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Cellular/Molecular

Adaptor Protein Complexes 1 and 3 Are Essential for
Generation of Synaptic Vesicles from Activity-Dependent

Bulk Endosomes

Giselle Cheung and Michael A. Cousin

Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland, United Kingdom EH8 9XD

Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve
terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle
pool. We have identified an essential requirement for both adaptor protein complexes 1and 3 in this process by employing morphological
and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits
synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein
1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for
adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor
proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an
essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.

Introduction

Neuronal activity stimulates the fusion of neurotransmitter-
containing synaptic vesicles (SVs) with the nerve terminal plasma
membrane. SVs that are available for exocytosis in central nerve
terminals are commonly referred to as the recycling pool
(Sudhof, 2000), which can be further subdivided into the read-
ily releasable pool (RRP) and the reserve pool. The RRP con-
tains SVs that are immediately available for fusion, whereas
the reserve pool only contributes SVs during periods of in-
tense neuronal activity (Sudhof, 2000).

Neuronal activity is also a key determinant in the triggering of
specific SV retrieval modes after exocytosis. Clathrin-mediated
endocytosis (CME) is the dominant SV retrieval mode during
mild stimulation (Granseth et al., 2006; Zhu et al., 2009), whereas
during increased activity activity-dependent bulk endocytosis
(ADBE) dominates (Clayton et al., 2008). ADBE is a high capacity
SV retrieval mode that forms endosomes directly from large in-
vaginations of the nerve terminal plasma membrane (Clayton
and Cousin, 2009a). SV that are generated from bulk endosomes
specifically repopulate the reserve pool (Richards et al., 2000;
Cheungetal., 2010), suggesting a functional link between reserve
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pool mobilization and ADBE triggering (Clayton and Cousin,
2009a; Shupliakov, 2009).

The formation of functional SVs from donor membrane requires
the efficient sorting of protein cargo, a role performed at the plasma
membrane by the adaptor protein (AP) 2 complex during CME
(Royle and Lagnado, 2003). The molecules that mediate SV genera-
tion from bulk endosomes during ADBE are still unknown. This
process is thought to be clathrin dependent (Heerssen et al., 2008;
Kasprowicz et al., 2008), suggesting that AP complexes will also
be required. Five different AP complexes have been identified
(AP-1 to AP-5) that mediate vesicle formation at specific donor
membranes (Boehm and Bonifacino, 2001; Robinson, 2004;
Hirst et al., 2011). In both non-neuronal and neuroendocrine
cells, endosomal vesicle budding is inhibited by brefeldin A
(BFA), which inhibits the GTPase ADP-ribosylation factor 1
(ARF1) (Drake et al., 2000). ARF1 is essential for the recruitment
of both AP-1 and AP-3 to membrane, implicating both AP-1 and
AP-3 in endosomal vesicle generation (Faundez et al., 1998; Pa-
gano et al., 2004; Newell-Litwa et al., 2007).

A potential role for either AP-1 or AP-3 in SV generation from
bulk endosomes is supported by previous studies. Both AP com-
plexes are enriched in central nerve terminals (Glyvuk et al., 2010;
Newell-Litwa et al., 2010) and are present on SVs (Takamori et
al., 2006). Furthermore, SV endocytosis is sensitive to BFA only
during intense activity in neuronal culture (Voglmaier et al.,
2006; Kim and Ryan, 2009). Finally, mice lacking the o subunit of
AP-1B display SV recycling defects, a large increase in endosome
numbers, and a delay in recycling pool replenishment after strong
stimulation (Glyvuk et al., 2010).

We directly examined the role of AP-1 and AP-3 in SV generation
from bulk endosomes using recently established morphological and
optical assays that specifically track SVs derived from this ADBE-
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Figure 1.  Brefeldin A arrests SV budding from bulk endosomes. 4, Cultures were loaded with HRP (10 mg/ml) in the presence
of 50 mm KCI for 2 min. HRP was washed away immediately, and neurons were stimulated to release all available SVs using two
sequential 30 s KCI (50 mw) stimuli. Cultures were then left to rest for 30 min. Brefeldin A (10 ug/ml) was added to the cultures
during the KCI unload and rest period. Cells were fixed either immediately after HRP loading (Load), immediately after KCI
unloading (Unload), or after the 30 min rest period (Rest) as indicated by arrows. B, Representative electron micrographs are
shown for the treatments described above. Black arrows indicate HRP-labeled SVs, and white arrows indicate HRP-labeled endo-
somes (scale bar, 500 nm). €, Bar graph displays the mean number of HRP-labeled SVs per nerve terminal for the indicated fixation
points. For comparison, the mean number of HRP-labeled endosomes were: Load, 4.0 == 0.6; Unload-Control, 5.7 = 0.7; Unload-
BFA, 5.6 = 0.3; Rest-Control, 4.4 = 0.5; Rest-BFA, 3.7 == 0.6 (n is number of nerve terminals [N is number of independent
experiments]: Load, n = 551 [N = 6]; Unload-Control, n = 227 [N = 4]; Unload-BFA, n = 123 [N = 3]; Rest-Control, n = 232
[N = 4];Rest-BFA,n = 95 [N = 3];all == SEM, ***p << 0.001,**p < 0.01, one-way ANOVA using N'). D—F, Frequency distribution
of endosome diameter during Load (white bars), Unload (black bars), and Rest (gray bars) periods under control conditions (D), and
either Unload (E) or Rest (F) in the presence or absence of BFA (hatched bars) (nis number of HRP endosomes, with total endosome
number in parentheses: Load, n = 1980 (3678); Unload-Control, n = 1245 (2320); Unload-BFA, n = 1980 701 (1447); Rest-
Control, n = 781 (1336); Rest-BFA, n = 339 (617); all == SEM, ***p < 0.001, two-way ANOVA).
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osmium tetroxide were from Agar Scientific.
ProFection mammalian calcium phosphate
transfection system was obtained from Promega.
Anti-AP-1ywas purchased from BD Biosciences.
Anti-AP-35 antibody was from Developmental
Studies Hybridoma Bank. All other reagents were
from Sigma. shRNAs targeting AP-1y or AP-36
subunits were designed using the pSUPER vector
system (pSUPER neo-GFP, OligoEngine) with
the following oligonucleotides: Oligo AP-1a, CA
AACGCATTGGCTATTTA;OligoAP-1b, GGAA
TGCTATTCTGTATGA; Oligo AP-3a, ACAAAG
TGTTCCTCAAGTA; Oligo AP-3b, CTATCATC
CTGGAGAATCA. The pSUPER vector was
engineered to express mCerulean as described
previously (Cheung et al., 2010).

Primary cultures, transfections and immunoflu-
orescence studies of cerebellar granule neurons.
Preparation, transfections, and immunofluores-
cence studies of rat cerebellar granule neurons
(prepared from 7-d-old pups of either sex) were
carried out according to previously described
protocols (Tan et al., 2003; Clayton et al., 2009).
Neurons were used between 8 and 10 d in vitro for
all experiments. In some experiments, cultures
were transfected using a calcium phosphate pre-
cipitation protocol between 5 and 7 d in vitro and
used after 72 h. AP-1y or AP-38 expression was
separately monitored by immunofluorescence
intensity. For quantification, the fluorescence in-
tensity in transfected neurons was expressed as a
percentage of the averaged expression in untrans-
fected neurons in the same field of view. At least
three independent experiments were performed,
with five fields of view being assessed for each
experiment.

Fluorescence imaging of SV turnover

Fluorescence imaging of SV turnover using FM
dyes was performed as described previously
(Cheungetal., 2010). Briefly, cultures were repo-
larized for 10 min in incubation medium [in mm:
170 NaCl, 3.5 KCl, 0.4 KH,PO,, 20 TES (N-tris
[hydroxyl-methyl]-methyl-2-aminoethane-
sulfonicacid), 5 NaHCO;, 5 glucose, 1.2 Na,SO,,,
1.2 MgCl,, and 1.3 CaCl,; at pH 7.4]. Cultures
were then mounted in an imaging chamber (RC-
21BRFS, Warner Instruments). Invaginating
membrane was loaded with either FM1-43 (10
M) or FM2-10 (100 um) by evoking SV turn-
over using electrical field stimulation delivered
by platinum wires embedded in the imaging
chamber (800 action potentials, 100 mA, 1 ms
pulse width). After washout of excess FM dye,
the dye was unloaded using a series of action
potential trains. For FM1-43 experiments, cul-
tures were immediately stimulated (Immediate
Unload) with sequential trains of action poten-
tials to first unload the RRP (30 Hz, 2 s) and
then the reserve pool (three trains of 40 Hz,10
s). After a 30 min rest period, an identical un-

dependent compartment. We uncovered an essential requirement
for both AP-1 and AP-3, highlighting a molecular locus in a key SV
endocytosis mode triggered during high intensity stimulation.

Materials and Methods

FM1-43, FM2-10, penicillin/streptomycin, phosphate-buffered salts, fe-
tal calf serum, Minimal Essential Medium, and Alexa Fluor 568 goat anti-
mouse IgG antibody were purchased from Invitrogen. Glutaraldehyde and

loading protocol was repeated (Second Unload). This protocol allows
quantification of newly generated SVs that replenish the RRP and reserve
pool. The average fluorescence drop for each unloading step was ex-
pressed as a percentage of the total SV recycling pool (RRP plus reserve
pool) of the Immediate Unload, allowing comparison across multiple
experiments. For transfected nerve terminals, this was further normal-
ized to the equivalent drop in untransfected nerve terminals within the
same field of view.
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S2/S1 experiments were performed using FM2-10 in which cultures
underwent two rounds of FM dye loading and unloading, separated by a
20 min rest period. BFA (10 ug/ml) was present before and during the S2
unloading step. The total S2 fluorescence drop (AS2) was expressed as a
ratio of the total S1 fluorescence drop (AS1) for the same nerve terminals.
In all cases, at least three independent experiments were performed with
90 nerve terminals from each untransfected culture being assessed. In
experiments using cultures transfected with shRNA, 10-30 transfected
and untransfected nerve terminals in the same field of view were exam-
ined. Only nerve terminals displaying stimulation-dependent dye load-
ing and unloading were selected for analysis. The kinetics of dye
unloading were analyzed by normalizing the fluorescence unload be-
tween 1 and 0 and calculating the time taken for 50% of the dye to be
released (tv).

Labeling of endocytic pathways by horseradish peroxidase. Cultures were
fixed and processed for electron microscopy as described previously
(Cheungetal., 2010). Briefly, cultures were placed in incubation medium
for 10 min and then stimulated for 2 min with 50 mm KCl in the presence
of 10 mg/ml horseradish peroxidase (HRP). After washout of HRP, cul-
tures were immediately stimulated with two consecutive 30 s applica-
tions of 50 mm KCI. Cultures were then left to rest for 30 min. Cultures
were incubated with BFA (10 ug/ml) during the unload and rest periods.
Cultures were fixed in 2% glutaraldehyde in phosphate buffered saline at
one of the three fixation time points, either directly after HRP loading,
after unloading, or after rest. After washing with 100 mm Tris, pH 7.4,
cultures were exposed to 0.1% diaminobenzidine and 0.2% H,O, in 100
mM Tris until color developed. Cultures were then washed with 100 mm
Tris, stained with 1% osmium tetroxide for 30 min, and then dehydrated
using ethanol series and polypropylene oxide and embedded using Dur-
cupan. Samples were sectioned, mounted on grids, and viewed using a
FEI Tecnai 12 transmission electron microscope. Nerve terminals were
included in the analysis providing they contained small SVs, regardless of
whether they contained HRP. Intracellular structures that were <100 nm
in diameter were arbitrarily designated to be SVs, whereas larger struc-
tures were considered endosomes. The average endosome diameter was
obtained by taking the average of the longest and shortest diameters of
individual endosomes using ImageJ (National Institutes of Health).

Fluorescence imaging of dextran uptake. Uptake of tetramethylrhodamine-
dextran (40 kDa) was monitored as described previously (Clayton et al.,
2009). Briefly, transfected cultures were placed in incubation medium for
10 min and then stimulated with a train of 800 action potentials (80 Hz)
in the presence of 50 um tetramethylrhodamine-dextran. Non-
internalized dextran was then washed away by perfusion for 2 min. The
number of dextran puncta per 100 wm of transfected neurite was deter-
mined in each field of view. At least three independent experiments were
performed, with at least six fields of view being assessed for each
experiment.

Image acquisition, processing, and analysis. In all experiments, fluorescence
signals were visualized using a Zeiss Axio Observer Al epifluorescence micro-
scope. Transfected neurons expressing mCerulean were identified using 430
nm excitation, whereas FM dye loading and unloading was monitored at 500
nm excitation (in all cases, emission > 535 nm). Immunostaining and dex-
tran uptake was visualized using 550 nm excitation and a bandpass (575- 640
nm) emission filter. Experiments using untransfected cultures were per-
formed using a 20X air objective, while experiments with transfected cul-
tures were performed using a 40X oil objective (both from Zeiss). All images
were acquired using a Zeiss AxioCam CCD camera controlled by a Zeiss
AxioVision Release software. Time-lapse FM images were acquired at 4 s
intervals. All immunofluorescence and dextran uptake images were cap-
tured as z-stacks and processed as follows. Maximum intensity projec-
tions of stacks were generated using an Image] Z Project function.
Background fluorescence was subtracted using the Rolling Ball Back-
ground Subtraction plugin (http://rsbweb.nih.gov/ij/plugins/rolling-ball.
html). Total fluorescence intensity of immunostaining was measured
from ROIs of identical size over cell bodies. Dextran puncta on trans-
fected neurites were highlighted using the Colocalization Finder plugin
(http://rsb.info.nih.gov/ij/plugins/colocalization-finder.html) and counted.
Thelength of transfected neurite in each field of view was measured using the
Simple Neurite Tracer plugin (http://pacific.mpi-cbg.de/wiki/index.php/
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Simple_Neurite_Tracer). All calculations and statistical analyses were per-
formed using Microsoft Excel and GraphPad Prism software.

Results

Brefeldin A arrests SV budding from bulk endosomes

ADBE is the dominant SV retrieval mode during intense neuro-
nal activity in central nerve terminals (Clayton et al., 2008); how-
ever, the molecular mechanism responsible for generation of SVs
from bulk endosomes is unknown. Recent genetic studies in
model systems have suggested a requirement for clathrin in this
process (Heerssen et al., 2008; Kasprowicz et al., 2008). To deter-
mine whether the endosomal adaptors AP-1 or AP-3 were re-
quired, we disrupted their function using the ARF1 inhibitor BFA
in primary neuronal cultures. To ensure that we observed SV
generation specifically from bulk endosomes, the following ex-
perimental protocol was performed. Both CME and ADBE were
triggered using a maximal depolarizing stimulus (50 mm KCl) in
the presence of the fluid phase marker HRP (Fig. 1 A). SVs and
bulk endosomes that were generated by CME and ADBE, respec-
tively, are visible as HRP-labeled structures (Fig. 1B). HRP-
labeled SVs were then depleted by two sequential stimuli of 50
mMm KCI (Fig. 1 B,C). Cultures were then left to rest for 30 min,
allowing the generation of new HRP-labeled SVs from bulk en-
dosomes (Fig. 1A). This protocol thus allows tracking of HRP-
labeled SV specifically generated from bulk endosomes during a
defined time window.

The immediate unload of HRP-labeled SVs resulted in over a
60% depletion of HRP-labeled SVs in control cultures (Fig. 1C).
After the 30 min rest period a large (>3.5-fold) increase in HRP-
labeled SVs was then observed (Fig. 1C), indicating that SVs had
been generated from bulk endosomes. When HRP-labeled endo-
somes in control cultures were examined in more detail, there was
no change in their diameter during stimulation (Load, 278 % 5 nm;
Unload, 295 = 8 nm). However, after the 30 min rest period there
was a significantly larger population of smaller endosomes, indicat-
ing again that SV budding had occurred (Fig. 1 D). The mean HRP-
endosome diameter was also significantly smaller when compared to
HRP-labeled endosomes either before or after the immediate unload
stimulus (229 * 8 nm, p < 0.001, one-way ANOVA).

To determine whether ARFI1 recruitment of either AP-1 or
AP-3 were required for SV generation specifically from bulk en-
dosomes, cultures were incubated with BFA (10 ug/ml) only after
HRP exposure (and endocytosis) was complete (Fig. 1 A). There-
fore, this protocol ensures that bulk endosome generation is un-
affected by the presence of BFA. BFA did not affect the depletion
of HRP-labeled SVs (Fig. 1C) or the mean diameter of endosomes
during the immediate unload (Control, 295 * 8 nm; BFA, 290 =
7 nm; Fig. 1 E). In contrast, BFA abolished the generation of new
HRP-labeled SVs during the 30 min rest period (Fig. 1C). This
inhibition was accompanied by a significant reduction in the
population of small HRP-labeled endosomes (mean diameter,
262 * 11 nm; Fig. 1F). Thus, BFA arrests: (1) generation of
HRP-labeled SVs after endocytosis; and (2) a decrease in the
diameter of HRP-labeled endosomes. Both lines of evidence in-
dicate a role for the ARF1-dependent recruitment of either AP-1
and/or AP-3 in SV generation from bulk endosomes.

Replenishment of the reserve pool via bulk endosomes is

BFA sensitive

Bulk endosome-derived SVs selectively replenish the reserve pool
of SVs in nerve terminals (Richards et al., 2000; Cheung et al.,
2010). Thus, the replenishment of the reserve pool is an indepen-
dent indicator of SV production from bulk endosomes. To con-
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Figure2. Brefeldin Ainhibits SV reserve pool replenishment via bulk endosomes. 4, Cultures
were subjected to an S2/51 protocol where they were loaded with FM1-43 (10 ) using a train
of 800 action potentials (80 Hz) at ST and KCI (50 mm for 2 min) at 2. Dye was washed away
immediately and unloaded with 30 Hz, 2 s (RRP) and three trains of 40 Hz, 105 (reserve pool, RP)
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unload normalized to the total recycling pool; all n = 3 == SEM, one-way ANOVA. D, Cultures
were loaded with FM1-43 (10 M) using a train of 800 action potentials (80 Hz). Dye was
washed away immediately after stimulation and after 2 min the RRP (30 Hz 2 5) and reserve pool
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Representative traces displaying the unloading of dye during both immediate and second un-
loads (black, control; gray, BFA). Traces are presented in arbitrary fluorescence units. Bars indi-
cate the period of stimulation. F, Bar graphs display mean values of the size of both the RRP and
RP during both unloads, with the second unload normalized to total immediate recycling pool.
All experiments, n = 3 == SEM, ***p < 0.001, one-way ANOVA.
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firm that BFA also inhibits the replenishment of the reserve SV
pool, we performed an experiment in which we loaded cultures
with the fluorescent dye FM1-43 using a train of 800 action po-
tentials (80 Hz). This stimulation protocol triggers both CME
and ADBE pathways, allowing FM1-43 to label both CME-
derived SVs and ADBE-derived bulk endosomes (Clayton et al.,
2008) and results in an identical pattern of dye loading to that
observed using elevated KCl (Fig. 2A—C). Immediately after the
loading of dye, FM1-43-loaded SVs were depleted by sequentially
unloading the RRP (60 action potentials at 30 Hz) and then the
reserve pool (three 400 action potential trains at 40 Hz) (Cheung
etal., 2010). After a rest period of 30 min to allow SV generation
from bulk endosomes, cultures were challenged again with iden-
tical unloading stimuli (Fig. 2 D). Almost all released fluorescence
originated from the reserve pool (percentage of second unload:
RRP, 20.0 = 1.5; Reserve, 80.0 = 4.75; Fig. 2E, F), confirming
that the reserve pool is replenished by bulk endosome-derived
SVs (Cheung et al., 2010).

To determine whether ARF1 is required for reserve SV pool
replenishment, BFA was applied after washout of FM1-43 (Fig.
2D). BFA had no effect on the fusion of either the RRP or the
reserve pool during the immediate unloading challenge (Fig.
2E,F). After the 30 min rest period, however, replenishment of
the total recycling pool was significantly reduced (percentage of
immediate unload recycling pool: Control, 37 * 2%; BFA, 19 =
3%; p < 0.01, Student’s t test), suggesting that replenishment of
either or both of the RRP and reserve pool was retarded. When
this was determined, a specific decrease in the replenishment of
the reserve pool was observed in BFA-treated cultures (Fig.
2E,F). Importantly the small replenishment of the RRP was un-
altered (Fig. 2E, F). Thus, the inhibition of SV generation from
bulk endosomes by BFA translates into a decreased replenish-
ment of the reserve pool by these SVs.

To confirm that the observed effects of BFA were not a direct
effect on SV exocytosis, we performed an S2/S1 experiment where
the same nerve terminals undergo two identical cycles of dye loading
and unloading. To ensure that the assay readout was not con-
founded by bulk endosome-dependent effects, we used the dye
FM2-10, which does not label ADBE (Clayton et al., 2008; Clayton
and Cousin, 2008). FM2-10 was loaded at both S1 and S2 with 800
action potentials (80 Hz) and unloaded (AS1 and AS2) using three
trains of 400 action potentials (40 Hz). Preincubation with BFA for
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§ 0.8 - Oligo Ap_1b 40Hz 28 120 for the AP-1 and AP-3 complexes in SV ex-
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S 40Hz 82 8 the 30 min rest period to allow SV genera-
% 2: !&& T g 60 tion, the total second unload of dye (reflect-
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butions from both RRP and reserve pool
Figure 4. Reserve pool replenishment is inhibited by silencing AP-1 expression. Cultures were transfected with shRNA that ~ were determined, a selective inhibition of

was either empty or expressing oligonucleotides against AP-1-y (AP-Ta, AP-1b). A, After 72 h, cultures were loaded with FM1-43
(10 um) using an 800 action potential (80 Hz) train. Dye was washed away immediately and after 2 min the RRP (30 Hz 2 s) and
reserve pool (RP, 3 trains of 40 Hz 10 s) were sequentially unloaded (Immediate Unload). The same unloading stimuli were
delivered after a 30 min rest period (Second Unload). B-D, Representative traces of dye unloading during both the immediate and
second unloads for cells transfected (gray) with either empty vector (B), AP-1a (C), or AP-1b (D). Graph also displays unloading
from untransfected cells (control, black) from the same field of view. Both Immediate Unload and Second Unload traces are
normalized to their respective recycling pool. E-G, Bar graphs display mean values of the size of the RRP and RP of the Inmediate
Unload (E), the Total Second Unload (F), and the RRP and RP of the Second Unload (G). All values were first normalized to the total
immediate recycling pool and then to the equivalent unload of untransfected nerve terminals in the same experiment (Empty,n =
3; AP-1a, n = 3, AP-1b, n = 4 independent experiments; all = SEM, *p << 0.05, **p < 0.01, ***p < 0.001 to empty vector,

one-way ANOVA).

10 min before the second unloading step (AS2) had no effect on the
extent of FM2-10 unloading (SV exocytosis) when compared to
control (AS2/AS1 Control, 1.05 = 0.01; BFA, 1.04 = 0.04; p = 0.82,
Student’s ¢ test). Thus, BFA does not directly interfere with SV exo-
cytosis, confirming its effect was specific to reserve pool replenish-
ment by bulk endosome-derived SVs.

Bulk endosome budding is impaired by silencing expression
of either AP-1 or AP-3

BFA interferes with the ARF1-dependent recruitment of both AP-1
and AP-3 (Drake et al., 2000), implicating either or both AP com-
plexes in the generation of SVs from bulk endosomes. To determine

reserve pool unloading was observed for
both AP-1y and AP-36 silenced neurons
(Fig. 4 B-E, G and 5B-E,G). Thus, a reduc-
tion in the expression of the essential sub-
units of either AP-1 complex or AP-3
complex resulted in a specific inhibition of
reserve pool replenishment by SVs gener-
ated from bulk endosomes.

To confirm that the observed effects after
either AP-1y or AP-38silencing were due to
inhibition of SV generation from bulk en-
dosomes, we monitored FM2-10 loading
and unloading in shRNA-silenced cultures. This allows the effect of
this maneuver to be determined on a population of SVs not gener-
ated by ADBE (Clayton et al., 2009). Dye was loaded into cultures
using a train of 800 action potentials (80 Hz), and the extent and
kinetics of SV exocytosis were monitored using a subsequent un-
loading stimulus of 800 action potentials (40 Hz, Fig. 6 A). The ki-
netics of dye unloading in all neurons transfected with silencing
shRNAs were indistinguishable from those transfected with empty
shRNA vectors, confirming no direct effect of AP-1y and AP-36
silencing on SV exocytosis (Fig. 6 B-E). Furthermore, there was no
difference in the extent of dye unloading (Fig. 6 F-I), which re-
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£ 0.63 4°HZ40H 40Hz 53 100 inhibition.
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= . ET 3 . . .
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= 50 100 150 2000 2050 2100 2150 RS 03 o i e i RRP and reserve pool unloading during
Time (s) i immediate unloading were unaffected by
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Figure 5.  Reserve pool replenishment is inhibited by silencing AP-38 expression. Cultures were transfected with shRNA that

was either empty or expressing oligonucleotides against AP-36 (AP-3a, AP-3b). 4, After 72 h, cultures were loaded with FM1-43
(10 um) using an 800 action potential (80 Hz) train. Dye was washed away immediately and after 2 min the RRP (30 Hz, 2 5) and
reserve pool (RP, three trains of 40 Hz, 10 s) were sequentially unloaded (Immediate Unload). The same unloading stimuli were
delivered after a 30 min rest period (Second Unload). B-D, Representative traces of dye unloading during both the immediate and
second unloads for cells transfected (gray) with either empty vector (B), AP-3a (C), or AP-3b (D). Graph also displays unloading
from untransfected cells (Control, black) from the same field of view. Both Immediate Unload and Second Unload traces are
normalized to their respective recycling pool. E-G, Bar graphs display mean values of the size of the RRP and RP of the Inmediate
Unload (E), the Total Second Unload (F), and the RRP and RP of the Second Unload (G). All values were first normalized to the total
immediate recycling pool and then to the equivalent unload of untransfected nerve terminals in the same experiment (Empty,n =
3; AP-3a,n = 6, AP-3b, n = 3independent experiments; all == SEM, *p << 0.05, **p << 0.01, to empty vector, one-way ANOVA).

flects replenishment of the SV recycling pool by CME-derived SVs
(Cheungetal., 2010). Thus, silencing the expression of either AP-1vy
or AP-36 had no effect on the retrieval, recycling, or exocytosis of
CME-generated SVs (Fig. 6E,I), confirming their specific role in
ADBE.

The arrest of SV budding and subsequent reserve pool replenish-
ment caused by the knockdown of either AP-1y or AP-38 may have
resulted from an upstream inhibition in the generation of bulk en-
dosomes. To assess this, we monitored the uptake of high molecular
weight fluorescent dextrans (tetramethylrhodamine-dextran, 40
kDa), which are too large to be accumulated by CME (Clayton et al.,
2008; Clayton and Cousin, 2009b). Cultures transfected with shRNA
against either AP-1vy or AP-38 were stimulated with a train of 800

and AP-36 (Fig. 8C,D). Similarly, RRP re-
plenishment after 30 min was unaffected
(Fig. 8 E). Importantly, the inhibition of
reserve pool replenishment in the simul-
taneous absence of both AP-1yand AP-36
was not significantly different to the inhi-
bition observed by their single knock-
down (Fig. 8 E, compared to Figs. 4G and
5G, reserve pool size as percentage of
empty vector; ShRNA AP-1b, 68.6 = 1.0;
AP-3b, 63.5 £ 6.4; AP-1b plus AP-3b,
61.7 * 9.7; not significant one-way
ANOVA). In addition, silencing of either AP-1-y or AP-38 expres-
sion did not produce any additional inhibition of reserve pool
replenishment to that already observed with BFA (Fig. 9). Since
the knockdown of AP-1y and AP-36 has no additive effect on
reserve pool replenishment, we conclude that they control the
same SV budding pathway and thus generate the same SV popu-
lation from bulk endosomes.

Discussion

We have shown an essential requirement for both AP-1 and AP-3
complexes in the generation of SVs from bulk endosomes, which
translates into a specific replenishment of the reserve SV pool.
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Figure 6. SV exocytosis and CME are both unaffected by silencing AP-1+y or AP-38 expres-
sion. Cultures were transfected with shRNA that was either empty or expressing oligonucleo-
tides against either AP-1+y (AP-1a, AP-1b) or AP-38 (AP-3a, AP-3b). A4, After 72 h cultures were
loaded with FM2-10 (100 wum) using a train of 800 action potentials (80 Hz). Dye was washed
away immediately and cells were left to rest for 10 min. Cells were then unloaded with a train of
800 action potentials (40 Hz). B-D, Representative traces of dye unloading in neurons trans-
fected (gray) with either empty (B), AP-1b (C), or AP-3a (D) shRNA after normalization of
fluorescence drop between 1 and 0. Unloading from untransfected neurons (control, black)
from the same field of view are shown. Curve fit for plateau followed by one-phase decay was
performed for each trace and presented by solid lines. E, Bar graph displays mean values of the
half-time (T-half) of the fluorescence drop obtained from the fitted curves. Values were nor-
malized to the untransfected nerve terminals in the same experiment (all = SEM, one-way
ANOVA). F-H, Representative traces of dye unloading in neurons transfected (gray) with either
Empty (F), AP-1b (G), or AP-3a (H) shRNA. Unloading from untransfected neurons (control,
black) from the same field of view are shown. /, Bar graph displays the average total FM2-10
Unload from transfected neurons and normalized untransfected neurons in the same field of
view (Empty, n = 5; AP-1a, n = 3; AP-1b, n = 3; AP-3a, n = 4; AP-3b, n = 4 independent
experiments; all = SEM, one-way ANOVA).

Evidence for this is as follows: (1) BFA inhibits generation of SVs
from HRP-labeled bulk endosomes; (2) BFA and shRNA knock-
down of either AP-1 or AP-3 inhibits the replenishment of the
reserve pool from bulk endosomes; and (3) AP-1 and AP-3 play
no role at the plasma membrane in either ADBE or CME.
Previous biochemical studies in neuroendocrine cells have
shown clear evidence that the AP-3 complex is essential for vesicle
generation from an endosome compartment (Faundez et al.,
1998; Blumstein et al., 2001). Furthermore, studies in central
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Figure7.  Silencing AP-1+y or AP-35 expression does not inhibit ADBE. Cultures were trans-
fected with shRNA that was either empty or expressing oligonucleotides against either AP-1-y
(AP-1a, AP-1b) or AP-35 (AP-3a, AP-3b). After 72 h, cultures were stimulated with a train of 800
action potentials (80 Hz) in the presence of 40 kDa tetramethylrhodamine-dextran (50 pum).
Dextran was washed away immediately after stimulation. A, Representative images of dextran
loading are shown. Left panels show neurons transfected with the shRNA vector (green). Middle
panels show dextran uptake (red). Right panels show a merged image of transfected neuron
(green) and dextran uptake (red). White arrows indicate dextran puncta on transfected neurites
(scale bar, 10 m). B, Bar graph displaying the mean number of dextran puncta per 100 wm of
neurite (Empty, n = 3; AP-1a,n = 4; AP-1b, n = 3; AP-3a, n = 3; AP-3b, n = 3 independent
experiments; all == SEM, one-way ANOVA).

neurons have shown that AP-3 is required in concert with the
BLOC-1 complex for the traffic of SV protein cargo from cell
bodies to nerve terminals (Larimore et al., 2011). The presynaptic
localization of both AP-1 and AP-3 complexes (Glyvuk et al.,
2010; Newell-Litwa et al., 2010), coupled to the fact that BFA only
affects SV recycling during elevated neuronal activity (Voglmaier
et al., 2006; Kim and Ryan, 2009), suggested that either or both
could be required for SV generation from bulk endosomes. To
determine this, we designed assays to specifically monitor SV
generation from bulk endosomes as opposed to classical early
endosomes or other endosomal compartments. The strategy
involved loading bulk endosomes with a reporter molecule
(FM1-43 or HRP), depleting nerve terminals of SVs that were
generated by CME, and then following the generation of new SVs
from bulk endosomes (Cheung et al., 2010). This approach per-
mits a pharmacological intervention (such as BFA application)
once ADBE is complete, allowing separation of effects on bulk
endosome budding from any potential effects on plasma mem-
brane endocytosis. It also allows a molecular dissection of the
replenishment of specific SV pools by separate SV endocytosis
modes via use of either overexpression or shRNA silencing vec-
tors, providing these maneuvers have no direct effects on SV
exocytosis (Cheung et al., 2010).

A measurable reserve pool of SVs can be generated even after
pharmacological or molecular ablation of AP-1 and AP-3 func-
tion, which raises questions regarding the origin of these SVs. The
most likely scenario is that a few SVs are still being generated from
bulk endosomes due to incomplete knockdown of AP-1 and
AP-3 or incomplete inhibition by BFA. Another potential possi-
bility is that a different adaptor protein may substitute for AP-1
or AP-3, as seen when AP-2 expression is silenced during CME
(Kim and Ryan, 2009). It is unlikely that these remaining reserve
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Figure 8.  Simultaneous silencing of AP-1-y or AP-35 inhibits reserve pool replenishment to the same extent as individual
silencing. Cultures were cotransfected with either shRNA against AP-1-y and AP-36 (AP-1b, AP-3b) or a double concentration of
empty shRNA vector. A, After 72 h, cultures were loaded with FM1-43 (10 wum) using an 800 action potential (80 Hz) train. Dye was
washed away immediately and after 2 min the RRP (30 Hz, 2 s) and reserve pool (RP, three trains of 40 Hz, 10 s) were sequentially
unloaded (Immediate Unload). The same unloading stimuli were delivered after a 30 min rest period (Second Unload). B, Repre-
sentative images are shown for neurons cotransfected with AP-1b and AP-3b shRNA vector (left, mCer, mCerulean), FM1-43
loading in the same field of view (middle, FM1-43), and a merged image of transfected neuron (red) and FM1-43 loading (green).
Scale bar, 10 um. C, D Representative traces of dye unloading during both the immediate and second unloads for cells transfected
(gray) with either a double concentration of empty vector (C) or cotransfection with AP-1b and AP-3b (D). Graphs also display
unloading from untransfected cells (control, black) from the same field of view. Both Immediate Unload and Second Unload traces
are normalized to the total recycling pool. E, F, Bar graphs display mean values of the size of the RRP and RP of the Second Unload
(E) and the Total Second Unload (F). All values were first normalized to the total immediate recycling pool and then to the
equivalent unload of untransfected nerve terminals in the same experiment (n = 3 independent experiments; all 2= SEM, **p <
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and aids delivery of cargo to late endo-
somes and lysosomes (Newell-Litwa et al.,
2007). AP-3 is also essential for the generation
of vesicles from endosomes in neuroendo-
crine cells and for sorting SV cargo for
transport to nerve terminals (Blumstein et
al., 2001; Larimore et al., 2011). In con-
trast, AP-2 is required for CME at the
plasma membrane (Robinson, 2004). Re-
cent studies using shRNA silencing of
AP-2 in primary hippocampal cultures
confirmed that it plays a role in SV endo-
cytosis during mild stimulation, whereas
BFA treatment or knockdown of AP-1y
had no effect (Kim and Ryan, 2009). Our
studies agree with these findings, showing
that retrieval of SVs by CME or dextran
internalization by ADBE was not affected
by knockdown of either AP-1vy or AP-39,
highlighting the lack of a role for either
AP-1 or AP-3 at the nerve terminal plasma
membrane.

We have shown an essential role for
both AP-1 and AP-3 in the generation of
SVs from bulk endosomes. This key
shared molecular function explains previ-
ous observations in a number of neuronal
systems. For example, BFA inhibited a
slow route of SV protein cargo traffic dur-
ing high intensity, but not low intensity,
stimulation in primary hippocampal neu-
rons (Voglmaier et al., 2006). Also, dele-
tion of the AP-3uB subunit reduced SV
numbers in inhibitory nerve terminals
(Nakatsu et al., 2004), which typically
have higher activity rates (Bartos et al.,
2007). Mocha mice (which are null for
AP-38 and have little or no other AP-3
subunits) have SVs of irregular size
(Newell-Litwa et al., 2010). They also dis-
play defects in asynchronous neurotrans-
mitter release and a higher mEPSC
frequency (Scheuber et al., 2006). Mice
with a genetic ablation of AP-10B have a

0.01, one-way ANOVA and Student’s t test for E and F respectively).

pool SVs are generated at the plasma membrane by CME, since
reserve pool replenishment can be ablated by addition of the
dynamin antagonist dynasore after dye loading is complete (G.
Cheung, unpublished observations). Thus, the SVs that replenish
the reserve pool are generated by a dynamin-dependent event
that occurs after stimulation is complete, suggesting they are de-
rived from bulk endosomes.

Different AP complexes generate SVs from

different compartments

Different APs concentrate protein cargo during vesicle budding
at different membrane compartments (Robinson, 2004). For ex-
ample, AP-1 has a defined role in budding vesicles from the trans-
Golgi network (Ghosh et al., 2003). In addition to this classical
role, AP-1 has been implicated in vesicle budding from recycling
endosomes to either the cell surface or the Golgi complex
(Pagano etal., 2004), whereas AP-3 is present on early endosomes

marked reduction of SVs, a phenotype

that is exacerbated by stimulation (Glyvuk et
al., 2010). Finally, cultured neurons from AP-1oB-null mice dis-
played a stimulation-dependent increase in endosome number
compared to wild-type and a robust defect in the replenishment
of the recycling pool (Glyvuk et al., 2010). An arrest of SV gener-
ation from bulk endosomes specifically during ADBE explains
these prior observations and provides a direct molecular locus for
these AP complexes in the SV life cycle.

Dual essential requirement for AP-1 and AP-3 in SV
generation from bulk endosomes

We demonstrate a shared requirement for both AP-1 and AP-3 in
SV reserve pool replenishment from bulk endosomes. This sug-
gests that: (1) AP-1and AP-3 are not functionally redundant; and
(2) they both have key and specific roles in the generation of SVs
from bulk endosomes. In different cellular systems AP-1 and
AP-3 have displayed varying degrees of functional overlap. For
example, they have partially redundant functions in sorting cargo
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Figure9. Silencing of either AP-1-yor AP-38 does not increase the inhibition of reserve pool

replenishment observed with BFA. Cultures were transfected with shRNA that was either empty
or expressing oligonucleotides against AP-1-y (AP-1b) or AP-36 (AP-3b). 4, After 72 h, cultures
were loaded with FM1-43 (10 wum) using an 800 action potential (80 Hz) train. Dye was washed
away immediately and after 2 min the RRP (30 Hz, 2 s) and reserve pool (RP, 3 trains of 40 Hz,
10's) were sequentially unloaded (Immediate Unload). The same unloading stimuli were deliv-
ered aftera 30 min rest period (Second Unload). Brefeldin A (10 t.g/ml) was exposed to cultures
before the Immediate Unload and was present thereafter. B, Representative traces of dye un-
loading during both the immediate and second unloads for cells transfected with either empty
vector plus BFA (black), AP-1b plus BFA (red), or AP-3b plus BFA (blue). Both Immediate Unload and
Second Unload traces are normalized to their respective recycling pool. C, Bar graphs display mean
values of the size of the RRP and RP of the second unload. All values were first normalized to the total
immediate recycling pool and then to the equivalent unload of untransfected nerve terminals in the
same experiment (1 = 3 independent experiments; all == SEM, one-way ANOVA).
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Figure 10.  Potential shared roles for AP-1 and AP-3 complexes in ADBE. The dual require-
ment for AP-1 and AP-3 in ADBE can be explained by a sequential requirement for AP-1 and
AP-3. After formation of the bulk endosome, an immature SV is formed in an AP-1-dependent
manner. Thisimmature SV delivers SV cargo to a classical early endosome, and then a mature SV
(with a full complement of cargo) buds from this compartment using AP-3.

to melanosomes (Theos et al., 2005; Delevoye et al., 2009;
Lakkaraju et al., 2009), where AP-1 and AP-3 form distinct vesi-
cles with different melanosome cargo in in vitro budding assays
(Chapuy etal., 2008). However, this does not seem to occur at the
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bulk endosome, since we have shown that both AP complexes are
essential for the generation of the same SV pool. This is not due to
neurons exclusively expressing either AP-1 or AP-3, since we
have shown by immunofluorescence that almost all neurons in
culture express both AP-1y and AP-38 (92.3 = 2.2% AP-1v;
88.1 = 1.4% AP-39).

Why are AP-1 and AP-3 both essential for the production of
SVs from bulk endosomes? One possibility is that these com-
plexes work in a sequential manner to generate SVs. In this model
a precursor SV buds from a bulk endosome (using for example
AP-1) and fuses with a classical early sorting endosome. A mature
SV may then bud from the early endosome (using AP-3) and
replenish the reserve pool (Fig. 10). There is no current morpho-
logical evidence to suggest that this occurs; however, recent work
from a number of laboratories have suggested that movement of
SV membrane through classical early endosomes may contribute
toward SV recycling in central nerve terminals (Hoopmann et al.,
2010; Uytterhoeven et al., 2011). We are currently testing this
hypothesis by examining the potential contributions from classi-
cal early endosomes to SV recycling during different stimulation
intensities.

The shared essential roles for both AP-1 and AP-3 in SV bud-
ding from bulk endosomes highlight a key conceptual divergence
between ADBE and CME. During CME, SV protein cargo is con-
centrated by AP-2 and potentially other non-classical adaptors at
the plasma membrane (Jung and Haucke, 2007; Kelly and Owen,
2011). However, the essential requirement for AP-1 and AP-3 at
bulk endosomes suggests that little or no sorting of SV protein
cargo occurs at the plasma membrane during ADBE. This makes
conceptual sense, since the major physiological role of ADBE is to
rapidly correct for large changes in plasma membrane surface
area, rather than create a fully functional SV. Other forms of fluid
phase uptake actively exclude specific plasma membrane proteins
(Mercanti et al., 2006), suggesting that ADBE may use a similar
mechanism, allowing the rate-limiting step of SV cargo clustering
to be performed once inside the neuron. Thus, during ADBE, SV
cargo selection and processing may occur at the bulk endosome
rather than at the plasma membrane.

In summary, we have demonstrated a molecular locus of ac-
tion for AP-1 and AP-3 in the SV life cycle in central nerve
terminals. This essential molecular requirement for SV genera-
tion from bulk endosomes will provide a novel point of interven-
tion to determine how ADBE controls neurotransmission in both
neuronal physiology and pathology.
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