
Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:31 7/5/2012 Bioinformatics-bts144.tex] Page: 1359 1359–1367

BIOINFORMATICS ORIGINAL PAPER Vol. 28 no. 10 2012, pages 1359–1367
doi:10.1093/bioinformatics/bts144

Genetics and population analysis Advance Access publication April 11, 2012

Fast and accurate inference of local ancestry in
Latino populations
Yael Baran1,†, Bogdan Pasaniuc2,3,∗,†, Sriram Sankararaman3,4,†, Dara G. Torgerson5,
Christopher Gignoux5, Celeste Eng5, William Rodriguez-Cintron6, Rocio Chapela7,
Jean G. Ford8, Pedro C. Avila9, Jose Rodriguez-Santana10, Esteban Gonzàlez Burchard5

and Eran Halperin1,11,12

1The Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv 69978, Israel, 2Departments of
Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA, 3Broad
Institute of MIT and Harvard, Cambridge, MA 02142, USA, 4Department of Genetics, Harvard Medical School,
Boston, Massachusetts 02115, USA, 5Department of Bioengineering and Therapeutic Sciences and Department of
Medicine, University of California, San Francisco, CA 94158, USA, 6Veterans Caribbean Health Care System,
San Juan, 00927 Puerto Rico, 7Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, 14080
Mexico, 8Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21231, USA, 9Division of
Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611,
IL, 10Centro de Neumologia Pediatrica, CSP, San Juan, 00917 Puerto Rico, 11Department of Molecular Microbiology
and Biotechnology, George Wise Faculty of Life Science, Tel-Aviv University, Tel-Aviv 69978, Israel and 12International
Computer Science Institute, Berkeley, CA 94704, USA
Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: It is becoming increasingly evident that the analysis
of genotype data from recently admixed populations is providing
important insights into medical genetics and population history.
Such analyses have been used to identify novel disease loci,
to understand recombination rate variation and to detect recent
selection events. The utility of such studies crucially depends on
accurate and unbiased estimation of the ancestry at every genomic
locus in recently admixed populations. Although various methods
have been proposed and shown to be extremely accurate in two-
way admixtures (e.g. African Americans), only a few approaches
have been proposed and thoroughly benchmarked on multi-way
admixtures (e.g. Latino populations of the Americas).
Results: To address these challenges we introduce here methods
for local ancestry inference which leverage the structure of
linkage disequilibrium in the ancestral population (LAMP-LD), and
incorporate the constraint of Mendelian segregation when inferring
local ancestry in nuclear family trios (LAMP-HAP). Our algorithms
uniquely combine hidden Markov models (HMMs) of haplotype
diversity within a novel window-based framework to achieve superior
accuracy as compared with published methods. Further, unlike
previous methods, the structure of our HMM does not depend
on the number of reference haplotypes but on a fixed constant,
and it is thereby capable of utilizing large datasets while remaining
highly efficient and robust to over-fitting. Through simulations and
analysis of real data from 489 nuclear trio families from the mainland
US, Puerto Rico and Mexico, we demonstrate that our methods
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achieve superior accuracy compared with published methods for
local ancestry inference in Latinos.
Availability: http://lamp.icsi.berkeley.edu/lamp/lampld/
Contact: bpasaniu@hsph.harvard.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Admixed populations, such as Latinos and African Americans,
emerged from the encounter of a few genetically-diverged ancestral
populations which have since been mixing for a relatively
small number of generations. Due to recombination events, each
chromosome of an admixed individual is a mosaic of chromosomal
regions originating from the different ancestral populations. The
problem of local ancestry inference is to determine, for each genomic
position, the ancestral origin of each of the two chromosomes. High-
resolution local ancestry inference from genomewide genotype data
forms an essential analysis step in medical genetics in identification
of disease genes through admixture mapping (Hoggart et al., 2004;
Reich et al., 2005; Seldin et al., 2011; Zhu et al., 2004) as well as
in increasing power in association studies in admixed populations
(Pasaniuc et al., 2011). Local ancestry inference is also useful in the
study of population genetic processes, such as recombination (Hinch
et al., 2011; Wegmann et al., 2011), selection (Tang et al., 2007) and
migration (Bryc et al., 2010), thus providing important insights into
human history and demographics. In addition, ancestry inference has
been recently shown to be of critical value in pharmacogenomics: a
recent study associated the Native American ancestry with the risk
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of relapse in children suffering from acute lymphoblastic leukemia
(Yang et al., 2011).

A number of methods for inferring local ancestry have been
proposed (Pasaniuc et al., 2009a,b; Price et al., 2009; Sankararaman
et al., 2008; Sundquist et al., 2008; Tang et al., 2006) and have
been shown to be very accurate in African Americans (Seldin et al.,
2011). Unfortunately, the accuracy of these methods is limited for
more complex populations such as Latinos, which are formed by
the admixture of three ancestral populations (European, African and
Native American). Moreover, the Native American and European
ancestries are genetically closer than Africans and Europeans,
making the inference of local ancestry a more challenging task in
Latinos and in other populations of similar admixture characteristics
(Pasaniuc et al., 2009b). With some of the methods being completely
unable to directly handle multi-way mixtures and the rest prone to
these difficulties, the error rates of local ancestry estimates in such
populations are high and the results of current studies involving
Latino populations are hard to interpret. It is therefore crucial to
develop highly accurate and efficient methods for local ancestry
inference in multi-way admixed populations in conjunction with a
comprehensive assessment of their performance.

The critical importance of this problem is further underlined
by a number of recently proposed approaches for local ancestry
inference in multi-way admixtures developed in parallel to our work
(Bercovici et al., 2012; Henn et al., 2012; Johnson et al., 2011).
Johnson et al. (2011) use an extension of Saber to three-way mixtures
in a haploid mode to infer virtual genomes, whereas Henn et al.
(2012) extended on the work of Bryc et al. (2010) to employ PCA
with a post-processing HMM to call local ancestry in multi-way
mixtured populations. Bercovici et al. (2012) extend on previous
work in the context of variable length HMMs for local ancestry
inference.

To the best of our knowledge, our approach is the only
one capturing the ancestral haplotype structure using a fast
approximation of the Li and Stephens (Li and Stephens, 2003) model
within a generative framework for admixed genomes, resulting
in an efficient and robust algorithm. We note that an exhaustive
comparison with the methods that were independently developed
recently is beyond the scope of this article.

We introduce here two methods, LAMP-LD and LAMP-HAP, for
local ancestry inference in multi-way admixed populations. Similar
to methods proposed for African Americans (Price et al., 2009;
Sundquist et al., 2008), our methods leverage the haplotype structure
of the ancestral populations to infer local ancestry. While HAPMIX
and HAPAA (Price et al., 2009; Sundquist et al., 2008) model
this haplotype structure using hidden Markov models (HMMs; Li
and Stephens, 2003) with state space and runtime quadratic in the
number of reference haplotypes, the haplotype model underlying our
methods employs HMMs with a fixed-size state space (Kennedy
et al., 2008; Kimmel and Shamir, 2005; Scheet and Stephens,
2006). As a first advantage of this approach, the running time
of our algorithms is an order of magnitude faster than previous
HMM-based methods such as HAPMIX (Price et al., 2009). In
addition, our model estimates its parameters from the reference
haplotype data, and therefore is less prone to inaccuracy due to
misspecification of parameters than models that use the standard Li
and Stephens HMM approach (Li and Stephens, 2003), in which
certain parameters such as the population recombination rates are
required as input.

Another important feature of our algorithms is the integration of
the HMM within a window-based framework. It has been noted
that a straightforward extension of the standard Li and Stephens
model to admixed chromosomes would tend to predict artificially
frequent transitions in local ancestry (Price et al., 2009). This effect
arises due to the limited sample size of the reference panels, as some
ancestral haplotype segments in the admixed population may not
be represented in the reference panels. Methods such as HAPMIX
(Price et al., 2009) mitigate this effect by introducing a ‘miscopying’
parameter that summarizes the probability of miscopying of
haplotype segments among ancestries. In our approach, we solve this
problem by dividing the genome into non-overlapping windows such
that no transitions between ancestries are made within each window,
an assumption we relax in a post-processing stage. Limiting the
occurrence of ancestry transitions in this window-based framework,
together with the ‘fuzziness’ of our HMMs, greatly improves the
inference quality by eliminating extremely short, likely artifactual,
ancestral segments.

The approach described above is implemented by the method
LAMP-LD for inferring local ancestry in both genotype and
haplotype data of unrelated individuals. However, in studies of
admixed populations it is often the case that multiple family
members are genotyped. The availability of such pedigree
information could be leveraged to further improve estimates of
local ancestry. Hence, we developed LAMP-HAP, an extension of
LAMP-LD, to infer local ancestry in nuclear family trios.

Using extensive simulations, we show that LAMP-LD provides a
substantial improvement in the accuracy as well as efficiency of local
ancestry inference in Latinos over published approaches. We also
show that LAMP-HAP achieves increased accuracy over LAMP-
LD, thus demonstrating the utility of integrating family information
in local ancestry inference.

In practical applications, a number of key questions need
to be addressed to enable accurate local ancestry inference in
Latinos. Unlike African Americans that are well modeled by a
mixture of West Africans and Europeans, it is currently unclear
which combination of reference haplotypes optimizes local ancestry
inference in Latinos (Seldin et al., 2011); it is therefore critical
to assess the effect of a proxy reference haplotype set on
accuracy. First, in light of LAMP-LD’s ability to efficiently
handle large reference sets, we assess whether increasing the
size of the reference data results in superior accuracy. Second,
we examine LAMP-LD’s sensitivity to the genetic divergence
between the ancestral haplotypes and the proxy data used as
reference. We observe that LAMP-LD successfully translates
the increased size of the reference set as well as the lower
divergence between proxy and ancestral population into superior
accuracy.

We also present an evaluation of the effect of European gene
flow into present day Native American populations on local ancestry
inference in Latinos. This effect is important to assess as it is
estimated that most Native American populations used as reference
panels in local ancestry inference have been exposed to European
gene flow. Through simulations we find that the presence of
European segments in the Native American reference panels yields
biased local ancestry estimates. However, our results suggest that
under a small amount of gene flow (under 6%) these effects would
yield statistically significant association in case-only admixture
studies only at very large sample sizes.

1360



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:31 7/5/2012 Bioinformatics-bts144.tex] Page: 1361 1359–1367

Local ancestry in Latino populations

We conclude by assessing the performance of our methods on
real Latino data. Testing local ancestry inference in empirical data is
important, since simulations of admixed genotypes inherently make
assumptions about the mixture process, (e.g. number of generations,
per-generation mixture proportions, the availability of ancestral
haplotypes) which do not necessarily hold in the analysis of real
data. Here, we use 489 Mexican and Puerto Rican trio families from
the Genetics of Asthma in Latino Americans (GALAs) (Burchard
et al., 2004) to estimate local ancestry performance. We use the fact
that the true local ancestry along the chromosome follows Mendelian
inheritance rules, and thus count the Mendelian inconsistencies in
the local ancestry (MILANC) estimates produced by methods that
treat every sample in the family as unrelated. We find that our method
attains lower MILANC rates, thus establishing its superior accuracy
in an empirical setting.

2 METHODS
We model recently admixed chromosomes as a set of haplotypes from K
ancestral populations that have come together at some point in time and
have been mixing through random mating for g generations. Formally, we
note by α= (α1,α2,...,αK ) the fraction of haplotypes from each of the K
ancestral populations at the time of the encounter. After g generations, each
chromosome can be modeled as a random walk from the 5′ end to the 3′
end, with crossovers between chromosomes occurring as a Poisson process
with rate gρ, where ρ is the average recombination rate across the genome.
The recombination events break the ancestry and insert ancestry switches
(also called breakpoints). Conditional on the positions of such switches, each
segment between two consecutive breakpoints is modeled as an independent
draw from the ancestral populations with probabilities given by the admixture
fraction α. For simplicity of exposition we describe our methods and
simulations assuming a constant recombination rate, however we note that
they can be easily adjusted to account for position-specific rates by scaling
the physical positions of the SNPs with any specific recombination map.

Briefly, our model consists of a top level HMM which emits genotypes
in non-overlapping windows. The hidden states of this HMM correspond to
the local ancestries on each chromosome within each window (we initially
restrict changes in local ancestry to the window boundaries). Given the pair
of ancestral states within a window, the genotypes are emitted by a pair
of sub-HMMs which model the corresponding ancestral populations. The
parameters of the sub-HMMs are estimated from the reference panels for
these populations. Given the parameters, we compute the most likely pair of
local ancestries in each window, followed by a post-processing step which
relaxes the restriction on the localization of ancestry switches.

2.1 Modeling LD in the ancestral populations
Several approaches have been proposed for local-ancestry estimation in
two-way admixtures, with methods which explicitly model the linkage
disequilibrium (LD) structure within the ancestral populations showing the
highest accuracy in African Americans (Pasaniuc et al., 2009a; Price et al.,
2009; Sundquist et al., 2008). These methods can be broadly classified under
two main approaches according to the type of the HMM which models the
LD. The methods proposed in Price et al. (2009) and in Sundquist et al.
(2008) use HMMs with state space and runtime quadratic in the number of
reference haplotypes. Therefore, these methods are impractical for large sets
of reference haplotypes, as is the case for multi-way mixtures; for example,
HAPMIX (Price et al., 2009) takes 7 h to perform local ancestry inference
in a sample of 200 African Americans on Chromosome 1 when HapMap
European and African haplotypes are used as reference (Seldin et al., 2011).
This raises the need for scalable and accurate methods for local ancestry
inference that are capable of handling the ever-growing number of reference
haplotypes. The second class of HMMs aims to achieve this through a

fixed state space (described by a constant S) independent of the size of the
reference panels. So far, only one method has attempted at using such HMMs
in the context of local ancestry inference, namely GEDI-ADMX (Pasaniuc
et al., 2009a). Unlike GEDI-ADMX that uses an ad hoc metric (imputation
accuracy) requiring masking and re-imputation of every SNP genotype in the
data to infer ancestry, leading to increased runtime, here we extend fixed-
structure HMMs into a fully generative model for admixed chromosomes
within a non-overlapping window-based framework. This leads to superior
accuracy in simulations of Latinos (see Section 3).

The structure of our model is fully described by a constant S and a window
length L. There are S×L states in our model, with each state emitting the
reference or alternate allele according to an emission probability ε. Any
haplotype (over the L SNPs) can be generated across any path of L states
according to the transition and emission probabilities in the model. These
probabilities are directly estimated from the reference haplotype data using
the Baum–Welch algorithm. We learn HMMs for each of the ancestral
populations, and these HMMs are then used for local ancestry inference,
as described in Section 2.2. Intuitively, our model ‘compresses’ the diversity
observed across all the reference panel within a set of S prototypical states at
each SNP (typically much smaller than the number of reference haplotypes).

Formally, the HMM is specified by a triple M = (Q,δ,ε), where Q is
the set of states, δ is the transition probability function and ε is the
emission probability function. The set of states Q consists of disjoint sets
Q0 ={s0},Q1,Q2,...,QL , with |Q1|=|Q2|=···=|QL |=S, where L denotes
the set of SNPs, s0 denotes the start state and Qi denotes the set of states
corresponding to SNP i. δj(s,s′) denotes the transition probability of moving
from state s at SNP j to state s′ at SNP j+1, such that

∑
s′ δj(s,s′)=1.

The initial state is silent while each other state s emits the reference
with probability εj(s,1) and the alternate allele with probability εj(s,0)=
1−εj(s,1). The probability of observing a haplotype H =H1H2 ···Hn given
the model M is given by:

P(H|M)=
∑

π

δ0(s0,π1)ε1(π1,H1)
L∏

i=2

δi(πi−1,πi)εi(πi,Hi) (1)

where the sum is taken across all paths of states π =π1 ···πn. The summation
can be efficiently computed in time O(S2L) using the standard HMM
forward–backward computations.

Intuitively, a larger S induces a better modeling of the haplotype structure
with significant increase in run time. By fixing S to a moderately small
number, we achieve large improvements in run time with very modest
reductions in accuracy. In contrast to the standard model of Li–Stephens, we
estimate the transition and emission probabilities directly from the haplotype
data available for each ancestral population. When high-quality maps of
recombination rates are available, it would be beneficial to use the known
recombination rates instead of learning those from the data, however it is
often the case that the recombination maps have poor quality, particularly
if the proxy populations do not accurately represent the true ancestral
populations. In addition, the parameters of our model can be estimated using
genotype data directly (Kennedy et al., 2008; Kimmel and Shamir, 2005),
thus making the model robust to phasing errors.

2.2 A window-based framework for local ancestry
inference

We use the above HMM as a building block for a window-based HMM,
as we now describe. We divide the genome into non-overlapping windows
w=[i,i+L) of length L, spanning SNPs i to i+L. Within each window we
make the assumption that no breakpoints (crossovers that change ancestry)
occur and thus we constrain all breakpoints to occur at the boundary of
two consecutive windows. We will show below how this assumption can be
relaxed in a post-processing step of the algorithm. We train the HMM of
the ancestral population separately for each window (particularly, there is a
separate start state for each window). Therefore, our model for representing
admixed chromosomes can be viewed as a top level HMM with

(K
2

)
states
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Fig. 1. Schematic structure of our model (haploid version is displayed for
simplicity) over nine SNPs with three windows each of length three SNPs.
In each window, the haplotypes of each ancestral population are modeled
using distinct HMMs (denoted in different colors). Transitions that change
the ancestral population are allowed only at the boundary of consecutive
windows. This framework is generic in that any model [e.g. Li and Stephens
(Li and Stephens, 2003), fastPHASE (Scheet and Stephens, 2006)] can be
used to account for the ancestral LD.

corresponding to each pair of ancestries Sw ={(Mw
1 ,Mw

2 )}, and for each
window w=[i,i+L) across the genome (Fig. 1). Each state (Mw

1 ,Mw
2 ) emits

a genotype block Gw with emission probability:
∑

(Hw
1 ,Hw

2 )

P(Hw
1 |Mw

1 )P(Hw
2 |Mw

2 )

where P(Hw
1 |Mw

1 ) is the probability of emitting the haplotype segment
Hw

1 under the HMM for ancestry M1 [(Equation (1)] and (Hw
1 ,Hw

2 ) is
a pair of haplotypes that is compatible with Gw. This probability can
be efficiently computed using standard extensions of forward–backward
algorithms in time O(S4L). We implemented the factorization speed-up of
(Kennedy et al., 2008) to achieve a running time of O(S3L) for computing
the probability of a genotype over L SNPs given the model M.

The transition probability from state (Mw
1 ,Mw

2 ) to state (Mw′
1 ,Mw′

2 ), where
w′ =[i+L,i+2×L), is set to θ =10−8 ×D (D is the length in base-pairs
between windows) if unordered ancestry pairs (Mw

1 ,Mw
2 ) and (Mw′

1 ,Mw′
2 )

differ by one ancestry, θ2 if both ancestries differ and 1−2θ −3θ2 if the
respective ancestry pairs are the same.

Decoding within the top level HMM is performed using a standard Viterbi
decoding, a dynamic programming algorithm that runs in time proportional
to the number of windows and squared in the number of states

(K
2

)
. The

Viterbi decoding gives an ancestry assignment to each window constraining
all the breakpoints to occur at the boundaries of each window. To account for
this rather strict assumption, in the final step of the algorithm, we consider
all the breakpoints identified in the second stage and find a high-resolution
localization for each of them as follows. For a breakpoint that occurred
between window i and i+1, we use a simplified version of the window-based
HMM (allowing only one breakpoint) to infer the ancestry of the genotype
in windows i and i+1. Using the HMMs of the ancestral populations we
compute the probability of the observed haplotype given the breakpoint
occurring in any of the SNP positions in the three windows and pick the
location that maximizes this likelihood. This computation is achieved in
time proportional to the size of the three windows spanning the inferred
breakpoint.

2.3 Incorporating trio information in local ancestry
inference

We denote a nuclear family (trio) as a triplet of vectors (gM ,gF ,gC ), each
of size n, corresponding to genotypes over n typed SNPs. The genotypes
gi

j ∈{0,1,2} are the counts of the reference allele at SNP j in individual i.
Due to Mendelian inheritance rules, in every trio at every SNP j there are
four independent alleles: the maternal transmitted and un-transmitted alleles,
and the paternal transmitted and un-transmitted alleles. We are interested in
estimating the ancestral population of each of the four alleles at each SNP
in each trio.

The full HMM described above can be extended to trios using standard
factorial HMM by jointly modeling the parental transmitted and un-
transmitted haplotypes conditional on the observed trio genotype data.
However, this approach is impractical for large scale datasets due to the
joint modeling of four paths in the HMM (Kennedy et al., 2008). Here, we
take a two-step approach to performing local ancestry inference in trios.
First, we use the trio genotypes to perform phasing and obtain estimates of
transmitted and un-transmitted haplotypes (data at trio-ambiguous SNPs is
set to missing). Second, we estimate the local ancestry in each of the four
haplotypes independently using a haploid version of the model described
above. We show in Section 3 that this two-step approach produces accurate
results, comparable to what would be achieved when the true phasing is
known, thus showing that an approximate phasing of the data using the trios
is as useful as perfect phasing for the purpose of local ancestry inference.
More importantly, we show that the accuracy of local ancestry inference is
considerably improved in trios compared with unrelated individuals.

3 RESULTS
Latino populations of the Americas, such as Mexicans or Puerto
Ricans, arose by the influx of Europeans into existing Native
American populations. Subsequently, African individuals were
introduced into the population (Morales Carrión, 1983; Tang et al.,
2007). Thus, most of the genomes of current Latino populations
can be modeled as an admixture of chromosomes from three
ancestral populations with various global proportions of European,
Native American and West African ancestries [e.g. 0.45:0.5:0.05
for Mexicans and 0.67:0.13:0.2 for Puerto Ricans (Burchard et al.,
2005; Mao et al., 2007; Price et al., 2007; Tian et al., 2007)].
Correspondingly, we simulated Latino admixed haplotypes as
mosaics of segments taken from three of the HapMap phase 3
haplotype panels (The International HapMap Consortium, 2005).
Unless otherwise noted, we used the phased haplotypes from the
CEU (117 haplotypes), CHB+CHD (169) and YRI (115) panels
in our simulations of admixed haplotypes and phased haplotypes
from the TSI (117), JPT (169) and LWK (115) panels as proxy
reference data in local ancestry inference. The haplotype sets used
for generating the simulations data and reference data are therefore
disjoint. Our use of East Asian haplotypes to represent the Native
American haplotypes was motivated by the small sample sizes of
existing Native American panels and by the presence of European
gene flow into some of these populations. It is likely, however, that
the use of East Asian haplotypes will overestimate the accuracy of
local ancestry inference.

We performed the analyses on Chromosome 10, restricted to the
SNPs present on the Illumina Human 1 M SNP array so as to obtain
a realistic SNP density and a typical genomic LD pattern. Following
standard approaches (Price et al., 2009), we simulated admixed
chromosomes by performing a random walk over the HapMap
haplotypes. Distance to the next crossover was sampled from the
exponential distribution with parameter 1/θg, where θ =10−8 is the
average recombination probability along the genome per base per
generation, and g=15 is the approximate number of generations
in admixture for Latinos. At a crossover event the new ancestry
is chosen given the mixture-specific proportions, and a specific
haplotype is drawn uniformly from the corresponding reference set.
This procedure was used to generate 400 haplotypes, which were
then joined in pairs to form 200 diplotypes.

Several metrics have been proposed to measure the performance
of local ancestry inference methods (Seldin et al., 2011). Here we
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use the squared Pearson’s correlation coefficient r2 between the
true and the inferred number of alleles from each of the ancestries,
averaged over the three ancestries. The squared correlation is directly
related to the power achieved in case-only admixture mapping, i.e.
N/r2 cases are required to achieve the same power as a study
with N cases where the local ancestries are known without error
(see Supplementary Material). The second measure we use is the
percentage of all SNP loci whose diploid ancestry was incorrectly
inferred, which we refer to as the Diploid Error.

3.1 Comparison with other methods
Several methods have been developed for inferring local ancestry
(Bryc et al., 2010; Pasaniuc et al., 2009a,b; Patterson et al., 2004;
Price et al., 2009; Sankararaman et al., 2008; Sundquist et al.,
2008; Tang et al., 2006) and have been shown to attain very
high accuracy in admixtures of two genetically diverged ancestral
populations such as African Americans (Pasaniuc et al., 2009b; Price
et al., 2009). Only a few of these methods have been extended to
admixtures of three populations such as Latinos (Bercovici et al.,
2012; Henn et al., 2012; Johnson et al., 2011; Pasaniuc et al.,
2009a,b), and we compared LAMP-LD with two of them. The first
is WINPOP, a method shown to attain high accuracy in simulated
data (Pasaniuc et al., 2009b), which has been used in a number of
recent empirical studies of Latinos (Bryc et al., 2010; Yang et al.,
2011). WINPOP treats the observed genotypes as independent given
the local ancestry, thereby ignoring the haplotype structure within
each population. The second is GEDI-ADMX, which is similar
to our approach in using fixed size HMMs to model haplotype
diversity, but uses a completely different framework for inferring
ancestries at each locus in the genome. We also compared LAMP-
LD with HAPMIX (Price et al., 2009). Although LAMP-LD and
HAPMIX are similar in that they require reference haplotypes
from each of the ancestral populations, the HMMs employed by
the two models have different structure. In addition, LAMP-LD
traverses the chromosome using the window-based framework,
whereas HAPMIX employs a ‘miscopying’ parameter to account
for imperfections in the reference panels.

As a safety check, we first simulated two-way mixtures of African
Americans using 0.8:0.2 proportions for YRI and CEU, respectively,
with six generations of admixture. On this data LAMP-LD attained
an average r2 =0.99, very similar (no significant difference) with the
r2 =0.98 attained by HAPMIX, thus confirming the high accuracy
of local ancestry inference in African Americans (Price et al., 2009;
Seldin et al., 2011).

Since HAPMIX was not designed to directly process multi-way
mixtures, we adapted it to the task by running it two times on each
genotype. The first run aimed at discerning the African segments
from the rest of the segments: One reference panel included the
TSI and the JPT haplotypes, and the other one comprised the
LWK haplotypes, with the mixture proportion set to the proportion
of the African ancestry in the mixture. The second run aimed
at discerning between the European and the Native American
segments. For the Mexican simulations, the first reference panel
included the TSI haplotypes, the second panel included the JPT
haplotypes, and the mixture proportion was set to the relative share
of the European and Native American ancestries in the non-African
segments. For the Puerto Rican simulations, the first reference panel
included TSI+LWK haplotypes, the second panel included the JPT

Table 1. Accuracy (standard error of the mean) attained by the compared
methods averaged over 200 simulated Latino genotypes

Method Mexican Puerto Rican

% diploid error r2 % diploid error r2

WINPOP 12.8 (0.3) 0.804 9.0 (0.3) 0.817
GEDI-ADMX 16.9 (0.3) 0.693 13.3 (0.3) 0.723
HAPMIX* 12.9 (0.4) 0.802 16.3 (0.4) 0.697

LAMP-LD 9.9 (0.3) 0.847 6.4 (0.2) 0.868

Diploid error is averaged over genotypes, r2 is averaged over the three ancestries.
HAPMIX* denotes our adaptation of HAPMIX to three-way mixtures. LAMP-LD uses
L=50 and S =10 as default parameters (see Section 3.2). LAMP-LD yields the highest
accuracy as measured by both metrics on both Mexican and Puerto Rican simulations.
The bold values are the performance measures (error and r2) of the best-performing
method (LAMP-LD).

haplotypes, and the mixture proportion was set to the proportion of
the Native American ancestry in the mixture. The different schemes
were designed to account for the fact that the proportion of African
ancestry is small in Mexican data (5%) but considerably higher in
the Puerto Rican data (20%), and were matched to the datasets as
to yield more accurate results. Throughout the article we denote the
described schemes for running HAPMIX jointly as HAPMIX*.

Table 1 compares LAMP-LD to WINPOP, GEDI-ADMX and
HAPMIX* on the Mexican and on the Puerto Rican datasets.
LAMP-LD achieves the highest accuracy under both the r2 and the
diploid error on both datasets, showing a considerable improvement
compared with WINPOP, thus reflecting the utility of the LD
information. HAPMIX* attains comparable accuracy with WINPOP
in the Mexican simulations and much worse on the Puerto Rican
data; this could be because the parameters of the HAPMIX model
were not optimized for Latinos—for example, it is not obvious how
to set the effective population size parameter for HAPMIX in these
scenarios. However, we should note that HAPMIX was not designed
for multi-way mixtures and it could potentially be improved by a
more principled extension to multi-way mixtures.

In addition to its high accuracy, LAMP-LD runs an order of
magnitude faster compared with HAPMIX. Each run of LAMP-
LD is composed of a preliminary stage in which the HMMs are
constructed from the reference panels and a second stage of actual
inference on the given genotypes. In the experiments above the first
stage took 56 min, and the processing of each genotype 6.5 s (all
running times were measured on a single AMD Opteron 1.1 GHz
processor). These numbers can be used to extrapolate the running
time over 1000 genotypes, obtaining ∼3 h for Chromosome 10.
HAPMIX’s runtime, on the other hand, is linear in the number of
genotypes, requiring 89 s for each. Running it on 1000 genotypes
would therefore require over 24 h for one chromosome. This leads
to a runtime of ∼3 days for a full genome scan for LAMP-LD as
compared with over ∼22 days for HAPMIX on a single CPU.

3.2 Assessment of model parameters
The only two parameters required by LAMP-LD are the number
of states S and the window length L. We assessed the performance
of our method as a function of these parameters. Figure 2 shows
that the accuracy is maximized at a value of L=50−100 SNPs,
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Fig. 2. Effect of the window length (left) and the number of states parameter
(right) on accuracy of LAMP-LD. We observe that a window length of
50–100 SNPs (200–400 Kb) minimizes the error rate for both simulations.
Accuracy increases with the number of states S, however, 10–15 states are
sufficient for capturing most of the ancestral genetic variation for the purpose
of local ancestry inference.

corresponding to ∼200 to 400 Kb on average in our simulated
chromosomes. Interestingly, the optimal value for L is fairly stable
across the two different populations, suggesting that this parameter
can be set independently of the specific mixture proportions. We note
that although these results are likely to be specific to the SNP density
in our datasets (a SNP every 4350 bases on average), increasing
L>500 to accommodate for denser SNP panels has only a minor
effect on the running time.

Next, we assessed the robustness of our method to different
values of S, the number of states per SNP (L is set to 50). The
results are presented in Figure 2. As expected, the diploid error
decreases as S increases; however, increasing S > 10 provides only
marginal improvement in accuracy, reflecting the fact that most
of the haplotypic diversity within the reference panels necessary
for accurate local ancestry inference is captured by 10 states per
population. This is especially important because the running time
of HMM-based methods increases quadratically with the number
of states. This advantage of LAMP-LD is reflected in the large
differences in running time between LAMP-LD and HAPMIX
presented in Section 3.1, since in order to utilize the entire reference
set HAPMIX employed ∼400 states, each modeling a single
reference haplotype. According to the results of this section, if
not explicitly noted, all results of this article for LAMP-LD use
parameters L=50 and S =10.

3.3 Advantage of incorporating trio information in
local ancestry inference

We simulated nuclear family trios by generating one offspring
haplotype from each of the 200 simulated admixed genotypes,
followed by grouping the offspring haplotypes into 100 pairs, each
forming the genotype of a single progeny. An offspring haplotype
was generated by recombining the two parental haplotypes
according to the average genomic recombination rate. We then
compared the performance of LAMP-LD and LAMP-HAP when
inferring local ancestry in the Mexican and Puerto Rican datasets
assuming different amounts of information in the inference. For
consistency the accuracy was assessed only on the parental
genotypes for both methods.Additionally, we measured the accuracy
of LAMP-HAP when the haplotype phase is known (i.e. the method
receives as an input the true phasing for the simulated trio data)
so as to provide an upper bound on the achievable accuracy using
trio data.

Table 2. Error rate (standard error of the mean) of methods for local ancestry
inference as a function of the amount of information taken into account.
LAMP-HAP* is provided the true haplotypes used to simulate the trio, as to
provide an upper bound on the accuracy that can be achieved in trio data.

Method Mexican Puerto Rican

% diploid error r2 % diploid error r2

LAMP-LD 9.9 (0.3) 0.847 6.4 (0.2) 0.868
LAMP-HAP 6.6 (0.2) 0.885 5.3 (0.2) 0.891
LAMP-HAP* 6.1 (0.2) 0.892 5.0 (0.2) 0.897

The bold values are the performance measures of the best-performing method when
true phase is unknown (the last row gives the performance when true phase is known).

Fig. 3. Effect of reference panel size and divergence on the accuracy of
WINPOP and LAMP-LD. Both methods show increased performance with
sample size with LAMP-LD showing the highest gain in accuracy when
more accurate reference haplotypes are provided as proxy panels.

The result in Table 2 show a considerable increase in the accuracy,
as measured by the diploid error as well as by the squared correlation,
with the incorporation of pedigree information. Interestingly, only
a marginal improvement was obtained when we provided the true
haplotypes to LAMP-HAP, demonstrating that the unambiguously
phased positions are sufficient for highly accurate ancestry inference.

3.4 The effect of size and precision of reference
sets on accuracy

Most local ancestry inference methods require some information
about the mixing populations: Haplotype-based methods, such as
LAMP-LD and HAPMIX, require sample haplotypes, while other
methods, such as WINPOP, require only SNP allele frequencies.
With the growing availability of genetic data, it is important
to examine the effect of the reference datasets (genotypes or
haplotypes) on the performance of the methods. Particularly, since
LAMP-LD is able to efficiently process large reference datasets,
an interesting question is whether it can utilize the additional
information provided in sets of growing sizes, given the fact that
it uses only 10 prototype haplotypes (states) per ancestry.

This question was tested by providing LAMP-LD with reference
sets of varying sizes: we compared the results obtained on the full
set used in the previous sections (117 TSI haplotypes, 169 JPTs
and 115 LWKs) to those obtained on a partial reference, which
contained only two-thirds of the haplotypes in each of the three
ancestral panels. We did the same with WINPOP, to examine how
a non-haplotypes-based method would be affected. In Figure 3a
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LAMP-LD can be seen to considerably improve when provided
with the larger reference. In contrast, WINPOP does not improve,
presumably because estimating the allele frequencies can be done
well enough using small panels. On the other hand, LAMP-LD’s
performance also deteriorates more rapidly as the reference size
decreases, and WINPOP’s accuracy becomes superior when using
0.4 and 0.5 of each panel for the Mexican and Puerto Rican datasets,
respectively (these fractions correspond to panel sizes of 46/58 TSI
haplotypes, 67/84 JPTs and 46/57 LWKs).

It has been shown that the genetic divergence between the
haplotypes used as proxy and the true unknown ancestral population
greatly impacts local ancestry performance (Pasaniuc et al., 2009b;
Price et al., 2009). We quantified this effect in Latinos by running
LAMP-LD and WINPOP using the proxy reference set (which
included haplotypes from the TSI, JPT and LWK panels; the same
populations were used to obtain the previous results presented in this
article) and a true reference set. The true reference in this experiment
included the same number of haplotypes in each ancestral panel as
the proxy set, but taken from the CEU, (CHB+CHD) and YRI panels;
we note that the haplotypes in this set are different from those used
for generating the simulated haplotypes.

Figure 3b demonstrates the anticipated deterioration in the
performance of both methods on both datasets when data from the
proxy populations is used as reference instead of the true ancestral
populations. This decrease is smaller on the Puerto Rican dataset,
presumably because it contains a larger proportion of African
ancestry which is more easily differentiated from the rest, even when
the proxy LWK haplotypes are used. The deterioration in accuracy
is at the same scale as the improvement resulting from increasing
the reference size, suggesting that a large enough reference would
compensate for the divergence.

3.5 The effect of European gene flow into Native
American reference haplotypes

Current day Native American haplotypes used as proxy for the
Native American component of Latinos are presumed to contain
European gene flow. In order to test the effect of this phenomenon
on ancestry inference, we introduced TSI segments into the
Asian haplotypes of a reference set composed of 117 CEU,
169 (CHB+CHD) and 115 YRI haplotypes. We performed 10
experiments, in each choosing at random a 5 Mb region along
the chromosome, and replacing a percentage of the (CHB+CHD)
haplotypes with TSI haplotypes along the chosen region.

We observed that the typical effect of increasing the number of
TSI segments present in the Native American reference panels is
an increase in the estimated proportion of the Native American
ancestry along the modified region, at the expense of the estimated
European proportion. Presumably, the Native American reference
haplotypes in the modified region are now able to approximate
reasonably well windows containing both Native American and
European haplotypes; in some cases, they will approximate the
European windows better than the CEU haplotypes, and hence the
increase in the estimated Native American proportion.

Figure 4 shows, for each region and for each fraction of
modified (CHB+CHD) haplotypes, the maximal deviation of the
average estimated European ancestry p̂ from the true average
European ancestry p obtained across all loci in the modified region.
More precisely, we provide the maximal value of the statistic

Fig. 4. The simulated effect of European gene flow into Native
American haplotypes on estimation accuracy. Different fractions of the 169
(CHB+CHD) reference haplotypes were replaced by TSI haplotypes along
10 different regions, each of length 5 Mb. The plot gives, for each fraction
and for each region (in different colors), the maximal corrected deviation
(see text for details) of the estimated average European ancestry from the
true average european ancestry along the region.

D=|p̂−p|/√p(1−p), which can be used to obtain the scale of
the p-value for testing the null hypothesis of the modified region
having the average genome-wide fraction of European ancestry:
given a sample of size N , the p-value is computed as 1−�(D

√
N).

For example, when the number of modified haplotypes is 30 (0.18
of the Native American panel), the resulting p-value of the most
severely affected region in our simulations (N = 200) is 2·10−2,
whereas for a sample of size 1000 we obtain that a similar effect
would yield a p-value of 2 ·10−6. We note that we observe similar
but smaller effect when modifying shorter segments; ultimately, for
large enough samples and under the assumption of a small finite
reference panel, these local biases would appear as statistically
significant local deviations in the ancestral proportions. However,
for low levels of gene flow (≤6%) Figure 4 shows that the biases in
local ancestry are unlikely to produce large deviations, and would
be statistically significant only at very large sample sizes.

3.6 Assessment of local ancestry performance in
real Latinos

In order to estimate the precision of local ancestry inference methods
in real data, for which the true local ancestry is unknown, we
leverage the fact that local ancestry needs to follow Mendelian
inheritance rules. For example, if the father has African local
ancestry on both chromosomes whereas the mother has European
ancestry, the child’s local ancestry has to have a single chromosome
that is African and one that is European. Therefore, pedigree
relationships can be used to identify errors in local ancestry
estimation by simply testing whether the inferred ancestral status of
the child’s chromosomes can arise through Mendelian inheritance
from the ancestral status of the parent chromosomes. This is
done by estimating the local ancestry of each individual in the
pedigree separately, and then integrating the trio information to test
each genomic position for inconsistency. Any such inconsistency
indicates at least one erroneous call in the local ancestry assignments
of the trio, so that the counts of the MILANC give a direct lower
bound on local ancestry inference error rate. A critical feature of
MILANC is that it is computed without knowing the true ancestry in
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Table 3. Average genomic MILANC (standard error of the mean) in
% attained by best performing methods that model or ignore ancestral
population LD in the Mexican and Puerto Rican trios of the GALA study.

Mexicans Puerto Ricans

WINPOP 3.12 (0.03) 3.12 (0.03)
LAMP-LD 3.16 (0.03) 2.50 (0.03)

real data; for this reason LAMP-HAP, which is designed to produce
MILANC =0, is not tested in this section.

We first investigated the relation between MILANC and the
true underlying error rate. When introducing erroneous calls in the
local ancestry of our simulated trios using a random uniform error
model, we observed that roughly one-third of inserted errors lead to
Mendelian inconsistencies, thus indicating that MILANC captures
only one component of the true error rate.

Next, we assessed the accuracy of LAMP-LD and WINPOP in
empirical data using 232 Mexican and 257 Puerto Rican nuclear
mother–father–child families. These trios were collected as part
of the GALA Study (Burchard et al., 2004); GALA is a multi-
center, international effort designed to identify and directly compare
clinical, genetic and environmental risk factors associated with
asthma, asthma severity and drug responsiveness among Latino
ethnic groups. The trios were ascertained on an asthmatic proband.
When running local ancestry inference, as proxy for the African
(European) ancestry we used the 226 (224) haplotypes of the
HapMap 3 phase 2 YRI (CEU) population, whereas for the Native
American ancestry we used 88 Native American samples (25
Bolivian Aymara, 24 Peruvian Quechua and 39 Mesoamericans;
Bigham et al., 2010). We intersected all SNP sets to achieve a
combined panel of 588 595 SNPs.

Table 3 shows the average MILANC attained by WINPOP and
LAMP-LD in the GALA trios. We note that the empirical metric of
accuracy (MILANC) shows that the accuracy in real data roughly
matches the results of our simulations (Table 1), given that we expect
one-third of the errors to yield Mendelian inconsistencies. We also
note that modeling LD in the form of ancestral haplotypes appears
to have a bigger effect for Puerto Ricans rather than Mexicans.

4 DISCUSSION
We introduced novel methods for accurate local ancestry inference
in multi-way mixtures of populations such as Latinos. Through
simulations and analysis of real Latino family data, we demonstrated
that our methods attain superior accuracy and scalability compared
with current state of the art methods for local ancestry inference. Our
methods are implemented as an open source software package for the
genetics community. As future work, we mention the incorporation
of varying recombination rates into the parameter estimation step
of our approach, as well as an adaptive selection of the window
length as a function of the genetic distance among ancestral
populations at any locus in the genome. In our simulations we have
assumed non-population specific recombination rates, however it
is straightforward to incorporate population-specific recombination
rates into our model by using appropriate recombination maps in
the training of the ancestral HMMs. Finally, we note that methods
for local ancestry inference in multi-way admixed populations are

an active area of research (Bercovici et al., 2012; Henn et al., 2012;
Johnson et al., 2011). A systematic comparison of the performance
of these methods on Latinos as well as admixtures of >3 ancestral
populations merits further study.
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