygen consumption per gram body 
weight in dwarf mice was associated with a significant  
reduction in respiratory quotient (RQ; calculated as a ratio 
of carbon dioxide output to oxygen consumption). RQ pro-
vides an estimate of the use of metabolic fuels to generate 
energy with an RQ of 1.0 representing exclusive reliance  
on carbohydrates and RQ of 0.7 representing reliance on 
fats. Increased reliance on “fat burning” or, more precisely, 
b-oxidation of fatty acids for satisfying energy needs is a 
normal response to reduced availability of nutrients during 
fast or long between-meal intervals (such as sleep in the  
human) and has been associated with improved metabolic 
homeostasis and extended longevity in a variety of situations 
(63–65). A shift from carbohydrate to fatty acid utilization 
in response to CR is believed to represent an important  
metabolic adaptation of mitochondrial function and one of 
the key mechanisms of extended longevity (66).

Recent findings in our laboratory indicate that differences 
in oxygen consumption (VO2) and RQ between normal 
mice and long-lived mutants can be eliminated or greatly 
reduced by several days of exposure to thermoneutral tem-
peratures. This raises an intriguing possibility that the meta-
bolic characteristics of GH-related mouse mutants detected 
by indirect calorimetry at ambient temperatures of 22°C 
(increased VO2/g and reduced RQ) represent an exagger-
ated response of these diminutive animals to cold stress and 
that the resulting phenotype is one of the mechanisms of 
their extended longevity. In indirect support of this hypoth-
esis, Koizumi and his colleagues (56) reported that main-
taining CR mice at a thermoneutral temperature eliminates 
some of the beneficial effects of CR. This included a sig-
nificantly shorter survival of calorically restricted C57BL/6 
mice at 30°C versus 20–22°C. The authors ascribed these 
findings to elimination of torpor, which was a daily occur-
rence under the employed CR protocol (56).

Adipose Tissue, Adipokines, and Inflammation
The loss of GH’s somatic effects, the majority of which 

are due to IGF1, results in animals of small size but  
extended longevity. However, as mentioned previously, GH 
has direct metabolic effects that are IGF1-independent,  
affecting lipids via lipolysis, lipid oxidation and lipid mobi-
lization, and further regulating body composition (67,68). 
In addition, levels of adipokines, factors produced by adipo-
cytes, are affected by fat mass and composition and have 
been shown to affect diverse processes such as energy expen-
diture, carbohydrate and lipid metabolism, and inflamma-

tion (69). Circulating levels of adiponectin, an important 
antiinflammatory adipokine, are elevated (70,71) in long-lived 
GH-related mouse mutants, whereas the expression of pro-
inflammatory cytokines, interleukin 6 and tumor necrosis 
factor alpha, are reduced. Increased adiponectin secretion 
undoubtedly reflects the absence of negative control of  
its secretion by GH, along with differences in the size and 
distribution (72) of adipocytes.

We believe that extended longevity of Ames dwarf and 
Ghr–/– mice is causally related to phenotypic characteristics 
induced by elevated adiponectin levels (Figure 5). Adiponectin 
reduces proinflammatory nuclear factor kappa-light chain-
enhancer of activated B cells signaling by reducing expression 
of NFkB-inducing kinase, an upstream regulator of nuclear 
factor kappa-light chain-enhancer of activated B cells, and by 
adenosine monophosphate–activated protein kinase-mediated 
inhibition of this pathway. Adiponectin activates adenos-
ine monophosphate–activated protein kinase, promotes  
b-oxidation of fatty acids, and enhances insulin sensitivity. 
Reduced nuclear factor kappa-light chain-enhancer of acti-
vated B cells signaling may contribute to improved responses 
to insulin, although inflammation and insulin resistance have 
been dissociated in transgenic mice (73). We have recently 
shown that removing most of the epididymal and perineph-
ric adipose tissue from adult Ghr–/– mice reduces adipo-
nectin levels, increases RQ, and promotes insulin resistance, 
thus leading to normalization of the phenotypic characteristic 
believed to be causally linked to longevity (74). Metabolic 
characteristics of transgenic mice overexpressing adiponectin 
are remarkably similar to those of Ames dwarf and Ghr–/– 
mice, except for the percentage of body fat that is reduced  
in the transgenics (75,76). Transgenic mice overexpressing 
human adiponectin in the liver have an increased life span (77).

In the human, there is considerable evidence for anti-
inflammatory and antiatherogenic effects of adiponectin 

Figure 5. Interactions of pathways mediating effects of growth hormone (GH) 
on metabolism and inflammation. GH inhibits adiponectin, peroxisome proliferator-
activated receptor g, PPARa, and peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha expression and thus promotes inflammation, insulin resistance, 
and reduced oxidation of fatty acids. Suppression of GH signaling in long-lived 
mutants removes these inhibitory effects and thus reduces inflammation and 
promotes insulin sensitivity and fatty acid oxidation. (This diagram is greatly 
simplified and is not intended to present all pathways and mediators involved).
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(78–80). Circulating adiponectin levels are increased in 
centenarians and in offspring of exceptionally long-lived 
individuals (81–83). Laron dwarfs, which share GH resis-
tance and many of the resulting phenotypic characteristics 
with Ghr–/– mice, have elevated adiponectin levels (84) and 
are remarkably protected from age-related disease, including 
type 2 diabetes and cancer (85,86). It should be pointed out 
that the average longevity of Laron dwarfs does not differ 
from that of the normal individuals from the same popula-
tion, but this may reflect the increased incidence of deaths 
resulting from accidents and alcohol-related causes in indi-
viduals affected by this syndrome (85).

Finally, there is considerable evidence that low-grade  
inflammation, other inflammatory processes, as well as  
infections and the resulting “inflammatory load” can pro-
foundly influence longevity and health span in mammals 
(87,88). GH was reported to exert antiinflammatory effects 
in experimentally induced sepsis by promoting secretion of 
interleukin 10 and reducing the levels of tumor necrosis  
factor alpha (89,90). Moreover, the levels of an important 
marker of inflammation, C reactive protein, in GH-deficient 
participants were reduced by GH therapy (91). In contrast to 
these observations, inflammatory processes and levels of 
proinflammatory cytokines are increased in transgenic mice 
overexpressing GH (92,93). Because circulating levels of GH 
in these animals are extremely high, differences between 
the results obtained by GH injections and by overexpression 
of the GH gene may reflect a nonlinear likely biphasic dose– 
response relationship between GH levels and inflammation. 
In clinical studies, biphasic inverted U dose response was 
reported for the effects of GH on cardiac function (94) 
and for relationship of circulating IGF1 levels to all cause 
mortality (95).

Conclusion
Considering the components of energy metabolism pre-

sented (mitochondrial and oxidative metabolism, body tem-
perature, RQ, and adiponectin), the conclusion that in the 
long-lived mutants, GH deficiency throughout life is benefi-
cial in terms of health span and life span is difficult to debate. 
In addition, a very recent publication demonstrated that male 
IGF1 receptor heterozygous mice do not live longer than 
wild-type mice (nor do they exhibit differences in end-of-life 
pathology), and the extension of longevity in females was very 
modest (less than 5%; (96)). These investigators conclude that 
a reduction in circulating IGF1 levels in CR and dwarf mice 
plays little if any role in delayed aging and longevity. This 
evidence supports our own work in dwarf mice that strongly 
proposes that reduced GH rather than the secondary reduction 
of IGF1 is the key to longevity in mammalian systems. Further 
study is warranted regarding the apparent importance of 
timing of hormonal perturbations (life long vs neonatally or 
adult only; (35)) and consequent effects on energy metabolism 
as they relate to aging processes and longevity.
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