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Preface
Access to genetic data across studies is an important aspect of identifying new genetic associations
through genome-wide association studies (GWAS). Meta-analysis across multiple GWAS with
combined cohort sizes of tens of thousands of individuals often uncovers many more genome-
wide associated loci than the original individual studies, which emphasizes the importance of tools
and mechanisms for data sharing. However, even sharing summary-level data, such as allele
frequencies, inherently carries some degree of privacy risk to study participants. Here we discuss
mechanisms and resources for sharing data from GWAS, particularly focusing on approaches for
assessing and quantifying privacy risks to participants from sharing of summary-level data.

Introduction
Population-based genetic studies have the potential to unlock biological mechanisms of
disease and reveal their genetic underpinnings. In particular, genome-wide association
studies (GWAS) using hundreds of thousands to millions of Single Nucleotide
Polymorphisms (SNPs) have emerged over recent years as a particularly fruitful study
design for identifying common variants with subtle genetic effects in complex disorders1.
While a few initial studies made substantial findings by studying only a few hundred
individuals, such as in age-related macular degeneration2, more often the small effect size of
associated SNPs requires genotyping thousands of individuals when studying complex
diseases across a population. Within the past two years there has been a trend towards
including tens to hundreds of thousands of individual participants in GWAS3. Examples
include: a meta-analysis of 5,539 cases and 17,231 controls for rheumatoid arthritis and
4,533 cases and 10,750 controls for celiac disease, which collectively identified 7 shared
loci for these diseases4; 6,688 cases and 13,685 controls for Alzheimer’s disease, which
identified 5 new genome-wide significant associations 5; meta-analysis of 22,233
individuals with coronary artery disease and 64,762 controls taken from 14 GWAS, which
identified 13 new susceptibility loci 6; and meta-analysis of >100,000 individuals, which
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identified 59 newly associated loci with cholesterol and blood lipid levels7. These studies
emphasize how increasing study sizes of tens or hundreds of thousands of individuals is
enabling discovery of multiple genome-wide significant associations, rather than a single or
a few loci as was frequently the case in early studies. Often these large-scale GWAS result
from meta-analysis of many previous studies and are inherently enabled by sharing genetic
data.

A consideration for any genetic study is the need to protect individual participants from the
risk of re-identification, and maintaining privacy becomes more complex when data is
shared beyond the original study within which the individual agreed to participate. We
address these considerations by first discussing frameworks and resources for sharing data
from GWAS, and then highlighting some of the risks associated with common modes of
sharing data. Data can be shared either as information about the individual or as population-
level data; we focus particularly on privacy challenges when sharing population-level data
such as allele frequencies to a large audience, which until recently was regarded as relatively
‘safe’ in terms of privacy. We describe quantitative approaches and additional
considerations in assessing risk to the privacy of individual participants at varying levels of
sharing aggregate data. We consider quantitative approaches in the most depth, as there is
currently much deliberation in the research community regarding how risk can be assessed
and taken into account when planning studies.

What level of data can be shared?
Sharing individual-level data

Generally, the most comprehensive data sharing from GWAS is distribution of full
phenotypic information accompanied by individual-level genotype data for each participant.
Phenotypic information could be tied to a set of full medical records, such as has been
conducted by the eMERGE Network in linking genotype data to various conditions
including dementia, lipid levels, and type 2 diabetes8, or could be limited to a dichotomous
trait, such as a case/control status. At a simple level this could be genotype calls (e.g., AA/
AG/GG) for >500,000 SNPs, though it could include the raw array data used for calling
genotypes or identifying copy number variants.

Access to the individual-level data has several advantages for analysis across datasets. First,
access to individual-level data allows for joint analysis across all samples, giving greater
power to detect associations than meta-analysis of summary-level statistics9. Second, access
to individual-level data ensures a uniform analysis across all datasets, both in terms of
application of quality control filters (such as SNP missingness) as well as higher-level
analysis such as imputation. For example, imputation is often used to combine datasets
genotyped on platforms and predict untyped markers10. However, imputation can vary by
method, such as Beagle, Mach, and Impute, or it can the training set, such as using the 1000
Genomes datasets to identify indirectly typed variants11. Third, sharing of individual-level
data can allow assessment of multiple variants in combination within a single individual
(such as SNPxSNP interactions) for calculating combined effects of multiple associated
variants; for example, a cumulative effect of 5 variants was identified in a meta-analysis of
prostate cancer GWAS12. Finally, access to the individual-level, raw array probe-level data
can be used to ascertain evidence for copy number variants associated with disease; recently,
enrichment of duplications of VIPR2 were observed to be associated with schizophrenia
utilizing multiple mental health GWAS13.

Clearly, the most important challenge with sharing individual-level genomics data is
protecting privacy of individual participants. As discussed by Heeney and colleagues,
individual genetic data from GWAS are not only uniquely identifying, they can predict risk
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to disease, and it is possible for consumers outside the scientific community to generate
genetic profiles on individuals (such as through 23andMe)14,15. In addition to privacy issues,
sharing individual-level data has challenges arising from the size and variability of files
associated with array-based genotype data. For example, sharing of probe-level data for
CNVs or genotype-level data involves file sizes exceeding 100 megabytes per sample and
often contains highly specific formatting/referencing requirements essential for avoiding
strand and genome-build inconsistencies. Informatically, summary-level data are often
preferred over individual level data when the researcher’s goal is only rapid acquisition of
allele-frequencies, p-values, or other summary-level data for sets of SNPs for exploratory or
confirmatory purposes.

Sharing summary-level data
An alternative to sharing individual-level data is sharing aggregate data or summary
statistics. Such statistics include genotype counts, allele frequencies, p-values, odds ratios,
and other measures of effect size. In dichotomy analysis (case/control), researchers can use
genotype counts to calculate summary-level statistics (p-value, odds ratio) under different
genetic models (dominant, additive, recessive or co-dominant). When study conditions are
carefully matched, the counts from different data sets can be used directly in meta-analysis if
individual genotypes are inaccessible. Also, in the context of a publication, sharing allele
frequencies, p-values and odds ratios is routine and essential for future studies to replicate
the most associated SNPs. As highlighted earlier, many large scale GWAS have been
enabled by meta-analyses that can only be conducted with access to the many associated
markers with low-effect size that are generally not included in the tables or supplementary
data of an individual study’s primary report. Data sharing is essential to this process.
Increasingly, large studies are carefully managed efforts involving multiple consortia where
each member contributes summary statistics that are independently prepared in a consistent
manner and then combined for meta-analysis7,16,17.

From the perspective of risk to the privacy of individual participants, aggregating data into
summary statistics provides some level of privacy protection. However, as discussed in later
sections, some degree of residual identifying information remains in the cumulative analysis
of large numbers of SNPs.

Mechanisms for data sharing
Study consortia

Meta-analysis in GWAS with tens to hundreds of thousands of individuals are often carried
out by multi-center consortia that have set up mechanisms whereby either summary-level or
individual-level data are gathered into a central database. The Coronary Artery Disease
Genome-Wide Replication And Meta-analysis (CARDIoGRAM) consortium published one
such example in which a steering committee provided oversight to several coordinated
analysis groups who submitted carefully constructed summary-analysis results to a
centralized database where the combined meta-analysis was completed16. Another current
example is the Gene Environment Association Studies (GENEVA) consortium, which
consists of 14 independent GWAS for various phenotypes and includes over 80,000 study
participants. Consistent quality control and the use of centralized data deposition to the
database of Genotypes and Phenotypes (dbGaP) for individual-and summary-level data are
essential to GENEVA18. International efforts that use centralized computing also include the
Psychiatric Genetics Consortium19, in which individual-level data are uploaded to a
common server for structured analysis across a series of psychiatric disorders including
bipolar, schizophrenia, autism and other mood disorders.
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Databases for broader distribution
The consortia described above represent major efforts at coordinated and controlled
approaches for data analysis. It is expected that the individual-level data and summary-level
data will have utility in future studies, and so additional long-term data-sharing mechanisms
are essential. For example, individual researchers might be looking to validate associations
of a specific gene or variant not listed in the primary publications. Beyond individual
researchers, new consortia may wish to rely on historical data; for example, the Population
Reference Sample (POPRES)20 study created a common resource of controls useful for
adding power to future case/control GWAS. An important aspect of enabling and realizing
the future value for truly large-scale GWAS using thousands of samples has been the
emergence of common repositories for distributing both individual-level and summary-level
data. These databases provide a centralized resource for sharing data while providing
mechanisms to protect privacy of individual study participants.

Two notable resources include samples genotyped through the International HapMap21 and
1000 Genomes projects,11 which are broadly distributed through multiple databases
including dbSNP22. These resources typically are utilized to observe the variability of
population-specific allele frequencies and generally are not used to generate significance of
association signals. A number of other databases allow for controlled or restricted access to
individual-level data and/or summarylevel data. For NIH-funded studies, dbGaP23 currently
holds individual- and/or summary-level data (available via a controlled-access process) for
approximately 1,900 datasets covering more than 257,000 individuals. Other sources of
individual-level data include: the Genome Medicine Database of Japan (GeMDBJ),
developed by the Study Groups of Japan's Millennium Genome Project (MGP) and
maintains over 570,000 SNPs on 2,000 patients in three disease groups; the Wellcome-Trust
Case Control Consortium (WTCCC), which maintains over 500,000 SNPs from
approximately 14,000 individuals; and the EBI European Genome-Phenome Archive, which
distributes data from WTCCC phase 1, 2, and 3 and 20 other study-specific providers.
PheGeni24, HuGE Navigator25, GWAS Central26, JSNP27, and dbSNP provide individual-
and summary-level data for several hundred thousand SNPs across diseases and several
thousand samples with multiple levels of controlled access.

An important aspect of databases such as dbGaP is their ability to provide study-specific
levels of controlled access to individual- and summary-level data. At one extreme,
completely unrestricted access is strongly desired for at least a subset of variants, such as a
list of hundreds to thousands of associated SNPs for tables within a publication, summary
measures for individual phenotypic measures, and study protocols and data collection forms.
A more constrained approach is to approve institutional users that have the ability to
download more extensive summary-level data (that is, more than hundreds to thousands of
SNPs) for studies without additional approvals. In the case of dbGaP, open access is
available for broad release of non-sensitive data. For example, the Phenotype-Genotype
Integrator allows one to query p-values across studies for limited number of SNPs in an
open-access manner28. Controlled access through dbGaP is available when additional
oversight is required for sensitive data sets involving individual-level genotype data,
individual genome or exome sequences, or comprehensive GWAS for a published study,
including allelic direction of effect. Access is controlled through an application process
reviewed by one or more NIH Data Access Committees (DAC) that oversee the dataset(s) of
interest, with terms of use conveyed through a Date Use Certification (DUC) agreement.
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Privacy for summary-level data
Risks of identification in shared summary-level datasets

As seen from many meta-analyses, summary-level data has great utility when combining
multiple studies or even validating a small number of SNPs. It was originally assumed that
summary-level data completely anonymized the participants and this type of data could be
openly distributed for all SNPs. For example, if the genotypes of 10 individuals for a
particular SNP were AA, AT, AT, AA, TT, AT, AA, AT, AA and AT, respectively, the
allele frequency summary statistic is 65% A (13A’s of 20 total alleles). Intuitively one
cannot determine much about the individuals when reporting only the allele frequency
summary statistic of 65% for a single SNP. Initial views were that this would extend to
larger numbers of SNPs, particularly when the average allele frequencies were for hundreds
if not thousands of individuals. However, it was shown in 2008 by Homer et al29 that, using
the marginal information in tens of thousands of SNPs, one could resolve whether an
individual was a member of a cohort, even in cohort sizes exceeding 1,000 individuals,
provided one had access to genotype data from that individual and access to genetic data
from a reference population30.

This concept can be explained by considering a simple scenario. Let’s suppose we have a
dataset of 10 SNPs where the minor allele frequency is 60% for the A allele for all 10 SNPs.
Let’s now suppose we want to determine if a person is in this dataset with the additional
knowledge that the this individual has an AA genotype for these 10 SNPs. If it was known
that the allele frequency of these 10 SNPs was actually 50% A by having a reference dataset,
we could construct a statistic that cumulatively accounts for the fact that the observed allele
frequency in the dataset of interest is biased towards the A allele as compared to the
reference set. Returning to the example, we see a shift from the expected 50% A allele
frequency to an observed 60% A allele frequencies for 10 of 10 SNPs where the individual
of interest is homozygous AA. Remarking a number of analytical approaches are possible,
one could calculate a probability that the person is in a dataset by observing 10 of 10 SNPs
shifted in their average allele frequency consistent with the allele found in the person of
interest.

The publication by Homer et al. demonstrated an example cumulative test-statistic showing
that one could determine membership in summary level allele frequency datasets by
comparison to a reference dataset. The numbers of SNPs, their minor allele frequency, and
to a small extent the accuracy of measuring allele frequency, were all found to influence the
ability to improve the estimate of cohort membership. A series of subsequent studies
investigated the implications and statistical aspects of estimating sample membership from
aggregate data from GWAS compared to a reference population. Specifically, studies by
Jacobs et al.31 and Sankaraman et al.30 formulated statistical frameworks based on
likelihood ratios that optimize power to estimate membership, in part by leveraging the
binomial distribution associated with sampling biallelic markers equimolar pooled across a
defined number of samples. In fact, by the Neyman-Pearson Lemma32 these methods are an
optimal solution. Additionally, Braun et al.33 showed that a high rate of false-positives can
arise in the original formulation utilized by Homer et al., if effects of linkage disequilibrium
are ignored and a normal distribution is assumed. Conversely, Zhou and colleagues showed
that linkage disequilibrium can be leveraged for improving power in a statistical approach
using multiple correlated markers within long haplotype blocks34. Linear-regression based
frameworks have also been presented by Visscher et al35 while David Clayton has presented
a Bayesian-based alternative to the frequentist approach36. Finally, Sampson and Zhao
demonstrated methods to address aspects of unknown ancestry with the use of multiple
reference populations37.
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What are the implications?
The major realization from these papers was that, theoretically, there might be a risk that
someone could determine if an individual were in a dataset even if only summary-level
genotype frequencies were available, provided they had access to that person’s genotypes
for those SNPs and had a sufficiently representative reference set of allele frequencies. Since
most GWAS are studies of disease, this implies that there might be a path to determine
medically relevant information about participants from summary-level data. Following
publication of the Homer et al. paper30, the NIH addressed sharing of data from GWAS in a
paper in Science38, and NIH and many other groups stopped openly distributing disease-
specific summary-level datasets. The level of risk to participants and the appropriateness of
this response have been intensely debated. Krawczak and colleagues39 have argued that
current NIH policy is counterproductive due to the increased burden on international
consortia to comply with NIH-based central repositories’ requirements. Some of this debate
was published in a series of articles in PLOS Genetics, including one article that provided
five views of balancing research with protecting privacy15. The authors generally agreed
that some risk is inherent to genetic studies and that a balance between research and privacy
is needed, though there was less agreement on where the balance lies. Interim models were
suggested whereby credentials of individuals and institutions could be validated to allow
access to full summary-level data, and these models are consistent with a study by Haga and
O’Daniel showing individuals are more likely to participate in studies with some restrictions
for online access40. Further research is on-going to try to further assess risks for study
participants.

Lastly, we remark that estimating membership in a dataset requires access to genetic data
from an individual or relative. Clearly, meeting this requirement assumes some loss of
privacy already, such as disease risks or ancestry. Indeed, Malin and colleagues describe
determining membership from aggregate SNP data as reidentification since some aspects of
a person’s identity are available in a publication recommending policies for minimizing
identification risks in clinical research data41. Still, access to genetic data of an individual
doesn’t render privacy expectations moot. First, participation as a phenotyped case in a
study more accurately reflects being diagnosed with a disease then disease risk predictions
from SNP data due to the modest effect size of most associations. Even in strongly
associated examples such as an >5 odds ratio for the APOE-ε4 allele with Alzheimer’s,
there is only modest predictive value for individuals already mildly cognitive impaired
developing Alzheimer’s disease42. Second, the original PLOS Genetics publication and
subsequent publications showed that one could also learn about immediate relatives of the
genotyped individual due to shared genetics, such as a child about a parent, without knowing
the exact regions or variants they share29,30. Even in the cases of related individuals with
shared genetics there exist important expectations of privacy.

Assessing risk for summary data
As noted above, in practice some level of open distribution of aggregate data is necessary to
communicate results in the literature. Assessing privacy risk is an important aspect of
disseminating findings from GWAS that reach significance and those that don’t. A dilemma
that has been faced by many researchers is what balance should be struck between releasing
summary-level data during publication or through searchable databases and minimizing the
risk to the privacy of study participants. For example, how do researchers determine the
number of SNPs that should be placed on the web or in a supplementary table? Is releasing
summary-level data from 1,000 or 5,000 SNPs reasonable? Managing and assessing the risk
when sharing summary-level data should balance multiple factors - both quantitative and
non-quantitative - as well as have a clear deliberation process.
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Non-quantitative risk assessment should include consideration of the potential consequences
of someone in a particular cohort being identified as a participant. For example,
identification of participants in studies of readily observable common traits, such as obesity
or hair color, would be less concerning than identification of individuals in studies of
alcohol dependence, illegal behavior, or psychiatric conditions. These types of non-
quantitative risk considerations are often study specific and higher-level restrictions on
access may be warranted for higher-risk studies. Within databases such as dbGAP, there is
ability to define restriction on access through the Data Use Certification agreement. For
example, some datasets require applicants to obtain IRB approval for access, while many
other datasets allow for general use access following institutional and user agreement to
standard sharing and reporting policies for GWAS.

Quantifying the risk of making summary-level data broadly available is an essential part of
the risk assessment process, and one that lends itself to more traditional approaches for risk
assessment. Box 1 introduces several key concepts in risk assessment, such as sensitivity,
specificity and positive predictive value (PPV). Each of these metrics gives insight into a
specific type of risk. Beyond these metrics, software tools also exist for quantifying risk
associated with summary-level data from GWAS. Notably, Sankaraman and colleagues 30

published a method and software tool called SecureGenome, which utilizes an input
genotype set and a reference set and determines the number of highly ranked SNPs that can
be safely exposed from the upper bounds of the optimally solved likelihood ratio test.

Positive predictive value
In this section we discuss a metric that can be used in quantitative risk assessments in the
context of sharing data that specifically accounts for the size of the sampled population and
the fact that most individuals from a population are actually not in the dataset. In a concept
highlighted by Braun et al31, false positives depend on the number of participants from the
population, and PPV as a metric can quantify the risk of correctly identifying an individual
as being included within a dataset given that most individuals from the population are not
actually included in the dataset. Calculating PPV requires determining the proportion of the
‘at-risk’ population that is in the genome-wide association study. For example, let’s assume
someone wished to determine whether a person was within a dataset of 1,000 European
ancestry individuals as part of the Framingham study (and they had genotype data for this
person). Given an estimated 65,000 individuals in Framingham with an approximate 75%
European ancestry population, the ‘at-risk’ population is approximately 50,000 individuals.
The prevalence is thus 1,000/50,000=0.02. Without any data, the risk of positively
identifying a person who is actually in the dataset is 2%. Thus the prevalence allows
estimation of the positive predictive value given this prior knowledge. Prevalence of
participants within a study may be quite low in large-scale studies, or may become
reasonably high in small ‘at-risk’ populations such as a GWAS of the Native Hawaiian
populations or Old Order Amish. The influence of prevalence on risk assessment through
PPV is illustrated in Figure 1, in which a simulation with a high prevalence is compared
with a simulation with a low prevalence. With low prevalence, the risk of resolving
membership of a cohort is greatly reduced. Therefore, the strength of PPV as a measure is
that it inherently accounts for the prior probability that a person selected at random is
actually in the dataset and inherently accounts for key aspects of the population as part of
risk assessment29,30.

As explained above, researchers are often faced with the question of how many SNPs should
be included in the summary data that they release. The PPV is one way to obtain a
quantitative risk assessment for different numbers of SNPs and different study sizes; Table 1
provides several examples of PPV as a risk assessment in simulations of releasing between a
few hundred and few thousand most associated SNPs by p-value from a study with different
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prevalence settings. In these simulations we used a prevalence of 0.01, which could be
similar to a study of cardiovascular traits in a Framingham population, and 0.001, which
could be similar to a study of 1,000 individuals with Major Depression sampled from a
population defined to include all U.S. persons of European ancestry. The results of these
simulations show the importance of considering prevalence; for 5,000 SNPs and a cohort
size of 500 the PPV is 29.2% for a prevalence of 0.01 and 7.5% for a prevalence of 0.001,
both with a discrimination threshold of 0.001. Further results from Table 1 suggest that
sharing 1,000 SNPs for datasets with > 500 individuals generally lead to a low PPV,
regardless of the population size. Taken together, the process of assessing risk with PPV
and/or other statistical metrics can be used to inform discussions of non-quantitative risks.

Summary and implications
The path for future GWAS will benefit from and depend on data sharing. Recent large-scale
efforts show that careful, coordinated efforts of sharing summary-level data leads to the
discovery of many new genome-wide significant associations. With hindsight, these
associations are often apparent in the original studies, though not at levels to merit follow-up
sequencing. Clearly, the sharing of data and the ability to access summary-level data will be
an important part of identifying new associations in future studies. Protecting the privacy of
participants is an important part of this process. Quantitatively assessing privacy risks using
PPV incorporates population size and can inform discussion of non-quantitative factors such
as the impact of an individual being identified within studies. Therefore, it is our opinion
that quantitative tools should play a useful part in assessing the risk of determining that an
individual is in a dataset from release of aggregate SNP genome-wide genotyping datasets
and subsets of these datasets.

Box 1. Risk assessment definitions applied to sharing GWAS aggregate
datasets

In order to consider risk-assessment definitions, it is useful to first think of standard
‘ability of a test to detect a disease’ measures of sensitivity, specificity, positive and
negative predictive values, as shown in the upper table. Each of these can be converted to
an ‘ability to classify an individual as being in a genome-wide association study (GWAS)
data set’, as shown in the lower table.

The risk-assessment definitions in the context of GWAS data sets are listed below.

Type II error. The proportion of times that someone who is actually in the data set is not
identified as being in the data set. For example, with 20% type II error, there is a 20%
chance of failing to determine that someone is in a data set.

Type I error. The proportion of times that someone is predicted to be in the data set when
they are not. For example, with 5% type I error, there is a 5% chance of determining that
someone is in the data set when they are not.

Sensitivity. The ability to detect true positives (that is, the correct classification of people
in the data set). In both cases, this would be (a) / (a + c). For example, with a sensitivity
of 30%, only 30% of test individuals in the data set will be correctly classified as being in
the data set; 70% of those actually in the data set will be missed.
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Specificity. The proportion of those people that are not in the data set who are correctly
classified as not being in the data set (that is, true negatives). From the table, this would
be (d) / (b + d). For example, with a specificity of 40%, only 40% of test individuals will
be correctly classified as not being in the data set; 60% of those classified as being in the
data set actually are not.

Power. The proportion of times that an individual who is actually in the data set will be
correctly classified as being in the data set. For example, with 80% power, there is an
80% chance of correctly classifying someone as being in the data set.

Positive predictive value. The positive predictive value (PPV) is defined as the number of
true positives divided by the total number of all positives ((a) / (a + b)). This measure is
frequently used for rare disorders. Similarly, most individuals from a population would
not actually be in a GWAS data set. PPV is the proportion of all individuals predicted to
be positive from a population that are truly in a data set. With 20% PPV, only 20% of
those identified as being in the cohort actually will be; 80% will not (and hence the ratio
of false positives to true positives would be 4:1).
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Glossary

Allele frequency The frequency of the less-common allele of a polymorphism. It has
a value between 0 and 0.5 and can vary between populations.

Bayesian A statistical framework for evaluating a hypothesis. The Bayesian
approach assesses the probability of a hypothesis being correct by
incorporating the prior probability of the hypothesis.

Discrimination
threshold

The significance threshold for rejecting the null hypothesis in a
statistical test.

Frequentist A statistical framework for evaluating a hypothesis. The frequentist
approach tests a hypothesis as being correct given the strength of a
data set.

Imputation A method for inferring untyped variants from neighboring variants,
based on linkage disequilibrium and haplotype structure.

Linear regression The estimation of a first-order relationship between two variables,
which involves fitting a line of best fit to the data.

Missingness The percentage of samples that do not receive a genotype call for a
SNP in a genome-wide association study.
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Neyman–Pearson
lemma

A theorem that assures the optimality of a likelihood ratio test
between simple hypotheses at a given threshold.

Prevalence The prior probability that a person is in a data set of interest.
Alternatively, the term can refer to the fraction of individuals in a
data set out of the total number of individuals that could be in the
data set.

Reference data set A data set of samples from individuals who are from the same
population that was sampled in the summary-level data set of
interest.
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Figure 1. Sharing 5,000 SNPs at different prevalence or prior probabilities
In the plots, we use simulations to show how the prior probability of being in a dataset
impacts the ability to resolve if a person within a population using summary level allele
frequencies from 5,000 SNPs on datasets of 500 individuals. In (a) we show a histogram of
test-statistics based on the approach of Jacobs et al31 for resolving membership in 100,000
simulations when the person tested is actually within a dataset (red) and 100,000 simulations
when the person tested is not within a dataset (blue). Since the simulations of being in a
dataset and not within a dataset are equal, the prevalence or prior probability of being in the
dataset is 0.5. In (b) we show 100,000 simulations when the person is not within the dataset
(blue) and 100 simulations when they are within the dataset, equivalent to a prevalence or
prior probability of being in the dataset of 0.001. The figures is zoomed to the right showing
how a large number of tests of individuals not in the dataset can obscure the ability to
distinguish true positive and false-positives. Describing risk as PPV allows one to consider
prevalence for being in a dataset as a prior, thus increasing the accuracy in assessing the risk
of a person within a dataset being correctly identified.
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Table 1
Risk assessment with different prevalence parameters

The table shows sensitivity, specificity and positive predictive value (PPV) for sharing <5,000 SNPs for
<5,000 individuals, assuming a prevalence of 0.001 (upper part of the table) or 0.01 (lower part of the table),
based on simulated Framingham SNP Health Association Resource (SHARe) genomewide association data. In
these simulations, summary-level allele frequency data sets were created by randomly selecting a fixed
number of individuals from the Framingham SHARe data set into two data sets. From these data sets, SNPs
that failed Hardy–Weinberg equilibrium (<10-6), minor allele frequency (<0.01), missingness (<0.01) and call
rate (<0.97) were removed using the PLINK analysis tool set43. Association statistics were calculated for all
SNPs, but sharing of allele-frequency data was only assumed for the most associated SNPs by P value (5,000
SNPs in the examples shown in the table). Individuals in and not in the data set were evaluated at a defined
prevalence with a significance threshold of 0.005, with the entire process repeated until 100,000 simulations
were completed.

Prevalence = 0.001

SNPs Cohort
Size

Sensitivity Specificity Positive Predictive
Value

100 100 0.05 0.99 0.010

100 500 0.04 0.99 0.004

100 1000 0.01 0.99 0.004

500 500 0.19 0.98 0.011

500 1000 0.12 0.98 0.008

1000 500 0.36 0.97 0.012

1000 1000 0.21 0.97 0.007

5000 500 0.83 0.99 0.075

5000 1000 0.51 0.99 0.038

Prevalence = 0.01

SNPs Cohort
Size

Sensitivity Specificity Positive Predictive
Value

100 100 0.05 0.99 0.080

100 500 0.06 0.99 0.067

100 1000 0.04 0.99 0.034

500 500 0.28 0.96 0.061

500 1000 0.17 0.97 0.049

1000 500 0.44 0.95 0.076

1000 1000 0.27 0.95 0.056

5000 500 0.89 0.98 0.292

5000 1000 0.63 0.98 0.275
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