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Abstract

To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their
effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult
female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin
like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and
two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated
Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which
occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly
mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy
or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract
and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF
did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not
further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-
Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the
strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the
endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit
and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the
treatment of cardiac disease.
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Signhild Engqvist Foundation, the Mats Kléberg Stiftelse and the Egyptian ministry of higher education. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rami.genead@ki.se

Introduction

The adult heart is not a terminally differentiated organ but

maintains regenerative capacity through out life [1]. During the

cold war nuclear bomb tests released carbon-14 (14C) into the

atmosphere, which was then incorporated into the genomic DNA

of proliferating cells. Because of this phenomenon it is now

possible for the first time to determine the age of cardiomyocytes

in the adult heart. If one discounts the polyploidisation of DNA in

cardiomyocytes during childhood [2,3], then there is a turn over of

1% of cardiomyocytes per year at the age of 25 and 0.45% of

cardiomyocytes at the age of 75. This implies that 50% of our

cardiomyocytes have been replaced during our lifetime.

The concept of myocardial regeneration by means of stimulat-

ing or augmenting the endogenous regenerative potential in situ is

an attractive approach. This offers distinct advantages to stem cell

implantation since the problems with engraftment and immune

rejection are avoided. Despite of the recent enthusiasm, several

issues remain unsolved, like which progenitor cells are responsible

for the normal myocardial homeostasis and which stem cells are

up-regulated most during a response to physiological and

pathological stress? Many research groups have reported on

different types of stem cell- like cells from different species. These

include cells with surface expression of molecules like stem cell

antigen-1 (Sca-1) [4,5,6], Abcg2 [7,8,9], c-Kit [10,11,12,13,14,15]

and the transcription factors Tbx 5 and Islet-1 (Isl1) [16,17,18,19].

It is still unclear if progenitor cells which express Sca-1, c-Kit or

Abcg2 all come from the same stem cell and represent different

physiological states or if they are different cell types [20]. Of the

described cells, only the cells expressing c-Kit demonstrate the
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stem cell characteristics like clonogenicity, self-renewal and

multipotency [10]. Miyamoto and co-workers have isolated and

successfully cultured c-Kit+ cells from adult rat hearts for 40

passages [13]. These cells maintained their stem cell characteristics

and could differentiate into cardiomyocytes, smooth muscle and

endothelial cells. Both side population cells expressing Abcg2 and

some Sca-1+ cells, co-express c-Kit [4,7,8,9], which implies that

these cells are derived from multipotent c-Kit+ cells. Goumans et

al. have presented results where cardiomyocyte progenitor cells

have been isolated from human fetal and adult hearts using

a mouse antibody for Sca-1 [21]. The isolated cardiomyocyte

progenitor cells expressed moderate levels of c-Kit and could

differentiate into cardiomyocytes after stimulation with 59-

azacytidine and TGF-b1.This finding further emphasizes the

concept that c-Kit+ cells can be cardiomyocyte progenitor cells

both in rodents and in man.

Other important cardiovascular progenitors are the Isl1+ cells,

which form the second heart field during organogenesis [16]. In

vivo cell lineage tracing in mouse embryos using the cre-loxP

strategy has confirmed that Isl1+ progenitors contribute to more

than two-thirds of the cells in the embryonic heart [18,22,23]. The

majority of Isl1+ cells in rat embryos are localized to the outflow

tract and differentiate to cardiomyocytes where they express both

troponin T (TnT) and a-smooth muscle actin (a-SMA) [17]. Isl1+
cells have also been localized to the outflow tract of adult pregnant

rat hearts [17], which could imply that they contribute to the

generation of cardiomyocytes during stress.

Dual delivery of insulin like growth factor-1 (IGF-1) and

hepatocyte growth factor (HGF) from affinity-bound biomaterial

has previously shown to reduce apoptosis, induce cardiomyocyte

cell-cycle re-entry and increase the incidence of GATA-4 positive

cell clusters in a rat myocardial infarction model [24].Therefore it

is interesting to study if endogenous IGF-1 and HGF are involved

in the up-regulation of cardiac progenitors due to stress and if local

administration of these growth factors could further potentiate this

effect.

Subsequently there seems to be at least two cardiac progenitor

cells; one which expresses c-Kit, and one which expresses Isl1.

This is the first blinded longitudinal study, which explores the up-

regulation of cardiac progenitor cells during different forms of

physiological and pathological stress like pregnancy, myocardial

infarction, and ischemia-reperfusion injury. We believe that this

study indicates that there exists a cardiogenic c-Kit+ population

and that these progenitor cells together with Isl1+ cells take part in

myocardial regeneration following pathological and physiological

stress.

Materials and Methods

Experimental Design
The study design is shown in Figure 1. All the procedures were

approved (approval ID S68-09 and S175-09) by the Animal Care

Committee of Karolinska University Hospital, Stockholm, Sweden

and conform to the Guide for the Care and Use of Laboratory

Animals published by the US National Institutes of Health (NIH

Publication No.85-23, revised 1996). The rats were allowed free access

to water and conventional pellet diet.

In this study we used female adult (11–13 weeks old) Sprague

Dawley rats (Charles River, Germany) which were divided into

five groups; control, pregnancy, myocardial infarction and

Figure 1. Flow chart showing the experimental study design. In figure; RV: Right ventricle, LV: Left ventricle, OFT: Outflow tract, RT-PCR: Real
Time Polymerase Chain Reaction and ICC: Immunocytochemistry.
doi:10.1371/journal.pone.0036804.g001
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ischemia-reperfusion with and without growth factors. The control

rats (n = 13) were not subjected to any surgical event. The

pregnant rats (n = 10) used were sacrificed on gestational day (GD)

13, since we have previously shown presence of Isl1+ cells in the

outflow tract at this time of pregnancy [17]. The rats from the

myocardial infarction group (MI, n= 15), ischemia-reperfusion

groups (IR) without (IR, n= 17) or with (IR+GF, n= 16) the

growth factors HGF, IGF-1, were euthanized at the two time

points; 1 week and 2 weeks. At the time of harvest, the hearts were

divided into the different regions; outflow tract (OFT, defined as

the outflow tract of the right ventricle), right ventricle (RV), left

ventricle (LV), area of peri-infarct and peri-ischemia. Subsequent

analysis was performed by Real Time Polymerase Chain Reaction

(RT-PCR), Western blot, and immunocytochemistry (ICC), in

a blinded manner.

Anesthesia and Postoperative Care
The rats that underwent myocardial infarction or ischemia-

reperfusion injury were generally anesthetized with a subcutaneous

injection of Midazolam (Dormicum, 5 mg/kg) (Algol Pharma AB,

Germany), Medetomidin hydrochloride (Domitor vet, 0.1 mg/kg)

(Orion Corp., Espoo, Finland), Fentanyl (0.3 mg/kg) (B.Braun

Medical AG, Seesatz, Switzerland) and subsequently endotrache-

ally intubated. Positive-pressure ventilation was kept at a rate of

100 cycles per minute with a tidal volume of 4–5 ml with room air

using a ventilator (7025 Rodent ventilator, UGO BASILE S.R.L,

Italy).

The anesthesia was reversed by an intramuscular injection of

Flumazenil (Lanexat, 0.1 mg/kg) (Hameln Pharma, Germany)

and Tipamezol hydrochloride (Antisedan vet 5 mg/kg) (Orion

Corp., Espoo, Finland). Postoperative analgesia was maintained by

administrating Buprenorphin hydrochloride (Temgesic,

0.004 mg/kg/twice per day for 3 days) (Schering-Plough Corp.,

Belgium). Rats that showed signs of malfunction were excluded

from the study.

Induction of Myocardial Infarction and Ischemia-
reperfusion Injury
In the myocardial infarction and ischemia-reperfusion groups,

the hearts were exposed through a left lateral thoracotomy. In the

myocardial infarction group the left anterior descending artery

(LAD) was permanently ligated and infarction induction was

confirmed by color change and dyskinesia of the antero-lateral

wall of the left ventricle. In the ischemia-reperfusion groups, the

LAD was temporary ligated for 5 minutes. In the (IR+ GF) group

this was followed by an intramyocardial injection of rrIGF-1(8 mg)
and rhHGF (2 mg) (4326RG and 294HG/CF, R & D systems,

Minneapolis, USA) dissolved in 10% rat serum in PBS and in the

IR-group by an intramyocardial injection of corresponding

volume of 10% rat serum.

Sample Preparation and RNA Extraction
The hearts were harvested through a left thoracotomy. The

hearts were kept cold on dry-ice and subsequently divided into the

different subdomains; OFT, RV, LV and when applicable the area

of peri-ischemia and peri-infarct. All the heart samples were snap-

frozen in liquid nitrogen and kept in minus 70uC until RNA

extraction. Total RNA was extracted from the heart samples

according to the QuickGene RNA tissue assay (RT-S2, Science

Figure 2. Quantitative RT-PCR showing the time-dependent distribution of c-Kit mRNA in the different groups. The c-Kit mRNA
expression in the different groups is related to the expression of GAPDH. Fig A shows the mean of the whole heart c-Kit mRNA expression in each
group. In fig B, the distribution of the c-Kit mRNA between each region at 2 weeks is demonstrated. Number of animals is 7–10 per group (see flow
chart in Fig 1). In figure; MI: myocardial Infarction; IR: ischemia-reperfusion; IR+GF: ischemia-reperfusion+ growth factors. RV: Right ventricle, LV: Left
ventricle, OFT: Outflow tract and Peri-INF/Ischemia: Peri-infarction and Ischemia region respectively. Data is presented as mean 6 SD. *P,0.05 vs.
Control group, ** P,0.001 vs. Control group, ***P,0.05 vs. pregnancy group, ****P,0.05 vs. MI (2 weeks) group and { P,0.05 1 week vs. 2 weeks. In
fig B, each region is related to corresponding region of the control, pregnancy, myocardial infarction and ischemia-reperfusion w/o growth factors.
doi:10.1371/journal.pone.0036804.g002
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Imaging Scandinavia AB, Sweden) using the Fuji QuickGene-QG-

810/QG-800Mini80 RNA isolation system. An average of 15–

30 mg heart tissue per each sample underwent a homogenization

process in a homogenization tube containing lysis buffer and

0.5 mm zirconium oxide using the Bullet Blender Homogenizer
TM (Next Advance Inc., USA). The eluted samples were

concentrated to an average of 200 ng RNA/ml using the speed

vacuum system (Max Dry Lyo machine).

The RNA concentrations and purities (A260/280) were

measured in a NanoDrop spectrophotometerH (ND-1000) (Nano-

drop technologies, Wilmington, DE, USA). The RNA quality was

further evaluated by 1% agarose-gel electrophoresis. These

measurements were performed before and after the concentration

step to assure proper selection of the high quality samples.

Quantitative Real-Time Polymerase Chain Reaction (RT-
PCR)
Two micrograms of total RNA was reverse transcribed by

Superscript reverse transcriptase (Life Technologies, Stockholm,

Sweden) using random hexamer primers (Roche Diagnostics

GmbH, Mannheim, Germany) in a total volume of 20 ml.
Real-time PCR was used to measure mRNA expression on

a 7500 Fast real-time PCR system (Applied Biosystems Inc., Foster

City, CA, USA). Primers and probes were supplied as a TaqManH
Reagents kit (Applied Biosystems), Isl1 Rn00569203 m1, Kit Rn

00573942 m1, Nkx 2.5 Rn 00586428 m1, IGF-1 Rn

00710306 m1, HGF Rn 00566673 m1, Gapdh Rn 00000016

m1. GAPDH was used as an endogenous control to correct for

potential variation in cDNA loading.

All PCR reactions were performed in 96-well MicroAmp

Optical plates (Applied Biosystems). cDNA was diluted 1:5.

Amplification reagents (10 ml) contained 1 ml sample for c-Kit

and Nkx 2.5 and 5 ml for Isl1 in TaqMan Universal PCR

Mastermix.

All samples were run in duplicates. Each RT-PCR cycle

consisted of: Initial activation stage at 95uC (10 min), then the

denaturation stage at 95uC (15 sec) and the annealing stage at

60uC (60 sec) cycled 40 times.

The comparative DCt method was used to calculate the relative

gene expression to GAPDH for the genes analyzed [25].

Immunocytochemistry
The whole hearts were mechanically minced into small pieces,

treated with collagenase type II solution (CLS-2, Worthington,

Biochemical Corporation, USA) to receive single cell suspensions

for subsequent cytospin. To identify mast cells in the cytospin

Figure 3. Quantitative RT-PCR showing the time-dependent distribution of the Nkx2.5 early cardiomyocyte progenitor in the
different groups. The Nkx2.5 mRNA expression in the different groups was related to the expression of GAPDH. Fig A shows the mean of the whole
heart Nkx2.5 mRNA expression in each group. In fig B, the distribution of Nkx2.5 mRNA between each region of the myocardial infarction group at
1 week is demonstrated. In fig C, the Nkx2.5 mRNA distribution between each region is demonstrated at 2 weeks. Number of animals is 7–10 per group
(see flow chart in Fig 1). In figure; MI: myocardial infarction; IR: ischemia-reperfusion; IR+GF: ischemia-reperfusion+ growth factors. RV: Right ventricle, LV:
Left ventricle, OFT: Outflow tract and Peri-INF/Ischemia: Peri-infarction and Ischemia region respectively. Data is presented as mean6 SD. *P,0.05 vs.
Control group, ** P,0.001 vs. Control group, ***P,0.05 vs. pregnancy group, ****P,0.05 vs. MI (2weeks) group and { P,0.05, 1week vs. 2weeks and {{
P,0.05 vs. MI (1 week) group. In fig B and C the mRNA expression of each region is related to the corresponding region of the control group.
doi:10.1371/journal.pone.0036804.g003
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preparations, we used Toluidine blue staining [26]. Each cytospin

was fixed in 4% formalin, washed in dH2O and immersed in 1%

Toluidineblue (Toluidineblue, 1B-481, Waldeck, Germany) in

70% ethanol, pH 1.5 for 10 seconds and visualized under light

microscope. Mast cells stain red-purple (metachromatic staining)

and the background stain blue (orthochromatic staining). Semi-

quantitative analyses to determine the relative number of mast

cells to the total number of cells in the cytospins were performed.

Four whole heart cytospins from two rats per group were counted

in the light microscope.

Immunofluorescence Staining
The adult rat hearts from each group were freeze-sectioned into

5-mm-thick sections, except for the Isl1 cell detection where whole

heart cytospins were prepared. The frozen sections or cytospined

cells were fixed in 4% formaldehyde, ice-cold methanol, or

acetone, blocked with serum followed by incubation with the

primary antibodies; mouse anti-rat supernatant Isl1 (1:800, DSH

39.4 D5-s; Columbia University, USA), human NKx2.5 mono-

clonal mouse IgG1 antibody (1:75, R&D MAB2444, clone

259416, Minneapolis, MN) and mouse SCF R/c-Kit goat

polyclonal IgG antibody (1:40, R&D, AF1356). In the next step,

the sections or cells were incubated with the fluorescence-labeled

secondary antibodies; AlexaFluor 488 for c-Kit and Isl1 and

AlexaFluor 546 for Nkx2.5 (Invitrogen, Carlsbad, CA) and

visualized in the fluorescence microscope (Olympus BX60;

Olympus Optical Co. Ltd., Tokyo, Japan) using diamidino-2-

phenylindole (DAPI) in the mounting medium. As positive controls

we used human fetal hearts for Nkx2.5; human fetal hearts, rat

embryos, and an insulin cell line (INS 1E) for Isl1 and for c-Kit we

used adult rat spleen, adult rat kidney and rat embryos. As

negative controls, the primary antibody was omitted and staining

was only performed with the secondary antibody. To test for

autofluorescence, staining was performed without both primary

and secondary antibodies.

Semi-quantitative analyses were performed to determine the

relative number of cells expressing the different markers (Nkx2.5,

c-Kit and Isl1) in relation to the total number of cells per each

field. Slides (n = 3–4 from each heart, 2 hearts from each group)

were counted at 40 x magnification in the fluorescence micro-

scope. Due to the scarcity of detected Isl1 positive cells, semi-

quantitative analysis was performed on cells expressing Nkx2.5 as

well as c-Kit.

Western Blot
Cells from cytospins (3–4 slides/group) were directly lysed with

100 mL Laemmli sample buffer and proteins were separated on

gradient 4–12% Bis-Tris NuPAGE gels. Proteins were transferred

to nitrocellulose membranes using Iblot (Invitrogen, USA) and

total protein loadings were assessed with Ponceau S solution

(P7170-1L, Sigma Life Science, Sweden). Membranes were

blocked with non-fat 5% dry milk for one hour in room

temperature (RT) and were incubated over-night (4uC) with

mouse monoclonal c-Kit (MS-289-P1, Thermo scientific, UK)

1:1000, mouse anti rat supernatant Isl1 (DSH 39.4 D5-s,

Colombia University, USA) 1:500 and polyclonal goat Nkx2.5

(SAB2501264, Sigma-Aldrich, Sweden) 1:1000. GAPDH was used

as a loading control; mouse monoclonal GAPDH (ab8245,

Abcam, UK) 1:5000. Membranes were washed four times with

PBST and incubated with the secondary antibodies (Li-COR goat

Figure 4. Quantitative RT-PCR showing the time-dependent distribution of Isl1 mRNA in the different groups. The Isl1 mRNA
expression in the different groups was related to the expression of GAPDH. Fig A shows the mean of the whole heart Isl1 mRNA expression in each
group. In fig B, the distribution of Isl1 mRNA between each region is demonstrated at 2 weeks. Number of animals is 7–10 per group (see flow chart in
Fig 1). In figure; MI: myocardial infarction; IR: ischemia-reperfusion; IR+GF: ischemia-reperfusion+ growth factors. RV: Right ventricle, LV: Left ventricle,
OFT: Outflow tract and Peri-INF/Ischemia: Peri-infarction and Ischemia region respectively. Data is presented as mean6 SD. *P,0.05 vs. Control
group, ***P,0.05 vs. pregnancy group, ****P,0.05 vs. MI (2 weeks) group and { P,0.05, 1 week vs. 2 weeks. In fig. B the mRNA expression of each
region is related to the corresponding region of the control group.
doi:10.1371/journal.pone.0036804.g004
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anti-mouse 926-32210 or 926-6820 and donkey anti-goat 926-

32214) 1:20 000, for one hour in RT. Membranes were washed

three times with PBST then twice with PBS and finally scanned

using Li-COR scanner. Experiments were run in triplicates.

Statistics
All data are expressed as mean 6 standard deviation. Non-

parametric (Mann-Whitney U) test was employed to calculate the

statistical significance between two independent groups. Statistical

correlations were analyzed with the Pearson correlation test.

A P,0.05 and P,0.001 were considered to be statistically

significant and highly significant respectively. Statistical analysis

was performed with the SPSS software version 17.0.

Results

The Effect of Ischemia-reperfusion Injury, Myocardial
Infarction and Pregnancy on the Expression of c-Kit, Isl1
and Nkx2.5
In this study we have chosen to utilize c-Kit and Isl1 as markers

for cardiomyocyte progenitor cells and Nkx2.5 [27] as a marker to

detect early differentiation into cardiomyocytes. Based on the

quantitative RNA analysis from the different groups, ischemia-

reperfusion injury (IR and IR+GF) induced a stronger up-

regulation of c-Kit, Isl1 and Nkx2.5 versus the control group

than both myocardial infarction and pregnancy (Fig 2A, 3A, 4A).

In the ischemia-reperfusion groups, the up-regulation of c-Kit, Isl1

and Nkx2.5 was mainly seen after 2 weeks (Fig. 2A, 3A, 4A).

After myocardial infarction (MI), there is an inverted trend

between c-Kit and Nkx2.5 expression. The Nkx2.5 expression

reached its maximum already at one week (Fig 3A), while for c-Kit

this occurred at two weeks (Fig 2A).

Ischemia-reperfusion injury induced a similar up-regulation of

c-Kit in all of the studied sub-domains; right ventricle, left

ventricle, outflow tract area and area of peri-ischemia (Fig 2B). In

myocardial infarction there was a general up-regulation of c-Kit,

with a more robust c-Kit response in the remote left ventricle and

the area of peri-infarction compared to the corresponding left

ventricle in the control group (Fig 2B).

There is a highly significant correlation between the up-regulation

of c-Kit, which occurred twoweeks after ischemia-reperfusion injury

and the up-regulation of the early cardiomyocyte marker Nkx2.5

(P,0.001, r = 0.524) (Fig 3A and 5A). This up-regulation of Nkx2.5,

which was induced by ischemia-reperfusion injury, took place

globally and in the same cardiac sub-domains as the increased

expression of c-Kit (Fig 3C). Unexpectedly, there was an inverted

temporal response between c-Kit and Nkx2.5 expression following

myocardial infarction,where c-Kit expression increased fromweek1

to week 2 while Nkx2.5 expression reached its maximal level already

after one week (Fig 2A, 3B). The reaction was not focal but global

throughout the myocardium, with no differences between the

different sub-domains of the heart (Fig 3B).

Initially the expression of Isl1 was very low, in the order of

about 1/500 of the mRNA expressions of c-Kit and Nkx2.5. In

contrary to the expression of these progenitor markers, the Isl1 was

focally expressed, primarily localized to the outflow tract and the

right ventricle (see control group Fig 4A, B). Ischemia-reperfusion

injury induced a robust up-regulation of Isl1 expression compared

Figure 5. Correlations between cardiomyocyte progenitors and endogenous IGF-1/HGF mRNA expressions in the different groups.
The scatter plots on logged data in Fig 5A, B and E reveal that Nkx2.5 is positively correlated with c-Kit, Isl1 and HGF expression. c-Kit is also positively
correlated to IGF-1 expression (Fig 5C) and there is a borderline relationship to HGF expression (Fig 5D). As shown in fig F, Isl1 is positively correlated
with IGF-1 expression. In figure; R = Pearson correlation coefficient.
doi:10.1371/journal.pone.0036804.g005
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to myocardial infarction (Fig 4A). The up-regulation induced by

ischemia-reperfusion injury and myocardial infarction was mainly

in other sub-domains than the up-regulation of c-Kit. In contrast

to the c-Kit response, the up-regulation of Isl1 as a response to

ischemia-reperfusion and myocardial infarction was mainly

located in the outflow tract area, but also in the remote areas of

the left ventricle and peri-ischemic regions (Fig 4B). Up-regulation

of Isl1 correlated also to the Nkx2.5 response (P=0.01, r = 0.213)

(Fig 5B), even if this correlation was weaker than for c-Kit.

We also wanted to study if dual delivery of the growth factors

HGF and IGF-1 could boost the effects induced by ischemia-

reperfusion injury. IGF-1 and HGF did not affect the expression of

c-Kit (Fig 2A, B). Interestingly, there was a trend where the

expression of Nkx2.5 increased after treatment with the growth

factors, primarily in the remote left ventricle and peri-ischemic

regions (Fig 3C).The expression of Isl1 was also stimulated by IGF-

1 and HGF, especially in the outflow tract area. Even if the

expression of Isl1 in the peri-ischemic region was lower than that

seen in the outflow tract, following ischemia-reperfusion injury

with the addition of growth factors there was a substantial up-

regulation of Isl1 in this area compared to the control group

(Fig 4A, B).

Pregnancy, also to a certain degree, stimulated the up-

regulation of c-Kit and Nkx2.5 (Fig 2A, 3A) to a level equivalent

to the stimulation seen after myocardial infarction. The response

was similar in all regions of the heart (Fig 2B, 3C). However,

pregnancy did not seem to affect the expression of Isl1 (Fig 4A).

Endogenous IGF-1 and HGF are Involved in the Up-
regulation of Cardiac Progenitors
The endogenous up-regulation of IGF-1 and HGF followed the

same pattern as for cardiac progenitors in the ischemia-reperfusion

groups w/o growth factors at two weeks (Fig 6A, C respectively).

Interestingly, the sub-domain analysis revealed a preferential up-

regulation of IGF-1 at the site of injury (P,0.05) (Fig 6B), while

the HGF expression correlated with a more diffuse up-regulation

in the peri-ischemic region as well as in the right ventricle (P,0.05

and P,0.001 respectively) (Fig 6D).

In the myocardial infarction group there was a divergent

reactivity, with marginal up-regulation of IGF-1 (P=0.06) (Fig 6A),

especially at the site of injury (Fig 6C) and significant (P,0.05)

down-regulation of endogenous HGF (Fig 6C and D).

The observed up-regulations of cardiac progenitors in the

pregnancy group did not seem to be mediated by IGF-1 or HGF

(Fig 6A, B).

To further investigate the role of IGF-1/HGF in the up-

regulation of the different cardiac progenitor markers, correlation

analyses were performed. According to these results, c-Kit mRNA

expression was shown to correlate to the IGF-1/HGF expression

(P=0.003, r = 0.235, and P=0.066, r = 0.160, respectively)

(Fig 5C, D).

Furthermore, Nkx2.5 up-regulation was positively (P=0.004,

r = 0.245) correlated to endogenous HGF expression but not IGF-

1 (Fig 5E), while Isl1 expression was related to (P=0.005,

r = 0.241) endogenous IGF-1 expression (Fig 5F).

Figure 6. Quantitative RT-PCR showing the endogenous expression of IGF-1 and HGF mRNA at two weeks in the different groups.
The IGF-1 and HGF mRNA expression is related to the expression of GAPDH. Fig A and C, show the mean whole heart expression of IGF-1 and HGF in
the different groups, while in fig B and D the growth factor expression in each sub-domain is demonstrated. Number of animals is 7–10 per group
(see flow chart in Fig 1). In figure; MI: myocardial Infarction; IR: ischemia-reperfusion; IR+GF: ischemia-reperfusion+ growth factors. RV: Right ventricle,
LV: Left ventricle, OFT: Outflow tract and INF: Peri-infarction and Ischemia region respectively. Data is presented as mean6 SD. *P,0.05 and
**P,0.001 vs. Control group. In fig. C and D the mRNA expression of each region is related to the corresponding region of the control group.
doi:10.1371/journal.pone.0036804.g006
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Correlation Between mRNA and Protein Expression
The mRNA expression patterns of c-Kit, Isl1 and Nkx2.5 were

confirmed at the protein level at two weeks using both

immunohistochemistry (IHC) and Western blot analyses. The

protein expression levels determined by Western blot correlated

consistently with the mRNA data, with the highest protein

expression of c-Kit, Isl1 and Nkx2.5 in the ischemia-reperfusion

injury groups (IR and IR+GF) (Fig 7D). The protein analysis in

the pregnancy group was not reliable due to inter-individual

variation of protein level differences. These variations might be

due to post-translational modifications (data not shown).

Blinded semi-quantitative IHC analyses of cells expressing c-Kit

and Nkx2.5 were performed two weeks post-intervention. As

demonstrated in figure 8A and B, the cellular protein expression of

both Nkx2.5 and c-Kit follow the same pattern as previously

shown both in Western blot and at the mRNA level, where the

highest up-regulation was observed in the ischemia-reperfusion

injury groups (IR and IR+GF).

In consistency with the low mRNA expression of Isl1 in the

different groups, Isl1+ cells were extremely difficult to find in IHC

sections of the hearts. In order to circumvent this problem, whole

heart cytospins were performed where few Isl1+ cells could be

identified in the different groups (Fig 8C). No reliable semi-

quantitative analysis could be performed on the cytospinned

material.

Semi-quantitative Analysis of Mast Cell Expression
Mast cells were detected by Toluidine staining on whole heart

cytospins at two weeks post-intervention. As shown in figure 7A

and B, the positive mast cells stained red-purple and were easy to

detect. The semi-quantitative analysis of mast cells, revealed

a mismatch between the previously shown up-regulation of c-Kit

(Fig 2A) and mast cells (Fig 7C). While pregnancy up-regulated c-

Kit, mast cells were down-regulated. In the ischemia-reperfusion

injury groups (IR and IR+GF) up-regulation of c-Kit (Fig 2A) was

similar with and without growth factors, while addition of growth

factors caused a much higher mast cell expression.

Discussion

This is the first prospective and randomized study, which

examines the time-dependent and spatial up-regulation of the best

characterized cardiomyocyte progenitor markers c-Kit and Isl1, as

well as the early cardiomyocyte marker Nkx2.5, during experi-

mental pathological and physiological stress stimuli in adult rat

hearts. Our study demonstrates global and focal up-regulations of

c-Kit and Isl1, respectively, as well as Nkx2.5, after ischemia-

Figure 7. Mast cell distribution and Western blot analysis. Fig A-C: Two weeks after the intervention, mast cells were detected in whole heart
cytospins from the different groups using toluidineblue staining. As seen in fig A and B, it is easy to detect the mast cells as red-purple cells. Fig C
shows a semi-quantitative analysis of the distribution of mast cells among the different groups. Four whole heart cytospins from two rats per group
were counted in the light microscope. Data is presented as mean6 SD. *P,0.05 vs. Control group and **P,0.05 vs. MI (2 weeks) group. Fig D: The
protein expression for c-Kit, Isl1 and Nkx2.5 is related to the GAPDH expression in each group at 2 weeks. The Isl1 protein expression showed a band
at 39 kDa and another band was consistently observed at 80 kDa. Experiments were run in triplicates (n = 2 per group). In figure; MI: myocardial
infarction; IR: ischemia-reperfusion; IR+GF: ischemia-reperfusion+ growth factors. Bars in panel (A) = 25 mm and in panel (B) = 50 mm.
doi:10.1371/journal.pone.0036804.g007
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reperfusion injury but also after myocardial infarction and

pregnancy. Our findings are based on mRNA as well as protein

analyses where both immunohistochemistry and Western blot

analyses were performed on tissue specimens from the different

regions of the heart. By using this strategy, the expressions of Isl1,

c-Kit and Nkx2.5 were verified using three independent methods

which strengthen our conclusions.

Ischemia-reperfusion injury induces the strongest up-regula-

tion of c-Kit and Nkx2.5 expression, which occurs two weeks

after the ischemic event and is found throughout the entire

heart. There is also a spatial mismatch on one hand of c-Kit

and Nkx2.5 and on the other Isl1 expression. Both c-Kit and

Nkx2.5 are globally up-regulated, while the Isl1 up-regulation is

localized to the outflow tract, where these cells previously have

been demonstrated to reside in the rat and human embryonic

hearts [17,28].

The origin and phenotype of the c-Kit+ cells in the adult heart is

still under debate. All c-Kit+ cells are not stem cells since c-Kit can

also be expressed on both mast cells, residing in the myocardium

[29] and on other hematopoietic cells [30,31,32,33].

During myocardial ischemia cardiac mast cells play a pivotal

role in the initiation of the inflammatory response by releasing

pro-inflammatory mediators, which trigger a cytokine cascade

[29,34]. If c-Kit expression was solely due to mast cell

accumulation and activation, the c-Kit expression would be

correlated to changes in mast cell expression, which was not the

Figure 8. Immunohistochemical analysis of Nkx2.5, c-Kit and Isl1 cardiac progenitors. Section A: The distribution of Nkx2.5+ cells in the
myocardium of the different groups together with semi-quantitative analysis. Figures (a-f) represent: 9.5 weeks human fetal heart as a positive control
(a), followed by left ventricular regions from the; control (b), pregnancy (c), myocardial infarction (d), ischemia-reperfusion (e) and ischemia-
reperfusion+growth factors (f) groups, respectively. The delineated areas in figure b-f represent a higher magnification of that region. Bars in panel (a-
f) = 100 mm. Figure (g) demonstrates the relative number of Nkx2.5+ cells in relation to the total number of cells in the different groups. Data is
presented as mean6 SD. *P,0.05. Section B: Representative stainings of c-Kit+cells in: adult rat kidney as positive control (a), followed by the left
ventricular regions from the ischemia-reperfusion+growth factors (b, d) and myocardial infarction groups (e). The delineated area in figure (b) is
magnified (100 x) in figure (c). In figures (b-e), red arrows indicate c-Kit+ cells. Bars in figures (a, b) = 100 mm and in figures (c-e) = 50 mm. Figure (f)
demonstrates the percentage of c-Kit+cells in relation to the total number of cells in the different groups. Data is presented as mean 6 SD. *P,0.05
and **P,0.001. Section C. Representative stainings of Isl1+ cells in whole heart cytospins from (c) pregnancy, (d) myocardial infarction, (e) ischemia-
reperfusion and (f) ischemia-reperfusion+growth factors groups. Figures (a) and (b) represent the positive controls; whole rat embryo ED13 and
insulin cell line-1E respectively. Delineated areas in figure c, d, e and f represent a higher magnification of that region. Bars in figures (a–f) = 100mm. In
figure; ED: embryonic day; MI: myocardial infarction; IR: ischemia-reperfusion; IR+GF: ischemia-reperfusion+growth factors.
doi:10.1371/journal.pone.0036804.g008
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case in this study. Beltrami and coworkers have previously

demonstrated that there are small clusters of c-Kit+ cells in the

interstitium between mature cardiomyocytes in rat hearts [10].

Furthermore, c-Kit+ cells have also been isolated from human

hearts, and upon transplantation into infarcted myocardium of

immunodeficient rats, they generated a chimeric heart, with new

population of cardiomyocytes and vasculature [10,35]. In keeping

with Beltrami and associates we found that ischemia-reperfusion

injury also seems to stimulate such a pool of ‘‘cardiogenic’’ c-Kit+
cells that give rise to early cardiomyocytes. Besides c-Kit, such cells

also were reported to express the early cardiomyocyte marker

Nkx2.5, a marker that is not expressed by mast cells [10]. How

these cells get activated during ischemia-reperfusion is not known,

but it might be related to the significantly increased endogenous

production of both IGF-1 and HGF as seen in our study.

Exogenous addition of IGF-1 and HGF could further boost the

endogenous expression of these growth factors and further

stimulate the expression of Nkx2.5, primarily in the remote left

ventricle and peri-ischemic regions. These growth factors which

are known to stimulate tissue regeneration [36,37,38,39], might

mediate up-regulation of stem cell factor (SCF), which has

previously been shown to both stimulate proliferation and homing

of c-Kit+ cells [10,40]. Such mechanisms might explain the up-

regulation of ‘‘cardiogenic’’ c-Kit+ cells during ischemia-reperfu-

sion injury. This hypothesis is further supported by a recent study

by Ellison and coworkers, where intra-coronary delivery of IGF-1/

HGF significantly increased c-Kit+/Nkx2.5+ cardiac progenitor

cells in the infarct and border regions in a pig ischemia model [41].

After myocardial infarction and compared to ischemia-reperfu-

sion injury, there was a significantly lower accumulation of c-Kit+
cells in the heart, consistent with the lower expression of

endogenous IGF-1 and HGF in the myocardial infarction group.

It has been shown in other studies that myocardial infarction

induces homing and proliferation of c-Kit+ cells to the border of

the infarction area [10,42], but following permanent coronary

occlusion, such a homing effect may according to our results be

less robust than that seen after ischemia-reperfusion injury.

The transcription factor Isl1 is expressed in the adult heart in

the outflow tract [17] as confirmed in this study. Isl1 expression is

stimulated only in the group exposed to ischemia-reperfusion

injury and foremost after the addition of HGF and IGF-1. Isl1 is

up-regulated primarily in the outflow tract but also in the left

ventricle and the peri-ischemic region. Since the baseline

expression is low it is unclear to what degree Isl1+ cells are

contributing to the regeneration of new cardiomyocytes.

During pregnancy there is a general up-regulation of c-Kit and

Nkx2.5, but not Isl1. This can be interpreted as the hormonal

response to pregnancy stimulates cardiac stem cells and the

generation of new cardiomyocytes, a phenomenon, which has not

been described earlier. Previous studies have only implied that

during pregnancy the heart adapts to an increased workload by left

ventricle hypertrophy [43,44]. According to our data, there also

seems to be hyperplasia involved, through the up-regulation of

cardiac progenitors. To some extent these c-Kit+ and Nkx2.5+
cells might originate from the fetus. This has been shown to be the

case when pregnant mice are exposed to cardiac injury, where

fetal cells home into the injured heart forming endothelial cells,

smooth muscle cells and cardiomyocytes [45]. If these fetal cells

will persist in the maternal tissue as microchimera to protect the

maternal heart from cardiac injury even in the future needs to be

explored.

In conclusion, ischemia-reperfusion injury is the strongest

stimulus for activation of endogenous cardiomyocyte regeneration,

correlating to the endogenous up-regulation of IGF-1 and HGF.

These substances may become utilized to augment the endogenous

regenerative capacity seen in patients with ischemic heart failure

and thereby circumvent the need for stem cell transplantation.
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(2009) Evidence for cardiomyocyte renewal in humans. Science 324: 98–102.

2. Brodsky VYa, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG (1994)

Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range

of values. Virchows Arch 424: 429–435.

3. Pfitzer P (1971) [Polyploid nuclei in myocardial cells of the pig]. Virchows

Arch B Cell Pathol 9: 180–186.

4. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, et al. (2004) Adult

cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol

Chem 279: 11384–11391.

5. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, et al. (2003)

Cardiac progenitor cells from adult myocardium: homing, differentiation, and

fusion after infarction. Proc Natl Acad Sci U S A 100: 12313–12318.

6. Smits AM, van Laake LW, den Ouden K, Schreurs C, Szuhai K, et al. (2009)

Human cardiomyocyte progenitor cell transplantation preserves long-term

function of the infarcted mouse myocardium. Cardiovasc Res 83: 527–535.

7. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, et al.

(2004) Persistent expression of the ATP-binding cassette transporter, Abcg2,

identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:

262–275.

8. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, et al. (2005) CD31- but

Not CD31+ cardiac side population cells exhibit functional cardiomyogenic

differentiation. Circ Res 97: 52–61.

9. Tomita Y, Matsumura K, Wakamatsu Y, Matsuzaki Y, Shibuya I, et al. (2005)

Cardiac neural crest cells contribute to the dormant multipotent stem cell in the

mammalian heart. J Cell Biol 170: 1135–1146.

10. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, et al. (2003) Adult

cardiac stem cells are multipotent and support myocardial regeneration. Cell

114: 763–776.

11. Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, et al. (2005) Stem cells

in the dog heart are self-renewing, clonogenic, and multipotent and regenerate

infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A

102: 8966–8971.

12. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, et al. (2004) Isolation

and expansion of adult cardiac stem cells from human and murine heart. Circ

Res 95: 911–921.

13. Miyamoto S, Kawaguchi N, Ellison GM, Matsuoka R, Shin’oka T, et al. (2010)

Characterization of long-term cultured c-kit+ cardiac stem cells derived from

adult rat hearts. Stem Cells Dev 19: 105–116.

14. Torella D, Ellison GM, Méndez-Ferrer S, Ibanez B, Nadal-Ginard B (2006)

Resident human cardiac stem cells: role in cardiac cellular homeostasis and

potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 3 Suppl

1: S8–13.

15. Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL, et al. (2006)

Developmental origin of a bipotential myocardial and smooth muscle cell

precursor in the mammalian heart. Cell 127: 1137–1150.

16. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, et al. (2003) Isl1 identifies a cardiac

progenitor population that proliferates prior to differentiation and contributes

a majority of cells to the heart. Dev Cell 5: 877–889.

17. Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A, et

al. (2010) Islet-1 cells are cardiac progenitors present during the entire lifespan:

from the embryonic stage to adulthood. Stem Cells Dev 19: 1601–1615.

IR Injury Up-Regulates Cardiac Progenitors

PLoS ONE | www.plosone.org 10 May 2012 | Volume 7 | Issue 5 | e36804



18. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, et al. (2005) Postnatal isl1+
cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:
647–653.

19. Srivastava D (2006) Making or breaking the heart: from lineage determination to

morphogenesis. Cell 126: 1037–1048.
20. Torella D, Indolfi C, Goldspink DF, Ellison GM (2008) Cardiac stem cell-based

myocardial regeneration: towards a translational approach. Cardiovasc Hematol
Agents Med Chem 6: 53–59.

21. Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, et al. (2007)

TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor
cells into functional cardiomyocytes in vitro. Stem Cell Res 1: 138–149.

22. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, et al. (2006)
Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle,

and endothelial cell diversification. Cell 127: 1151–1165.
23. Sun Y, Liang X, Najafi N, Cass M, Lin L, et al. (2007) Islet 1 is expressed in

distinct cardiovascular lineages, including pacemaker and coronary vascular

cells. Dev Biol 304: 286–296.
24. Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the

sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in
a model of acute myocardial infarction. Biomaterials 32: 565–578.

25. Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation

of real-time quantitative reverse transcriptase-polymerase chain reaction for
monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:

41–49.
26. Frangogiannis NG, Entman ML (2006) Identification of mast cells in the cellular

response to myocardial infarction. Methods Mol Biol 315: 91–101.
27. Kasahara H, Izumo S (1999) Identification of the in vivo casein kinase II

phosphorylation site within the homeodomain of the cardiac tisue-specifying

homeobox gene product Csx/Nkx2.5. Mol Cell Biol 19: 526–536.
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