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Abstract

Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend
this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative
and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured
three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash
Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species
achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the
biomass of 1543 mg.kg21 DW and 137 mg.kg21 DW. Growth rates were reduced by more than half in neat Ash Dam water
than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most
elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential
to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability
to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application
of waste water bioremediation.
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Introduction

The use of algae to remove pollutants from water, algal

bioremediation, has been well studied over the past 40 years

[1,2,3,4]. Since the 1980s considerable research effort has been

devoted to the development of algal biosorbents to remediate

pollutants, particularly heavy metals [5]. At the laboratory scale

these preparations have proven spectacularly successful at sorbing

pollutants, especially heavy metals [5,6]. However, uptake of the

concept has been lack-lustre, evidenced by the lack of successful

commercialisation (e.g. AlgaSORB circa 1991). This is likely

because available algal (seaweed) biomass that is produced has

established markets as food and as food ingredients (see Chopin

and Sawhney [7] for market details). Furthermore, amongst the

most successful preparations developed are those from brown

macroalgae [8] which already have particularly well established

markets and command a high price. A cheaper, reliable and

locally derived source of biomass is critical [4], and remains a

bottleneck for commercial applications of algae in bioremediation.

Bioconcentration, defined as the accumulation of a substance

from the environment by the live algal biomass, offers an

alternative approach to biosorption, defined as adsorption of

metal ions on dead biomass [6]. We have used the term

bioconcentration rather than bioaccumulation which is often

associated with the process of trophic level transfer, and thus can

be confused with biomagnification of pollutants [9,10]. While

there has been substantial research into algal biosorption, there

has been remarkably little research devoted to algal bioconcentra-

tion for heavy metal bioremediation, however see Sternberg and

Dorn [11]. The common justifications for researching algal

biosorption are that the biomass is inexpensive [5] and has greater

binding capacity than live biomass [12,13]. However, biosorption

approaches rely largely on specific binding of elements to active

sites on cell walls [6] whereas bioconcentration may occur in

numerous cellular structures or compartments, e.g. vacuolar

accumulation of heavy metals [14] and can occur simultaneously

for metals in different ionic states, cf. anionic or cationic arsenic:

Ghimire et al. [15]. The key factors for bioconcentration to be

successful are the ability of the algae to target numerous heavy

metals [16,17] and the capacity to grow and survive in the waste

water stream. Thus, bioremediation with living biomass is a

combination of both bioconcentration and biomass productivity,

as high growth rates will provide new cellular material to bind and

capture metals. The process is complicated when different growth

states or age of algal tissue influence the selectivity and

concentrations of specific metals [17]. In these cases factors that

affect growth may also impact capacity for bioconcentration,

making it essential to simultaneously quantify bioconcentration

and algal growth in the relevant waste water stream.
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Living macroalgae play an important role in pollution

management [18]. The earliest uses of algae in pollution control

were developed for sewage waste water where their uptake of N

and P was harnessed [1]. The capacity for some algae for luxury

uptake or bioconcentration of N and P has also been utilised for

bioremediation of waste water from aquaculture (integrated

aquaculture) [19]. More recently, the role of carbon in human

induced climate change has resulted in a considerable focus on

carbon capture and storage (CCS). One approach that has

attracted considerable commercial interest is the culture of algal

biomass to sequester or recycle carbon (BioCCSR) [20]. The

success of these applications of algal bioremediation processes lies

in the fact that the biomass is cultured in situ and does not require

wild harvested biomass. In our study, we have applied this concept

and considered the culture of algae in polluted water as a

remediation strategy, circumventing the need to source biomass

for remediation and providing a continuous management strategy

for heavy metal extraction. The use of macroalgae rather than

microalgae also negates the difficulties associated with harvesting

biomass. The culture of live biomass also has the additional value-

adding potential for BioCCSR as well as by-product development

[21]. Such by-products depend entirely on the waste water streams

that are to be remediated.

Coal fired power stations produce large volumes of polluted

waste water when the ash collected in the flue, and that remaining

in the furnace after the combustion of coal, is washed out. The

contaminants in this water vary depending on the source of the

coal but commonly include high concentrations of As, V, Mo and

Se [22,23,24]. This presents a significant problem for industry as

the water is often contaminated to such a degree that it must be

stored and/or treated, at considerable cost. Storage dams

containing large volumes of contaminated water are often

associated with coal fired power stations and these ash storages

come with environmental and human health risks [24]. Previous

research on the use of algae for bioremediation has usually

focussed on only one or two problematic elements, particularly Cd

[6,25]. However, most waste water streams including water

contained in Ash Dams are complex and contain numerous

hazardous elements [23,24]. Therefore, a broad approach that

Table 1. Elemental composition (mg.L21) of the different
water sources used in the growth and elemental uptake
experiment. , indicates that concentration was below the
limits of detection.

Element Ash Dam Ash Dam +f/2 Town supply+ f/2

Aluminium 0.08 0.06 ,0.01

Arsenic 0.0175 0.017 ,0.001

Boron 2.26 2.28 ,0.05

Cadmium 0.0004 0.00035 ,0.0001

Calcium 197.0 189.5 10.0

Chromium ,0.001 0.001 ,0.001

Copper 0.004 0.0185 0.0215

Iron 0.275 1.55 0.7

Lead ,0.001 ,0.001 ,0.001

Magnesium 69.5 60.5 2.0

Manganese 0.002 0.0775 0.103

Mercury ,0.0001 ,0.0001 ,0.0001

Molybdenum 0.8595 0.9345 0.017

Nickel 0.016 0.026 ,0.001

Phosphorous ,1.0 1.0 1.0

Potassium 30 31.5 5.5

Selenium 0.06 0.02 ,0.01

Sodium 335.5 332 34.5

Strontium 1.365 1.43 0.05

Vanadium 0.565 0.6 ,0.01

Zinc 0.231 0.3585 0.16

doi:10.1371/journal.pone.0036470.t001
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Figure 1. Growth of algae cultured in Ash Dam water and Ash Dam water with the addition of f/2 media over a fifteen day period.
All three species of algae had higher growth rates with the addition of f/2 and there was also a significant influence of time on growth for all species.
Error bars are standard error.
doi:10.1371/journal.pone.0036470.g001
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considers uptake across a great number of elements is optimal in

terms of bioremediation potential. In this study we investigated the

potential of freshwater green algae to bioconcentrate a wide

variety of elements in water sourced from an Ash Dam associated

with the Tarong coal fired power station in south-eastern

Queensland. Furthermore, we develop baseline data to establish

a model for the bioremediation of Ash Dam water, and metals

removal and recovery.

Methods

General
Three species of freshwater green macroalgae were utilised to

investigate growth performance and to determine the bioconcen-

tration factors for a variety of elements when grown in Ash Dam

water sourced from the Tarong coal fired power station in south-

eastern Queensland. The Tarong Power Station has a total

generating capacity of 1400 megawatts and is amongst the largest

power stations in Queensland, Australia.

Algae collections
The three species of green macroalgae were collected from

aquaculture ponds and irrigation channels in Queensland. These

were Hydrodictyon sp., Oedogonium sp., and Rhizoclonium sp. Species

were identified to genus level using taxonomic keys [26] as each

lacked defining characteristics to allow for identification to species

level. The three freshwater algae are cosmopolitan genera from

freshwater systems and are therefore representative of the

macroalgae available in many freshwater environments. Further-

more, all can have rapid growth, particularly under eutrophic

conditions, and are pest species in these environments

[27,28,29,30,31,32]. These algae range from the unbranched

filamentous Oedogonium (cell diameter .2 mm) and Rhizoclonium

(cell diameter .10–50 mm) to the net-forming Hydrodictyon (water

net). Stock cultures of all algae were maintained in standard f/2

media [33]in the aquaculture facility at James Cook University

prior to the experimental testing of growth and elemental uptake.

Culture methods
The three algal species, Hydrodictyon sp., Oedogonium sp. and

Rhizoclonium sp., were cultured in two treatments. The first was

neat Ash Dam water, to determine growth potential without

nutrient supplementation. The second treatment was an f/2

medium [33] in which freshwater was substituted for Ash Dam

water (Ash Dam +f/2). This treatment was to determine growth

and remediation potential of the algae in Ash Dam water under

conditions where N, P and essential trace elements were not

limiting. Ash dam water, with and without f/2 nutrients, had an

initial pH of 7.0. The algae were cultured in 1.0 L Schott bottles

at a stocking density of 1.0 g.L21. The Schott bottles were placed

randomly in a Sanyo Versatile Environmental Test Chamber

(MLR-351). Mean light levels within the cabinet were 88 mmol

photons.m22.s21 with a photoperiod of 12L: 12D and tempera-

ture was maintained at a constant 24uC. A complete water change

was done at 10:00 am each day and the Schott bottles were

rotated within the cabinet each day to avoid light bias. Every

five days for a total of 15 days the replicates were dried using

paper towel and weighed to the nearest 0.1 g. A stocking density of

1.0 g.L21 was re-established at this time by increasing the volume

of water. At the end of the 15 day culture period, the algae were

harvested, patted dry on paper towel and then dried in a

dehydrator for 48 hours at 45uC. The dry biomass was then

weighed to the nearest 0.01 g. Dry matter content (DM) was

calculated for each species and treatment at the end of the

experiment (DM = dry weight/wet weight). All the dried biomass

was stored in snap lock plastic bags at 4.0uC until it was analysed

for elemental composition.

Growth
Growth rates for each combination of treatment (Ash Dam and

Ash Dam +f/2) and species were calculated using the fresh weight

determined for three consecutive growth periods at day 5, 10 and

15 of the experiment. Growth rate (GR) was calculated using the

equation GR = (Mf2Mi)/15*(DM) where, Mf = fresh mass at

day 15 and Mi = initial mass. Mean growth rate (mg

DW.L21.d21) are presented for each species x treatment

combination (61 standard error, from the three growth periods).

Elemental analysis (algae)
The concentrations of 21 different elements, listed in Table 1,

were determined for the algae grown in the two treatments (Ash

Dam water and Ash Dam water with f/2) and unexposed biomass

from the original stock that was maintained in dechlorinated water

with f/2 media, henceforth referred to as stock cultures. All

biomass was prepared for the analysis by drying in a dehydrator

for 48 hours at 45uC. A minimum of 100 mg dry weight of algae

was required for accurate determination of the elemental

composition (see below). Three replicates were available in the

Stock cultures
Ash Dam

Ash Dam + f/2

Al

As
B

Ca

Cd

Cr

Cu

Fe

K

Mg

Mn

Na

Ni

P

Pb

SeSr

V

Zn

A

B

Figure 2. Non metric multidimensional scaling plot showing
the similarity between algal species and treatments based on
elemental composition. (A) nMDS plot (Stress = 0.05) with the
groups from the cluster analysis superimposed. Triangles represent
Rhizoclonium, circles represent Oedongonium and squares represent
Hydrodictyon. (B) The same nMDS as A, with vectors superimposed, the
length and direction of which indicates the strength of the correlation
and direction of change between the two nMDS axes. Only elements
with a correlation coefficient of 0.5 or greater are shown.
doi:10.1371/journal.pone.0036470.g002
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majority of cases but in a few samples were pooled to provide

duplicates.

For the elemental analyses, 100 mg samples of the dried algae

were placed into digestion vessels with 2.5 mL SupraPure (Merck

Germany) double distilled HNO3 and 1.0 mL AR Grade H2O2.

The mixture was left to stand in the fume-hood for two hours to

allow the reaction to complete. The vessels were then heated to

180uC in a microwave oven (Milestone Starter D) and maintained

at this temperature for ten minutes. After cooling to room

temperature, the digested samples were diluted to 100 mL with

Milli-Q water in a volumetric flask. No further dilution was

needed before elemental analysis.

Sample analysis was carried out using two instruments. Major

elements (Al, Ca, K, Na and P) were measured using a Varian

Liberty Series II Inductively Coupled Plasma Optical Emission

Spectrometer (Melbourne, Australia). The remaining elements

Table 3. Elements grouped according to relative concentrations across all treatments and control (above).

Relative concentration across species between treatments and control Elements

Stock culture , Ash Dam , Ash Dam+f/2 As, B, Ca, Cu, Mg, Se, Sr, V

(Stock culture < Ash Dam +f/2),Ash Dam Cd, Ni, Pb, Zn

(Stock culture < Ash Dam),Ash Dam+f/2 Fe, P

(Stock culture < Ash Dam).Ash Dam +f/2 K

Stock culture , (Ash Dam < Ash Dam+f/2) Cr

Variation in pattern between species and treatment Al, Mo, Na, Mn

Relative bioconcentration factors across species between treatments Elements

Ash Dam ,Ash Dam +f/2 As, B, Ca, Mg, P, Se, Sr, V

Ash Dam +f/2 , Ash Dam Cd, Mn, Ni, Zn

Variation in pattern between species and treatment Al, Cr, Cu, Fe, K, Mo

Elements grouped according to relative bioconcentration factors (see Table S 1 for full BCF results) between the Ash Dam and the Ash Dam with f/2 (below).
doi:10.1371/journal.pone.0036470.t003
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Figure 3. Examples of patterns of concentration and bioconcentration of metals in algae when cultured in Ash Dam water, Ash Dam
water with f/2 and the stock cultures. (A) Concentration of arsenic. (B). Bioconcentration of arsenic. (C) Concentration of cadmium. (D)
Bioconcentration of cadmium.
doi:10.1371/journal.pone.0036470.g003
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were measured using a Varian 820-MS Inductively Coupled

Plasma Mass Spectrometer (ICP-MS) (Melbourne, Australia).

External calibration strategy was used for both instruments with

a series of multi-element standard solution containing all the

elements of interest and the results were reported after subtracting

the procedure blanks. Algae may be subject to Cl- polyatomic ion

interference, thus elements such as V, As, Se are susceptible to

false positives. To assess this, one algal sample was spiked with 1

ppb As, Se and V and measured three times for quality control

with recovery between 102 and 108% indicating no significant

interferences. These analyses were done by the Advanced

Analytical Centre (AAC) at James Cook University (JCU).

Elemental analysis (water)
The three water sources in which the algae were cultured were

analysed for the concentration of the same 21 elements as the

algae (Table 1). These were Ash Dam water, the Ash Dam water

with the addition of f/2 nutrients and stock culture water. The

stock culture water was Townsville city supply that had been

dechlorinated using a charcoal filter and supplemented with f/2

nutrients. Two replicate water samples of 200 mL each were taken

from these three separate water sources. The samples were

collected using a 200 mL syringe and passed through a Minisart

0.45 mm filter to remove particulates. The elemental measure-

ments were done according to the USEPA 6020 ICP-MS standard

following an acid digest. These measurements were done by the

Australian Centre for Tropical Freshwater Research (ACTFR).

Bioconcentration factor
Bioconcentration factor (BCF) is the ratio of the chemical

concentration in the organism to the water [34]. BCF was

calculated using the equation BCF = Cb/Cw where, Cb =

concentration of elements in the dry algal biomass (mg.kg21)

and Cw = concentration of elements in the water (mg.L21).

Statistical analysis
Growth rates were compared between treatment (Ash Dam and

Ash Dam +f/2) and species (n = 3) by analysis of variance

(ANOVA) with time (three, five day growth periods) as a blocked

(random) factor in the model. Growth rate was log transformed to

meet the assumptions of ANOVA. Mean Square (MS) error terms

in the mixed model ANOVA were adjusted for calculation of F-

ratios for treatment (MS treatment x time), species (MS species x

time) and treatment x species (MS treatment x species x time).

Multivariate statistics were used to determine if there were

differences in elemental composition between species and algal

biomass cultured in neat Ash Dam water, Ash Dam water +f/2

and stock culture biomass that was never exposed to ash dam

water. A similarity matrix was calculated from the 4th root

transformed concentrations of all the different elements and a

hierarchical agglomerative cluster analysis was done and super-

imposed on an nMDS. The 2D plots of the similarity matrix

illustrate the clustering of the different treatments and show the

direction and strength of change in the elemental composition of

the algae.

Results and Discussion

Water analysis
The elemental composition of the Ash Dam water was complex

and contained several heavy metals, such as V and As, at high

concentrations (Table 1). The addition of f/2 nutrients to the ash

water marginally increased the concentration of the essential

elements Cu, Mn, Mo, Sr and Zn. The addition of f/2 nutrients

increased Fe concentration by nearly 1.0 mg.L21. The majority of

heavy metals were undetectable in the stock culture water

(dechlorinated town supply with f/2), although the f/2 nutrients

provided low concentrations of some essential elements such as Fe,

Cu, Sr, Mo, Mn and Zn (Table 1). The growth medium f/2 also

supplied some nutrient detectable by the ICP- MS analysis as P.

Growth and metal uptake
All three algae grew in the neat Ash Dam water and in Ash

Dam water +f/2 nutrients. Oedogonium and Rhizoclonium had

substantially higher growth rates with the addition of f/2 whereas

Hydrodictyon grew marginally more with the addition of f/2

(Figure 1; ANOVA, species x treatment F2,4 = 20.04, p = 0.008).

There was a subtle but significant influence of time on growth for

all species with and without nutrient-addition, with a trend for

increased growth in Ash Dam with f/2 over the three consecutive

growth periods (Figure 1; ANOVA, treatment x time F2,54 = 7.91,

p = 0.001). Growth was stable in the Ash Dam water from the first

week 27.98 mg DW.L21.d21 (61.16 SE) through to the third

week 27.37 mg DW.L21.d21 (62.29 SE). By contrast each species

increased growth rate over the same period by ,50% with the

addition of f/2 to the Ash Dam water, on average from 40.12 mg

DW.L21.d21 (63.36 SE) to 59.14 mg DW.L21.d21 (6 4.84 SE).

The addition of f/2 nutrients aided in the acclimatisation of the

algae, evidenced by their increasing growth rate over the three

week period of the experiment compared to the neat Ash Dam

water, in which growth was stable over the period (Figure 1).

Growth rates in the treatments were broadly comparable to those

for all three species across a range of environments

[27,28,29,30,31,35].

The average concentration for the 21 elements across all species

after exposure for 15 days is reported in Table 2. The stock

cultures had the lowest concentration of all metals. The pattern of

concentration of elements was more similar between algae, than

across treatments, indicating that the water in which the algae

were cultured significantly influenced their elemental composition.

The multivariate analysis indicated that the stock cultures were

uniformly low in heavy metal concentration compared to the Ash

Dam and Ash Dam +f/2 treatments and that the addition of f/2

had a strong impact on the elemental composition of the algae

cultured in the Ash Dam water (Figure 2).

Many elements showed consistent patterns of concentration

across species and treatments. These could be categorised into

several groups (Table 3). The most common pattern among

treatments and species was that the concentration in the algal

biomass of the element was Stock cultures,Ash Dam,Ash

Dam+f/2. This pattern held true for the majority of elements

including As, B, Ca, Cu, Mg, Se, Sr and V (see example of As,

Figure 3a,b). The addition of f/2 media provided better conditions

for uptake of these elements, presumably through increased

metabolic rate. This group was identified when the vectors

indicating the strength and direction of correlation on the nMDS

plot were considered. These vectors indicated a greater concen-

tration of this group of elements in the biomass cultured in the Ash

Dam+f/2 water over that cultured in neat Ash Dam water

(Figure 2a,b).

The second most common pattern, that occurred was [Stock

cultures< Ash Dam +f2] ,Ash Dam for Cd, Ni, Pb and Zn (see

example of Cd, Figure 3c,d). These elements appear to be

excluded when growth is increased by the addition of f/2 media.

This group of elements was also defined clearly in the nMDS

where the vectors for Cd, Ni, Pb and Zn indicated a similar

strength and direction of change (Figure 2b). Thus, to maximise

bioremediation of these elements it would be important to choose
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a compromise between algal growth promoted with f/2 media,

and bioconcentration, which is substantially higher under sub-

optimal growth conditions. Elements that were at very low

concentrations in the water remained so in the algae. For example,

Hg was undetectable in the water (Table 1) and was also

undetectable in the algae (Table 3). However, Pb, which was

undetectable in any of the water sources was found, albeit at low

concentrations (,2 mg.kg21), in the algae.

As bioconcentration factor is derived from the elemental

composition of the algae it follows similar patterns. Bioconcentra-

tion was exhibited for all elements in at least one of the treatments

and species with the exception of Na, which was always near

equilibrium between the algal biomass and the water. BCF could

not be calculated for Al, As, B, Cd, Ni, Se and V in the stock

cultures because the concentration in the town water with f/2

nutrients was below detection limits (Table 1). However, none of

these elements were concentrated to any significant extent in the

stock cultures (Table 2). BCF could not be calculated for any algae

for Hg or Pb because these were undetectable in any of the water

sources. Given that the detection limits for Pb in the water were at

least 0.001 mg.L21 and concentration in the algae was over

1.0 mg.kg21, a BCF of at least 1000 can be inferred. Extremely

high bioconcentration factors of over 10,000 were observed for

many elements including Al, Cu, Mn, Ni, P and Zn (Table S1).

BCF for each alga was highest in the stock cultures treatments for

Sr, Mg and K (Table S1). The same was true for Mo for all algae

except Oedogonium which appeared to exclude, or at least limit

uptake of Mo substantially. Considerable variation in BCF was

exhibited between species and treatments for the elements Al, Fe,

Cu and Ca (Table S1).

BCF was consistently highest for As, B, P, Se and V in the algae

grown in Ash Dam water with f/2 media (Table 3 and Table S1;

example for As Figure 3a,b). All algae also exhibited the fastest

growth in this treatment, indicating that the rate of uptake of these

elements is increased when growth rate increases. BCF was highest

for Cd, Mn, Ni and Zn in all the algae grown in Ash Dam water

without f/2 media (Table 3 and Table S1, example for Cd

Figure 3c,d).

In this study we have not distinguished between adsorption and

absorption but rather concentrated on the total metal concentra-

tion of the biomass as we were primarily concerned with total

remediation potential of the biomass. Overall, growth of algae,

either with, or without additional nutrients (f/2), demonstrated

bioremediation of a very complex waste water stream. While the

f/2 media enhanced algal growth it also resulted in markedly

different but consistent patterns of bioconcentration across groups

of elements. Two key elements in the Ash Dam water, As and V,

were bioconcentrated to a higher level when additional nutrients

(f/2) were provided. For these elements, the optimised bioreme-

diation strategy would be to target optimised biomass productiv-

ities, e.g. through the supply of limiting nutrients. However,

increased growth resulted in a concomitant reduction in the

bioconcentration of Zn, Ni and Cd. This provides opportunities to

tailor remediation strategies within targeted waste streams by

controlling growth, through the provision of nitrogen in particular.

Importantly, there is a trade off between growth and bioconcen-

tration. If growth is sufficiently high, then there will be more

biomass available for bioconcentration and thus the reduced rate

of elemental uptake of Zn, Ni and Cd will have a negligible impact

on overall bioremediation. These opposing patterns of bioconcen-

tration could result from reactions with the f/2 media that force

these specific elements into a form that is not readily bound to the

algae, similar to other changes in water medium that influence

ionic state and uptake [36]. These have not been measured.

Alternatively, the altered metabolic state of the algae could impact

the binding mechanisms on and within the cells [17]. Some of the

observed differences may then be explained by changes in

bioavailability [37,38]. Future research should consider ways to

provide nutrient that maximises metal bioavailability as well as

growth.

Comparison to biosorption
The majority of algal biosorption studies report metal binding

capacity in the range of 10 to 100 mg.g21 [5,6], although some

report even higher levels of biosorption, achieved by pretreatment

of the biomass and manipulation of pH of the waste water [5]. In

our study, individual metal concentration in the biomass rarely

exceeded 5 mg.g21 but total heavy metal load was comparable to

the majority of biosorption studies, reaching over 60 mg.g21 total

heavy metals for all species cultured with f/2 medium. The high

concentrations achieved in our study may be the result of the live

algae bioconcentrating within the cell vacuole as well as binding to

the cell walls. This provides additional sites for elemental storage

in live algae [14], indeed, metals can even be bound in free sugars

e.g. arseno-sugars for arsenic [39]. This, coupled with the ability of

live biomass to grow and provide new substrate continuously, may

make up for any short-fall in uptake capacity. Bioremediation may

also be enhanced by manipulation of growing conditions of the

algae. Integrating culture with other waste streams, such as

municipal waste to provide N and P, and control of pH through

the addition of CO2, from flue gas from the power station, could

yield higher rates of bioremediation through increased biomass

productivity in the supply of the growth limiting nutrient carbon

e.g. Israel et al. [40]. Furthermore, the control of waste water pH

(by manipulating the dissolved CO2 from coal-fired power station)

offers additional opportunities to target bioconcentration of

specific elements [36] or ionic states [41].

The justification for biosorption using algal biomass for heavy

metal remediation often relies on costs, notably without compre-

hensive life cycle analyses that incorporate costs of processing and/

or transport of biomass to and from polluted sites [5]. Using the

elemental concentrations of problematic elements in the algae in

this study (Oedogonium with V concentration at 1543 mg.kg21 and

Rhizoclonium with As concentration at 105 mg.kg21) and realistic

algal biomass yields of 20 g DW.m22.d21, which equates to

73 tonne.ha21.annum21 [42], a 100 ha culture area could remove

one tonne of As per annum, providing significant removal of an

environmentally sensitive element. In addition, such a culture

would remove nearly 11 tonnes of V per annum as well as

substantial removal of most other metals at the same time.

However, estimating the costs of large scale algal culture is difficult

[43] and estimates will vary widely by region. While algal culture

may not be a panacea for heavy metal pollution, consideration of

complementary remediation strategies where regional alliances

between organic waste producers (N and P) and chemical waste

producers (metals) are developed [5] will be an important step in

developing practical, cost effective algal bioremediation.
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Table S1 Average BCF of elements ± s.e. for each alga,
treatment and control. * n = 2, all others n = 3, Empty cells are

where data was not available as the concentration in the water

and/or the alga was below detection limits.
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