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Abstract

Background: Mammalian Ste20-like kinases (MSTs) are the mammalian homologue of Drosophila hippo and play critical
roles in regulation of cell death, organ size control, proliferation and tumorigenesis. MSTs exert pro-apoptotic function
through cleavage, autophosphorylation and in turn phosphorylation of downstream targets, such as Histone H2B and FOXO
(Forkhead box O). Previously we reported that protein kinase c-Abl mediates oxidative stress-induced neuronal cell death
through phosphorylating MST1 at Y433, which is not conserved among mammalian MST2, Drosophila Hippo and C.elegans
cst-1/2.

Methodology/Principal Findings: Using immunoblotting, in vitro kinase and cell death assay, we demonstrate that c-Abl
kinase phosphorylates MST2 at an evolutionarily conserved site, Y81, within the kinase domain. We further show that the
phosphorylation of MST2 by c-Abl leads to the disruption of the interaction with Raf-1 proteins and the enhancement of
homodimerization of MST2 proteins. It thereby enhances the MST2 activation and induces neuronal cell death.

Conclusions/Significance: The identification of the c-Abl tyrosine kinase as a novel upstream activator of MST2 suggests
that the conserved c-Abl-MST signaling cascade plays an important role in oxidative stress-induced neuronal cell death.
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Introduction

MST2 shares the highest degree of homology with the Drosophila

Hippo and plays an important role in apoptotic cell death [1].

Exposure of cells to apoptosis-inducing stimuli such as Staur-

osporine, Fas ligand, and oxidative stress activates MST family

protein kinases. During apoptosis, MST2 was cleaved and

underwent irreversible autophosphorylation, which was resistant

to phosphatases [2,3].

It has been shown that MST2 is regulated by Raf-1 through

a direct interaction, which prevents dimerization and phosphor-

ylation of the activation loop of MST2 independent of Raf-1’s

protein kinase activity [4]. RASSF1A (RAS association domain

family 1A) causes the disruption of the inhibitory Raf-1 protein

from MST2, and releases MST2 to phosphorylate its substrate,

LATS1 (the large tumor suppressor 1). MST2 can be co-

precipitated with LATS1 only in the presence of Salvador, which

synergistically promotes MST2-mediated LATS1 phosphorylation

and activation [5]. The activated LATS1 promotes the cytoplas-

mic translocation of the transcription factor YAP1 (yes-associate

protein 1). Moreover, Akt inhibits MST2 activation by phosphor-

ylation at T117 and T384, which leads to inhibition of MST2

cleavage, nuclear translocation, autophosphorylation at T180 and

kinase activity [1,6]. However, the upstream kinase of MST2

during the oxidative stress-induced cell death is largely unknown.

The ubiquitously expressed tyrosine kinase c-Abl is activated by

DNA damage agents [7], and c-Abl functions as a transducer of

a variety of extrinsic and intrinsic cellular signals including those

from growth factors, cell adhesion, oxidative stress and DNA

damage [8]. Recently, c-Abl has been linked to oxidative stress-

induced neuronal cell death through Cdk5/GSK3b activation and

Tau hyperphosphorylation or through p73 upregulation [9–11].

STI571, a c-Abl kinase inhibitor, decreases Cdk5 activation and

Tau phosphorylation, leading to the inhibition of neuronal cell

death [10,11]. Recently we found that c-Abl phosphorylates and

activates MST1 through phosphorylation at Y433 of the c-

terminus that stabilizes MST1 through blocking CHIP-mediated

proteasomal degradation. This promotes their interaction with the

FOXO transcription factors, and thereby induces cell death in

neurons [12]. However, there is no conserved tyrosine in the c-

terminal motif of MST2 and it is interesting to explore the

possibility and molecular mechanism that c-Abl could regulate

MST2 in the oxidative stress-mediated neuronal cell death.

In this study, we demonstrate that MST2 is regulated by c-Abl

tyrosine kinase. C-Abl phosphorylates MST2 at Y81, which leads
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to enhancement of MST2 autophosphorylation as well as its

homodimerization. Consistently, we found that c-Abl mediated

phosphorylation inhibits the interaction between Raf-1 and

MST2. The MST2-Y81F mutant, which is unable to be

phosphorylated by c-Abl, confers a lower kinase activity and

pro-apoptotic ability compared to that of WT MST2. In

mammalian neurons, Rotenone, a specific inhibitor of mitochon-

drial NADH dehydrogenase [12] (complex I), induced MST2

phosphorylation by c-Abl and promotes neuronal apoptosis.

Inhibition of c-Abl by using c-Abl RNAi attenuates Rotenone-

induced MST2 activation as well as cell death in primary cultured

neurons. Taken together, our findings identify a novel upstream

kinase of MST2 that regulates the cellular response to oxidative

stress.

Results and Discussion

c-Abl phosphorylates MST2 at Y81 in vitro and in vivo
Previously we found the protein kinase c-Abl mediated oxidative

stress-induced MST1 phosphorylation at Y433 [12]. Although it is

noted that the phosphorylation site is not conserved in MST1’s

ortholog, such as MST2 and Hippo (Figure 1A), we found that

recombinant GST-fused MST2 as well as MST1 protein was

directly phosphorylated by c-Abl by using an in vitro kinase assay

followed by immunoblotting with an anti-pan-tyrosine antibody

(Figure 1B). Sequence analysis revealed that Y81 of human MST2,

which is absent in MST1, is conserved among mouse, rat,

Drosophila (Hippo), and C. elegans (cst-1/2, Figure 1A). In vitro c-Abl

kinase assays using GST-fused MST2 or Hippo as the substrate

showed that c-Abl also phosphorylates MST2 and Hippo,

indicating there is a conservation of the phosphorylation

(Figures S1B and S1C). In addition kinase dead c-Abl failed to

phosphorylate MST2 in vitro (Figure S1D). Moreover, using mass

spectrometry analysis (MS/MS), we found only one phospho-

tyrosine residue (Y81) in the immunoprecipitated MST2 from the

cells in the presence of c-Abl (Figure S1A). To further confirm that

MST2 is a substrate of c-Abl and could be phosphorylated at Y81,

we generated the Y81F (Tyrosine to Phenylalanine) MST2

mutation by site-directed mutagenesis. In vitro kinase assay showed

that the phosphorylation of MST2 Y81F mutant by c-Abl is

significantly reduced compared with WT MST2 (Figure 1C). To

further validate that c-Abl phosphorylates MST2 at Y81 in cells,

the plasmid encoding MST2 WT or Y81F mutant was

cotransfected with c-Abl in HEK293T cells. As expected, c-Abl

phosphorylated MST2 WT but failed to phosphorylate Y81F

mutant in cells (Figure 1D). Taken together, these results support

the conclusion that c-Abl kinase phosphorylates MST2 at Y81

within the kinase domain in vitro and in vivo.

c-Abl kinase enhances MST2 activation
Since we found that c-Abl kinase increases the protein stability

of MST1 [12], we next asked whether c-Abl might affect the

protein stability of MST2. The expression levels of MST2 are not

changed in the absence of c-Abl in comparison with MST1

(Figures 2A and S2). The ability of c-Abl to phosphorylate MST2

within the kinase domain led us next to determine the functional

consequences of the tyrosine phosphorylation. HEK 293T cells

were transfected with a constant amount of MST2 together with

an increasing amount of c-Abl. Immunoblotting analysis revealed

that the autophosphoryaltion of MST2, but not the protein levels,

increased in direct correlation with the expression levels of c-Abl

(Figure 2B). To further delineate the functional interaction

between c-Abl and MST2, an in vitro MST2 kinase assay was

performed and we observed that c-Abl significantly enhanced the

kinase activity of MST2 (Figure 2C) by using the recombinant

protein of FOXO3 forkhead domain (FD) as the substrate.

Correspondingly, we found that c-Abl is capable of enhancing

kinase activity of MST2 WT but not Y81 mutant (Figure 2D) by

using the Histone H2B as the substrate. Thus, the c-Abl-mediated

Y81 phosphorylation is essential for MST2 activation.

c-Abl-mediated phosphorylation of MST2 kinase
promotes its homodimerization and disrupts the
interaction with Raf-1 proteins
Unlike MST1 [12], MST2 is not stabilized by c-Abl-mediated

phosphorylation (Figure 2A and S2). We next determined whether

c-Abl regulates MST2 kinase activation through a phosphoryla-

tion-dependent mechanism. Previous study has shown that

phosphorylation of MST1 within the kinase domain by JNK

kinase enhances MST1 dimerization and kinase activity [13]. We

next examined whether Y81 phosphorylation of MST2 might

affect its homodimerization. The co-immunoprecipitation data

showed that MST2 homodimerization is enhanced in the presence

of c-Abl (Figure 3A) and the Y81F mutant MST2 interacts much

less with WT MST2 in the presence of c-Abl (Figure S3),

indicating c-Abl-mediated tyrosine phosphorylation enhances the

dimerization of MST2 proteins. Raf-1 has been shown to bind to

and suppress MST2 by preventing MST2 dimerization in a kinase-

independent manner [4]. It raises the possibility that c-Abl might

regulate MST2 activation and homodimerization through affect-

ing the interaction between Raf-1 and MST2. C-Abl inhibition

with STI571 dramatically increased the interaction between

MST2 and Raf-1 (Figure 3B), which led us to investigate whether

Y81 phosphorylation of MST2 mediates the interaction between

Raf-1 and MST2. As expected, we found that Y81F mutant

MST2, but not WT MST2, preferentially binds to Raf-1

(Figure 3C). Furthermore, the endogenous interaction between

Raf-1 and MST2 is increased upon STI571 treatment in Neuro2A

cells (Figure 3D). Taken together, these results suggest that c-Abl-

mediated phosphorylation of MST2 promotes its homodimeriza-

tion and disrupts the interaction with Raf-1 proteins in an Y81

phosphorylation-dependent manner.

C-Abl-MST2 signaling mediates Rotenone-induced
neuronal cell death
We have reported that administration of Rotenone, a mitochon-

drial complex I inhibitor, led to the activation of c-Abl and

sequential transactivation of MST1 [12]. To determine whether

tyrosine phosphorylation of MST2 is increased in response to

Rotenone, we monitored endogenous MST2 phosphorylation with

anti-pan-tyrosine antibody. As shown in Figure 4A, Rotenone

treatment stimulates tyrosine phosphorylation of MST2 in

Neuro2A cells, which is attenuated by STI571. To determine

whether phosphorylation of MST2 by c-Abl in neurons regulate

MST2’s pro-apoptotic function in response to Rotenone, we

employed a plasmid based method of RNA interference (RNAi),

which efficiently knock down the endogenous c-Abl (Figure S4).

We transfected primary neurons with the FLAG-MST2 alone or

together with c-Abl RNAi plasmid, and 3 days after transfection,

neurons were left untreated or treated with Rotenone for

24 hours. We found that c-Abl knockdown protects neurons from

either Rotenone or MST2 overexpression-induced cell death

(Figures 4B and S5). Interestingly, knockdown of MST2 and c-Abl

together significantly suppressed neuronal apoptosis (Figure 4C),

indicating that c-Abl and MST2 shared a signaling cascade to

regulate the neuronal cell death in response to Rotenone

treatment. We also observed that STI571 significantly decreased

A Conserved Signaling Pathway in Neuron Apoptosis
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MST2-induced cell death upon treatment with Rotenone

(Figure S6). We next defined the significance of c-Abl-mediated

phosphorylation of MST2 during Rotenone-induced neuronal cell

death. Expression of RNAi-resistant form of MST2 (MST2R), but

not WT MST2, reversed the protective function of MST2 RNAi

from Rotenone-induced cell death (Figures 4D and 4E). In

contrast to MST2R, MST2R-Y81F mutants failed to increase the

neuronal cell death in the MST2 knockdown background

(Figure 4E). These results indicate that phosphorylation at Y81

is important for MST2-mediated neuronal cell death upon

oxidative stress.

In this study, we have discovered an evolutionarily conserved

signaling link between the tyrosine kinase c-Abl and the MST

family of kinases that mediates responses to oxidative stress in

mammalian cells. Our findings generalize the substrates of c-Abl

from MST1 to other family members of the MST proteins. Our

major findings are: (1) c-Abl phosphorylates MST2 at the

conserved Y81 in vitro and in vivo, (2) the c-Abl-induced

phosphorylation of MST2 reduces the interaction between Raf-1

and MST2 and enhances MST2’s homodimerization, (3) c-Abl-

MST2 signaling plays a critical role in neuronal cell death upon

Rotenone treatment. Collectively, we have identified a novel

Figure 1. c-Abl Phosphorylates MST2 at Y81 in vitro and in vivo. (A). Sequence alignment of the mammalian MST2, Drosophila Hippo, C.
elegans cst-1/2 and mammalian MST1. (B). Lysates of HEK 293T cells transfected with Myc-tagged c-Abl or the control vector were
immunoprecipitated with anti-Myc antibody and subjected to an in vitro kinase assay using full-length GST-MST1 or–MST2 as substrate.
Phosphorylation reactions were analyzed by immunoblotting with anti-pan-tyrosine phosphorylation antibody. MST2 and MST1 proteins were
tyrosine phosphorylated by c-Abl kinase in vitro. (C). In vitro kinase assay using the recombinant full-length GST-MST2-WT or–Y81F as a substrate was
performed and analyzed as in A. c-Abl phosphorylated MST2 at Y81 in vitro. (D). Lysates of HEK 293T cells transfected with FLAG-MST1-WT,–Y81F
expression plasmid together with Myc-c-Abl were immunoprecipitated with anti-FLAG antibody and analyzed as in A. Y81 is the phosphorylation site
of MST2 by c-Abl in vivo.
doi:10.1371/journal.pone.0036562.g001
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upstream regulator of MST2 underlying the oxidative stress-

induced cell death.

The elucidation of the c-Abl-induced phosphorylation of MST2

and consequent disruption of its interaction with Raf-1 proteins

provides a molecular basis for how c-Abl kinases activate MST2

signaling in the contexts of oxidative stress in mammalian cells.

Previous study has demonstrated that Raf-1 kinase binds to MST2

and prevents its dimerization and autophoshorylation of T180,

which results in the inhibition of both MST2 activation and

proapoptotic activity [4]. Our findings provide the evidence that c-

Abl regulates MST2-Raf-1 complex through Y81 phosphoryla-

tion. However, the structural mechanism underlying the disrup-

tion of Raf-1 and MST2 association by c-Abl-mediated phos-

phorylation is still elusive. Furthermore, we also found that c-Abl-

induced MST2 phosphorylation at Y81 inhibits the association

with Akt (data not shown) indicating that c-Abl mediated

phosphorylation of MST2 regulates the interaction between

MST2 and its functional partners.

A key conclusion of our study is that the c-Abl-MST signaling

link is conserved. MST1 and MST2 are human homologues of

Hippo, however, protein sequence similarity between MST2 and

Hippo (63.5%) is higher than that of MST1 and Hippo (50%) [1].

Hippo/MST signaling in Drosophila and mammals integrates

multiple upstream inputs, enabling dynamic regulation of tissue

homeostasis in animal development and physiology, especially the

organ size control and cell death [14,15]. Of interest, evidence for

Drosophila Abl (d-Abl) function was obtained by analysis of mutant

phenotypes in the embryonic somatic muscles and the eye

imaginal disc. The expression patterns and mutant phenotypes

indicate a role for d-abl in establishing and maintaining cell-cell

interactions in the developing embryonic muscle and adult eyes

[16]. We also found that the recombinant Hippo is phosphory-

lated by Abl kinase in vitro (Figure S2C). Thus, it will be interesting

to investigate the conservation and biological functions of c-Abl-

Hippo signaling in Drosophila.

Our study shows that MST2 possesses a c-Abl phosphorylation

site within its kinase domain, which is highly conserved among

mammalian (MST2), Drosophila (Hippo), and C. elegans (cst-1/2),

which is absent in mammalian MST1 (Figure 1A). In contrast, the

phosphorylation site (tyrosine 433) of MST1 by c-Abl is also absent

in mammalian (MST2), Drosophila (hippo), and C.elegans (cst-1/2)

(Figure 1A). We also found that c-Abl activated both MST1 and

MST2 and promoted oxidative stress-induced neuronal cell death.

Thus, although c-Abl-mediated phosphorylation of both MST1

and MST2 led to enhanced activation of both kinases and might

stimulate the same downstream signaling, obviously the regulatory

mechanism is different, probably due to the evolutionary di-

versification. However, whether c-Abl-mediated regulation of

MST1 and MST2 plays some specific roles in other circumstances

is to be an interesting question in the future studies.

Together with our previous finding [12], the identification of c-

Abl signaling to MST kinases further builds the case that c-Abl is

a key regulator in neuronal cell death. It will be important in

future studies to determine the role of these pathways in the

pathogenesis of neurological diseases.

Figure 2. c-Abl Enhances MST2 Kinase Activity. (A). Lysates of Neuro2A cells stably transfected with c-Abl RNAi #1 or #2 or the control vector
were immunoblotted with the indicated antibodies. (B). Lysates of HEK 293T cells transfected with FLAG-tagged MST2 alone or together with
increasing amounts of Myc-tagged c-Abl expression plasmid were analyzed by immunoblotting with the indicated antibodies. (C). Anti-Myc
immunoprecipitates from cells transfected with Myc-c-Abl or the control vector were subjected to the in vitro kinase reaction using the recombinant
GST-MST2 or GST alone as substrate. GST-MST2 or GST from phosphorylation reactions was then subjected to the second in vitro kinase assay using
GST-FOXO3-FD as substrate. Phosphorylation reactions were analyzed by immunoblotting with anti-pS207-FOXO3 antibody. The experiments were
repeated for three times and quantative density is indicated. (D). Lysates of HEK 293T cells transfected with the FLAG-MST2 or–Y81F expression
plasmid were immunoprecipitated with the anti-FLAG antibody and subjected to an in vitro kinase assay using Histone H2B as substrate in the
presence of [32P] ATP. Phosphorylation reactions were analyzed by electrophoresis and autoradiography. The experiments were repeated for three
times and quantative density is indicated.
doi:10.1371/journal.pone.0036562.g002
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Materials and Methods

Plasmids and transfection
The plasmids used were as follows: pCMV-Myc-c-Abl was a gift

from Dr. Cheng Cao (Beijing Institute of Biotechnology). MST2-

Y81F and other mutants were generated by site-directed

mutagenesis. All mutations were verified by sequencing. Raf-1

were cloned into pEGFP-C2 vector at Eco RI and Kpn I

restriction sites from the HeLa cDNA library. Mammalian RNAi

constructs were designed as described [12]. The hpRNA targeting

sequences used include MST2 hpRNA: GGAATATTCTCCT-

CAATAC; c-Abl hpRNA#1, GACCAACCTGTTCAGCGCT;

c-Abl hpRNA#2, AAGCAGCTCGATGGACCTCCA; MST2

Rescue plasmids were generated by creating three silent base-pair

mutations in the WT or mutation sequences. Unless stated

otherwise, all transfections were carried out in complete medium

with Lipofectamine 2000 (Invitrogen) or Vigofect (Vigorous)

according to the manufacturer’s protocols.

Tissue Culture
Neuro2A and HEK 293T cells [12,13] were cultured at 37uC

and 5% CO2 in DMEM supplemented with 10% fetal bovine

serum. DMEM and fetal bovine serum were purchased from

Invitrogen. Cerebellar granule neurons were prepared from

postnatal day 6 (P6) rat pups [17,18]. For RNAi experiments,

cultures from P6 in vitro (DIV) were transfected with the RNAi or

control U6 plasmid together with pEGFP plasmid. After 3 days,

cultures were left untreated or were treated with Rotenone for

24 hr. After fixation, the cells were subjected to cell death analysis

as described [17,18]. Briefly, cell survival and death were assessed

in GFP-expressing neurons based on the integrity of neurites and

nuclear morphology as determined by the DNA dye bisbenzimide

(Hoechst 33258). Cell counts were carried out in a blinded manner

and analyzed for statistical significance by ANOVA followed by

Fisher’s PLSD post hoc test. Approximately 200 cells were

counted per experiment. All transfections were done by a calci-

um-phosphate method as described [17,18].

Immunoblotting, immunoprecipitation, in vitro kinase
Assays and Immunofluorescence
The antibodies used were MST2, c-Abl, phospho-MST1

(Thr183)/MST2 (Thr180), and ERK1/2 (Cell Signaling Tech-

nology); GST (Santa Cruz Biotechnology); FLAG-M2 (Sigma);

phosphor-tyrosine p-Tyr (4G10) (Millipore); GFP and phosphor-

FOXO3 (Ser 207) (Invitrogen). Immunoprecipitations and immu-

noblotting were carried out as described [12]. Cells were lysed in

a buffer containing 20 mM Tris HCl, pH 7.5, 150 mM NaCl,

10% (v/v) glycerol, 1% Nonidet P-40, 2 mM Phenylmethylsulfo-

nyl Fluoride (PMSF), 2 mg/ml Aprotinin and Leupeptin, 2 mM

Benzamidine, 20 mM NaF, 10 mM NaPPi, 1 mM Sodium

Vanadate, and 25 mM b-glycerophosphate. Lysates were centri-

fuged at 12,000 g for 15 min at 4uC prior to immunoprecipitation

or Western blotting. Aliquots of the cell lysates were analyzed for

protein expression and enzyme activity. For immunoprecipitation,

lysates were pre-cleared with protein A-protein G (2:1) agarose

beads at 4uC for 60 min. Following the removal of the beads by

centrifugation, lysates were incubated with appropriate antibodies

in the presence of 10 ml of protein A-protein G (21) agarose beads

for at least 1 hour at 4uC. The immunoprecipitates were subjected

to in vitro kinase assay or Western blotting analysis. Protein

expression was determined by probing Western blots of immuno-

precipitates or total cell lysates with the appropriate antibodies as

noted in the figure legends.

Figure 3. c-Abl-Mediated MST2 Phosphorylation at Y81 Promotes its Homodimerization and Disrupts the Interaction with Raf-1
Proteins. (A). Lysates of HEK 293T cells transfected with GFP-MST2 alone or together with FLAG-MST2 or Myc-c-Abl expression plasmid were
immunoprecipitated with FLAG antibody and analyzed by immunoblotting against GFP antibody. (B). HEK 293T cells transfected with GFP-Raf-1 alone
or together with FLAG-MST2 expression plasmid were treated with or without 10 mM STI571 for 1 hour. Lysates of cells were immunoprecipitated and
analyzed as in (A). (C). Lysates of HEK293T cells transfected with GFP-Raf-1 alone or together with FLAG-MST2-WT or–Y81F expression plasmid were
immunoprecipitated with anti-FLAG antibody followed by immunoblotting with the indicated antibodies. (D). MST2 immunoprecipitates from
Neuro2A cells treated with or without STI571 were immunoblotted with anti-Raf-1antibody or other indicated antibodies.
doi:10.1371/journal.pone.0036562.g003

A Conserved Signaling Pathway in Neuron Apoptosis
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In vitro kinase assays were carried out as described [12]. Briefly,

immunoprecipitated c-Abl kinase (Millipore) was incubated in the

following reaction conditions: 100 mM Tris (pH 7.4), 20 mM

MgCl2, ATP, 1 mg of GST-MST2 or GST-MST2 mutation as

substrate. Immunoprecipitated MST2 from cells was incubated

with 0.4 mg of GST-FOXO3-FD or Histone H2B in a reaction

buffer containing 30 mM Tris (pH 7.4), 20 mM MgCl2, 1 mg/ml

BSA, ATP. Kinase reactions were separated by SDS-PAGE gel

electrophoresis and analyzed by autoradiography or by immuno-

blotting with indicated antibody.

Immunofluorescence and cell death assay were carried out as

described [12]. Freshly fixed neurons were first washed with PBS

three times and blocked with 20% goat serum in PBS containing

0.2% triton X-100 to reduce nonspecific antibody binding.

Neurons were then incubated with the GFP antibody at 4uC
overnight. After washing with PBS three times, Alexa Fluor 488

Figure 4. c-Abl-MST2 Signaling Mediates Rotenone-induced Neuronal Cell Death. (A). Neuro2A cells were left untreated or treated with
400 mM Rotenone for 1.5 hours with or without 10 mM STI571. Lysates of cells were immunoprecipitated with anti-MST2 antibody and analyzed by
immunoblotting with anti-pan-tyrosine phosphorylation antibody. (B). Cerebellar granule neurons were transfected with the pEGFP alone or together
with the FLAG-MST2 expression plasmid, and c-Abl RNAi or control vector as indicated. 72 hours after transfection, neurons were left untreated or
treated with Rotenone for 20 hours. Transfected neurons were subjected to immunofluorescence analysis using GFP antibody together with the DNA
dye Hoechst 33258 to reveal neuronal nuclei. Representative images of neurons are shown in the upper panel. White arrowheads indicating healthy
transfected neurons and red arrowheads indicating transfected neurons that are undergoing apoptosis. The percentage of cell death of GFP-positive
neurons is represented as the mean6 SEM. Exposure of MST2-transfected neurons to Rotenone induced neuronal cell death (ANOVA; p,0.01, n = 3),
and the cell death was dramatically reduced by c-Abl knockdown (ANOVA; p,0.01, n = 3).(C). Cerebellar granule neurons were transfected with the
pEGFP alone or together with the MST2 shRNA, c-Abl shRNA or control vector as indicated. 72 hours after transfection, neurons were treated and
analyzed as in B. The percentage of cell death of GFP-positive neurons is represented as the mean 6 SEM. Knockdown MST2 or c-Abl protects
neurons from Rotenone induced cell death (ANOVA; p,0.01, n = 3). (D). The upper panel shows the expression of the MST2 rescue constructs in
Neuro2A cells. Lower panel: Lysates of HEK 293T cells transfected with FLAG-MST2 or FLAG-MST2R expression plasmids together with MST2 RNAi or
the control vector, were immunoblotted with the FLAG or ERK1/2 antibody. MST2 RNAi effectively knockdown endogenous MST2 in Neuro2A cells,
but not the rescue form of MST2. (E). Cerebellar granule neurons transfected with pEGFP and MST2 RNAi or control vector, alone or together with
MST2, MST2R, and MST2R-Y481F expression plasmids, were treated and analyzed as in B. MST2R but not Y81F mutants of MST2R enhanced
Rotenone-induced cell death (ANOVA; p,0.01, n = 3). The percentage of cell death in GFP-positive neurons is represented as the mean 6 SEM.
doi:10.1371/journal.pone.0036562.g004
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conjugated secondary antibody (Invitrogen) was used to detect the

signal. The secondary antibody was incubated at room temper-

ature for 1 hour and then nuclear morphology visualized using the

DNA dye Hoechst 33258 (Sigma) under Zeiss Imager D1

microscope.

Statistical analysis
Statistical analysis of the data was performed with one-way

ANOVA followed by Fisher’s PLSD post hoc test using Origin

software (Version 8). Data are presented as the mean 6 SEM and

the number of experiments is indicated in each figure. *P,0.05 or

**P,0.01 denotes statistical significance.

Supporting Information

Figure S1 Mass spectrum analysis of MST2 phosphor-
ylation by c-Abl kinase. (A). Immunoprecipitate complex from

Figure 1D were subjected to SDS-PAGE followed by Coomassie

Blue staining. The band corresponding to MST2 was excised from

the gel and digested with trypsin. Phosphorylation sites were

mapped by microcapillary liquid chromatography-MS/MS. A

phospho-peptide consistent with phosphorylation at Y81 was

identified. (B&C). In vitro c-Abl kinase assay was performed using

GST-Hippo or –MST2 as substrate. Phosphorylation reactions

were analyzed by immunoblotting with anti-pan-tyrosine phos-

phorylation antibody. Both MST2 and Hippo proteins were

tyrosine phosphorylated by the recombinant active c-Abl kinase in

vitro. (D). Lysates of HEK 293T cells transfected with pCMV

vector, Myc-c-Abl WT, or Myc-c-Abl KD (kinase dead form) were

immunoprecipitated with anti-Myc tag to purify the kinases and

then in vitro c-Abl kinase assay was performed using GST or

GST-MST2 as substrate. The result was analyzed by immuno-

blotting with anti-pan-tyrosine phosphorylation antibody (p-Y).

GST was taken as a negative control. MST2 could be tyrosine

phosphorylated by c-Abl WT but not kinase dead c-Abl. Asterisks

(*) indicated non-specific bands.

(TIF)

Figure S2 C-Abl knockdown does not alter the MST2
protein levels. Neuro2A cells were transfected with c-Abl RNAi

or the control vector. 72 hours after transfection, cells were treated

with 50 mg/ml Cycloheximide (CHX) for different time periods.

Equal amounts of total protein lysates were subjected to

immunoblotting with the MST2 or c-Abl antibody.

(TIF)

Figure S3 C-Abl-mediated Y81 phosphorylation is im-
portant for the dimerization of MST2. Lysates of HEK

293T cells transfected with GFP-MST2 alone or together with

FLAG-MST2 WT or Y81F or Myc-c-Abl expression plasmid were

immuno-precipitated with FLAG antibody and analyzed by

immunoblotting against GFP antibody.

(TIF)

Figure S4 C-Abl RNAi efficiently knocks down the
endogenous c-Abl in CGNs. Immunocytochemical analysis

of rat cerebellar granule neurons (CGN) transfected with b-
galactosidase expression plasmids together with the c-Abl shRNA

or control U6 plasmid (in a ratio of 1:3). C-Abl RNAi reduced

endogenous c-Abl expression in b-galactosidase positive cells.

(TIF)

Figure S5 Representative pictures of cell death in CGNs
under rotenone treatment. CGNs transfected with c-Abl

RNAi plasmid or control vector (pBabe/U6), MST2 expressing

plasmid or its control vector, together with GFP vector were

treated with Retenone (120 nM) for 24 hours. Yellow arrowhead

stands for the healthy neurons and red arrowhead indicates

apoptotic cells.

(TIF)

Figure S6 C-Abl inhibitor STI571 significantly de-
creases MST2 expression-induced cell death. CGNs

transfected with Flag-MST2 plasmid or control vector (pCMV5)

together with GFP vector were treated with Retonone only (120–

150 nM) or with Rotenone (120–150 nM) and c-Abl inhibitor

STI571 (5 mM) for 24 hours. Under Rotenone treatment, MST2

expression increases neuronal death significantly, while the effect

could be reversed by STI571 (ANOVA followed by Fisher’s PLSD

post hoc, p,0.01, n= 3).

(TIF)
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