
Copyedited by: UR MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:27 7/5/2012 Bioinformatics-bts123.tex] Page: 1324 1324–1327

BIOINFORMATICS ORIGINAL PAPER Vol. 28 no. 10 2012, pages 1324–1327
doi:10.1093/bioinformatics/bts123

Sequence analysis Advance Access publication March 13, 2012

Fulcrum: condensing redundant reads from high-throughput
sequencing studies
Matthew S. Burriesci, Erik M. Lehnert∗ and John R. Pringle
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
Associate Editor: Alex Bateman

ABSTRACT

Motivation: Ultra-high-throughput sequencing produces duplicate
and near-duplicate reads, which can consume computational
resources in downstream applications. A tool that collapses such
reads should reduce storage and assembly complications and costs.
Results: We developed Fulcrum to collapse identical and near-
identical Illumina and 454 reads (such as those from PCR clones) into
single error-corrected sequences; it can process paired-end as well
as single-end reads. Fulcrum is customizable and can be deployed
on a single machine, a local network or a commercially available
MapReduce cluster, and it has been optimized to maximize ease-
of-use, cross-platform compatibility and future scalability. Sequence
datasets have been collapsed by up to 71%, and the reduced number
and improved quality of the resulting sequences allow assemblers to
produce longer contigs while using less memory.
Availability and implementation: Source code and a tutorial are
available at http://pringlelab.stanford.edu/protocols.html under a
BSD-like license. Fulcrum was written and tested in Python 2.6, and
the single-machine and local-network modes depend on a modified
version of the Parallel Python library (provided).
Contact: erik.m.lehnert@gmail.com
Supplementary information: Supplementary information is
available at Bioinformatics online.

Received on November 20, 2011; revised on February 23, 2012;
accepted on March 7, 2012

1 INTRODUCTION
Ultra-high-throughput-sequencing (UHTS) methods are being used
both for resequencing projects and for de novo sequencing and
assembly of both genomes and transcriptomes (Flicek and Birney,
2009; Li et al., 2010; Mondal et al., 2011; Schatz et al., 2010).
During resequencing, reads can generally be aligned to specific
locations in the previously sequenced genome. In contrast, de
novo assembly often requires assemblers to take the input of
many gigabases of sequence and return a much smaller result,
ranging from tens of megabases for transcriptome assemblies to
a few gigabases for many eukaryotic genome assemblies. Some
assemblers (e.g. Velvet) store read information in RAM during
processing, limiting the amount of raw sequence that can be
processed (Zerbino and Birney, 2008).

UHTS often produces reads that are exact duplicates of each other
due to enzyme biases, PCR amplification, or (in transcriptomes)
the presence of highly expressed sequences. In addition, genetic

∗To whom correspondence should be addressed.

polymorphisms, PCR errors and sequencing errors can result
in near-duplicate reads, precluding the use of naive hashing
algorithms to efficiently find and collapse all duplicates. Collapsing
identical and near-identical reads into single consensus reads with
high quality scores can significantly reduce the physical memory
and/or processing time required for assembly. Previously described
methods for finding identical and near-identical reads require
large amounts of physical memory, long processing times or both
(Giardine et al., 2005; Qu et al., 2009). Indeed, if the number of
reads (N) is large (as is typically the case), performing a full N ×N
comparison on a single computer is effectively precluded by the
amount of processing time required. In addition, these methods
were designed to process single-end reads and cannot process the
increasingly common paired-end reads.

In order to increase the number of reads that can be collapsed by
the popular algorithm FASTX-collapse (Giardine et al., 2005), one
could first preprocess the data with an error-correction program like
SHREC (Schröder et al., 2009), hybrid-SHREC (Salmela, 2010) or
Quake (Kelley et al., 2010). However, SHREC and hybrid-SHREC
used several GB of RAM just to process relatively small microbial
datasets, whereas Quake required very large memories and extended
times to process human datasets. This need for computational
resources is expected, because these programs are designed to
solve the difficult problem of error correction in non-duplicated
reads. However, substantially fewer resources are required if error
correction is only performed on near-duplicate reads, and even the
collapse of near-duplicates can provide a significant performance
advantage for subsequent assembly.

In the past decade, N ×N comparisons performed over multiple
networked computers have been used to process very large datasets,
such as in page-ranking websites. MapReduce has been helpful in
solving these problems because of its power, low cost and ease
of use. In addition, investigators without extensive computational
resources of their own can rent time from one of several commercial
entities. Because of its wide utility, we included support for
MapReduce in Fulcrum, a pipeline for collapsing identical and near-
identical reads that can be run on a single machine, a local network
or a rented network of arbitrary size, depending on the demands of
the project.

2 ALGORITHM AND IMPLEMENTATION
Fulcrum is a read collapser that identifies and groups identical and
near-identical reads and returns a single consensus sequence. It is
written in Python (v. 2.6) to maximize cross-platform compatibility
and allow users to easily change the comparator functions within its
framework in order to accept other types of data or to call specialized

1324 © The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Copyedited by: UR MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:27 7/5/2012 Bioinformatics-bts123.tex] Page: 1325 1324–1327

Fulcrum

modules written in C/C++. Fulcrum aims to simplify the problem of
comparing N reads in a dataset to every other read in the set. In order
to do this, it takes advantage of two characteristics of UHTS datasets,
the generally higher quality of base-calls near the beginnings of reads
and the constrained space defined by sets of sequences of length k
(5k combinations). These two characteristics allow for the definition
of a hash function (the identity of the first k bases of a read) that
greatly increases the likelihood that reads hashed into the same group
by this function are nearly identical.

Thus, Fulcrum bins reads into files (buckets) of user-defined
maximum size by their initial k-mer of user-defined length; k-mer
identity is required at this step. The file system of the host server
is used to store the binned data awaiting processing, reducing the
requirement for physical memory or the network load when using
multiple machines. The comparisons of the sequences within each
file can then be processed as separate jobs.

Fulcrum incorporates a basic quality-aware collapsing ‘inner-
loop’ algorithm that has been used for all of the trials described in
this report. After the reducer function receives data from a mapper
or reads data from the k-mer-sorted files on the hard drive, each
sequence is placed into a list with all other sequences that share
its initial k-mer, creating the ‘source list’. A list of groups of
strongly similar reads, called the ‘similar list’, is initialized using
the first element of the source list. Each element of the source list
is then compared to each consensus sequence of the developing
similar list. If it differs by few enough high-quality bases (threshold
base quality and number defined by the user via two command-
line options), the new sequence is added to the group; if not, it
initializes a new group. The quality threshold allows a sequence
with many low-quality bases to be merged with a high-quality
consensus, whereas the number threshold prevents the collapse
of highly repetitive sequences that differ by several bases whose
quality is above the user-set threshold. Whenever a sequence is
added to a group, a new consensus sequence is calculated, with
voting on discrepancies weighted by quality score. When the last
sequence from the source list is checked, the reducer returns the
consensus sequences and the identities of the constituent reads
for each.

Fulcrum can run in any of three modes, all of which use the same
comparison function, making it easy to switch to whichever mode is
appropriate for the amount of data at hand. The single-machine and
local-network modes utilize the Parallel Python module to distribute
jobs to multiple processors, either on the same machine or on
multiple machines in a network. This module has been extended so
that it loads a file just-in-time, reducing the memory requirement of
the master node. The MapReduce mode uses HiveQL and Hadoop,
which can run atop Amazon EC2 (Elastic MapReduce Developer
Guide API Version 2009-03-31) or other MapReduce clusters. In
the mapping phase, mappers tag each read with its starting k-mer
and transmit the data to reducers so that all sequences in the same
bucket reside in the memory of a single reducer. In the reducing
phase, each sequence is compared to the other sequences within its
bucket, and consensus sequences are returned. Both the mapping
and reducing phases can be run on multiple machines in parallel
(as readily rented from commercial sources), so this technique will
be able to handle datasets that are even larger than those currently
produced by UHTS methods and be usable even by investigators
who do not have access to high-performance clusters at their own
institutions.

Importantly, Fulcrum incorporates a paired-end mode that allows
collapsing of only those pairs of sequences that contain strong
similarities on both ends. In addition, the mapping stage passes
paired-end sequences to the reducers as a single construct, avoiding
problems that might arise from partial collapsing of one end and not
the other.

A detailed tutorial with a link to example data is available at
http://pringlelab.stanford.edu/protocols.html. It takes a user from
raw FASTQ files to collapsed data using each of the three modes and
includes detailed instructions on accessing commercial MapReduce
networks. It also describes common errors and illustrates trade-
offs between speed and sensitivity. The flexibility of the Fulcrum
framework should allow other researchers to benefit from its
workload distribution features to extend the size and speed of current
processing operations, for example by writing more specialized
collapsers for 454, Illumina or data from other sequencing platforms.

3 RESULTS AND DISCUSSION
Table 1 shows the relative reductions in read numbers and the
run-times achieved using Fulcrum in single-machine mode with
different parameter settings on a publicly available Illumina dataset
of Pseudomonas sequences. As expected, either increasing the size
of the k-mer used for initial binning or decreasing the maximum
bucket size decreased run-time; both approaches lead to fewer
sequences’ being compared with each other with the inner-loop
algorithm. Although the latter approach can lead to some identical
sequences’ not being collapsed with each other (if they have been
partitioned into separate buckets), neither approach had a significant
effect on the overall level of collapse seen with this dataset. Thus,
either of these approaches, or the use of increased computational
resources (more machines in the network and/or longer run-times),
should allow Fulcrum to be used effectively with datasets of much
larger size.

We also experimented with different maximum bucket sizes
during our trials of Fulcrum in its MapReduce mode. Limitations
were often necessary because the memory size of the reducing
instances available at an affordable price was too small to handle
the number of sequences in the largest bins. It was clear that run
times could decrease significantly as the maximum allowed bucket
size was decreased, but more detailed analyses were restricted to the
single-machine trials (see above and Table 1).

Table 1 also shows that as expected, increasing the tolerance for
single-base mismatches increased the level of collapse. With this
dataset, allowing one, two or three mismatches changed the level
of collapse by only a few per cent, but the optimal number of
mismatches to allow is likely to depend on the particular dataset
being analyzed.

The analysis in Table 1 was also informative in regard to the
reduction in memory requirements provided by Fulcrum. Although
in this dataset nearly 30% of the reads could be merged into
the remaining set, and the number of sequences starting with the
most common k-mer was several hundred times overrepresented,
the maximum memory used while concurrently processing the six
largest bins was ∼12 GB. This was reduced to ∼2.4 GB when
the large bins were subdivided into smaller buckets. This compares
favorably with the ∼4 GB that were necessary for hybrid-SHREC
to process a much smaller number of reads (∼1.1 million) in 43 min

1325

Copyedited by: UR MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:27 7/5/2012 Bioinformatics-bts123.tex] Page: 1326 1324–1327

M.S.Burriesci et al.

Table 1. Variation of run-time and percent sequence reduction with the
parameters used for Fulcruma

k-mer Maximum Errors Quality Reduction Run-time
sizeb bucket allowedd scoree (%) (h)

size (MB)c

8 20 1 3 27.1 7.5
8 20 2 3 29.0 8.5
8 20 3 3 29.9 9.7

14 20 1 3 26.7 2.2
14 20 2 3 28.4 2.1
14 20 3 3 29.2 2.3
20 20 1 3 26.3 2.1
20 20 2 3 27.8 2.1
20 20 3 3 28.5 2.2
20 20 1 7 27.5 2.0
20 20 2 7 28.4 2.1
20 20 3 7 28.9 2.1
20 1000 1 7 27.7 7.7
20 1000 2 7 28.6 6.7

a 61 806 537 paired-end 76-bp Illumina sequence reads from six lanes of sequence (Hiatt
et al., 2010) (http://www.ncbi.nlm.nih.gov/sra/SRX015074) were used for these trials.
Data were processed on a workstation with a six-core Phenom 2 processor and 16 GB
of DDR3 RAM (cost ∼$1000).
b Reads were binned if they were identical over their initial k-mer of sequence of the
indicated size.
c Binned reads were collected in buckets (files) of the indicated maximum size.
d Number of errors allowed during the comparison of the sequences within each bucket.
e Maximum quality score each compared base could have before it was counted against
maximum allowed errors.

(Salmela, 2010), as well as with the very large memories (a 20-
processor Hadoop instance and 16-processor Open MP system)
that were required for Quake to process (over multiple days) the
82.9 gigabases resulting from a human-genome-sequencing project
(Kelley et al., 2010). This performance increase arises because
Fulcrum is designed to facilitate subsequent assembly by reducing
both input read number and some of the complexity resulting from
PCR and sequencing errors, rather than addressing the more difficult
problem of full error correction.

We also tested Fulcrum with a human transcriptome sequence
dataset from the ENCODE Project (Table 2). The raw and
Fulcrum-collapsed data were trimmed and then assembled using
Velvet/Oases. The assembly time was reduced by 35% when we used
the collapsed data, an effect that would be multiplied if a multiple-
k-mer assembly technique were used. We also found that maximum
memory usage of the Velvet processes velveth and velvetg fell when
we used collapsed reads (Table 2).

The decrease in memory usage and improvement in assembly
statistics were somewhat modest with the ENCODE dataset,
presumably because of its relatively small size and the high quality
of the reads. As expected, the advantages provided by Fulcrum are
more pronounced in working with sequence datasets from libraries
that were highly amplified and/or have lower average read quality.
An example is provided by the project that originally stimulated the
writing of Fulcrum, namely the de novo assembly of a transcriptome
for the sea anemone Aiptasia pallida (Sunagawa et al., 2009) using
paired end 76- and 101-bp Illumina sequence reads (E. Lehnert
et al., submitted for publication). Initial attempts to assemble the
entire dataset using Velvet/Oases on a 64-GB instance failed due

Table 2. Performance of Fulcrum during assembly of Illumina human-
transcriptome dataa

Assembly statisticb Assembly of Assembly of
trimmed raw trimmed, collapsed
readsc readsc,d

Percent collapse N.A.e 21
Number of contigs 63 931 63 009
N50 1380 1391
Maximum contig length 15 055 15 025
Mean contig length 679 687
velveth runtime 18 min 13 min
Maximum velveth memory usage 8.5 GB 8.0 GB
velvetg runtime 31 min 19 min
Maximum velvetg memory usage 7.5 GB 4.9 GB

a 27 531 230 paired-end 76-bp Illumina sequence reads from a single lane (lane 5)
(see http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncode
CaltechRnaSeq/wgEncodeCaltechRnaSeqGm12878R2x75Il200FastqRd1Rep1.fastq.
tgz and http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncode
CaltechRnaSeq/wgEncodeCaltechRnaSeqGm12878R2x75Il200FastqRd2Rep1.fastq
.tgz) were used for these trials.
b Reads were assembled using Velvet/Oases (Velvet version 1.1.04 and Oases version
0.1.21) while monitoring memory and CPU usage by recording the output of top every
60 s.
c Reads were filtered for quality and length. Briefly, reads were trimmed such that no
nucleotide had a quality score <10, and no ambiguous nucleotides (Ns) remained in
the read. Reads shorter than 45 bp were discarded.
d Read pairs were collapsed allowing one mismatch of quality score 7 or higher per
read pair, and the metadata provided by Fulcrum were discarded prior to assembly.
e N.A., not applicable.

to insufficient memory; the failure occurred during the running of
velvetg. After collapsing reads with Fulcrum, assembly proceeded
smoothly. The seemingly large reduction in memory requirement
is understandable in that Fulcrum produced read-number collapses
ranging from 28.8% to 71.7% for the datasets from the individual
libraries that were sequenced. In addition, average nucleotide quality
scores were significantly improved, particularly at the ends of
reads, by the collapse of independent sequence reads of the same
PCR clones into a consensus sequence, leading to longer reads
post-trimming and significantly improved assembly.

Fulcrum was designed to speed de novo sequencing and assembly
efforts in which an N ×N comparison of reads is necessary, and we
anticipate that it will be most useful in such projects. However,
Fulcrum can also be used as a first step in read mapping for
polymorphism detection. A rapid estimate of how many duplicate
reads are present can be obtained from the first step of Fulcrum on
a single machine, which clusters sequences by their initial k-mer
and writes them into files. Opening the directory and allowing the
operating system to sort the files by size will give an idea of the
extent of read duplication. As a rule of thumb, if the 10 largest files
comprise >10 times their expected value, as given by the original
FASTQ file size divided by 5k (where 5 is the number of possible
nucleotides, including N , assuming that all are represented in equal
frequency), the use of Fulcrum is likely to be helpful.

In sequencing/assembly projects, problems might arise in
repetitive-element or paralogous-gene assembly if reads with many
mismatches are allowed to collapse; thus, we recommend limiting
the number of bases whose quality is above the user-set threshold
that are allowed to differ to a maximum of three. Users may want

1326

Copyedited by: UR MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:27 7/5/2012 Bioinformatics-bts123.tex] Page: 1327 1324–1327

Fulcrum

to reduce this number further if recent gene or genome duplication
is believed to have occurred. In addition, a potential pitfall of using
Fulcrum-collapsed sequences for read-mapping applications after an
assembled transcriptome or genome is available is that the collapse
of sequences with mismatches could compromise the identification
of low-frequency polymorphisms in a deeply sequenced, genetically
heterogeneous population. Thus, the standard practice of using
re-mapped original genome sequences is likely to be preferable for
this purpose.

In summary, for appropriate applications, the possibility of
running Fulcrum in single-machine, local-network or MapReduce
modes, all using the same comparison function, should make it a
flexible and valuable tool for dealing with datasets of varying size,
including very large datasets.

ACKNOWLEDGEMENTS
We thank Dario Valenzano and Michelle Davison for providing
additional Illumina and 454 data that were used to evaluate
applicability to real-life datasets, Joe Foley for directing us to other
useful test sets, and Prof. Jure Leskovec for introducing MB to
several parallel-processing algorithms and methodologies. We also
thank the reviewers of an earlier version for comments that helped
to improve this article.

Funding: Gordon and Betty Moore Foundation (#2629); National
Institutes of Health (5 T32 HG000044); National Science
Foundation (Graduate Research Fellowship).

Conflict of Interest: Amazon.com donated computer time to a class
taken by MB; he used time worth ∼$70.

REFERENCES
Flicek,P. and Birney,E. (2009) Sense from sequence reads: methods for alignment and

assembly. Nat. Methods, 6, S6–S12.
Giardine,B. et al. (2005) Galaxy: a platform for interactive large-scale genome analysis.

Genome Res., 15, 1451–1455.
Hiatt,J.B. et al. (2010) Parallel, tag-directed assembly of locally derived short sequence

reads. Nat. Methods, 7, 119–122.
Kelley,D.R. et al. (2010) Quake: quality-aware detection and correction of sequencing

errors. Genome Biol., 11, R116.
Li,R. et al. (2010) The sequence and de novo assembly of the giant panda genome.

Nature, 463, 311–317.
Mondal,K. et al. (2011) Targeted sequencing of the human X chromosome exome.

Genomics, 98, 260–265.
Qu,W. et al. (2009) Efficient frequency-based de novo short-read clustering

for error trimming in next-generation sequencing. Genome Res., 19,
1309–1315.

Salmela,L. (2010) Correction of sequencing errors in a mixed set of reads.
Bioinformatics, 26, 1284–1290.

Schatz,M.C. et al. (2010) Assembly of large genomes using second-generation
sequencing. Genome Res., 20, 1165–1173.

Schröder,J. et al. (2009) SHREC: a short-read error correction method. Bioinformatics,
25, 2157–2163.

Sunagawa,S. et al. (2009) Generation and analysis of transcriptomic resources for a
model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate
endosymbiont. BMC Genomics, 10, 258.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res., 18, 821–829.

1327

	Fulcrum: condensing redundant reads from high-throughput sequencing studies
	M.S.Burriesci, E.M.Lehnert and J.R.Pringle
	1 INTRODUCTION
	2 Algorithm and implementation
	3 RESULTS AND DISCUSSION

