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ABSTRACT

Background: Genome-wide association studies (GWAS) have iden-
tified consistent associations with obesity. However, the mechanisms
remain unclear.

Objective: The objective was to determine the association between
obesity susceptibility loci and dietary intake.

Design: The association of GWAS-identified obesity risk alleles
(FTO, MC4R, SH2BI, BDNF, INSIG2, TNNI3K, NISCH-STABI,
MTIF3, MAP2K5, QPCTL/GIPR, and PPARG) with dietary intake,
measured through food-frequency questionnaires, was investigated
in 2075 participants from the Look AHEAD (Action for Health in
Diabetes) clinical trial. We adjusted for age, sex, population strat-
ification, and study site.

Results: Obesity risk alleles at FTO rs1421085 significantly pre-
dicted more eating episodes per day (P = 0.001)—an effect that
persisted after adjustment for body weight (P = 0.004). Risk variants
within BDNF were significantly associated with more servings from
the dairy product and the meat, eggs, nuts, and beans food groups
(P < 0.004). The risk allele at SH2B1 rs4788099 was significantly
associated with more servings of dairy products (P = 0.001), whereas
the risk allele at TNNI3K rs1514176 was significantly associated with
a lower percentage of energy from protein (P = 0.002).
Conclusion: These findings suggest that obesity risk loci may affect
the pattern and content of food consumption among overweight or
obese individuals with type 2 diabetes. The Look AHEAD Genetic
Ancillary Study was registered at clinicaltrials.gov as NCT01270763
and the Look AHEAD study as NCT00017953. Am J Clin Nutr
2012;95:1477-86.

INTRODUCTION

Obesity is a major public health problem associated with an
increased risk of cardiovascular disease (1). Obesity suscepti-
bility loci identified through genome-wide association studies
(GWAS)* and replicated in multiple independent cohorts have
provided new insights into the genetic factors that contribute to
the development of obesity. The fat mass and obesity-associated
gene FTO was one of the first genes to be identified by this
approach and has been associated with obesity and body mass in
numerous cohorts (2-7). Additional genes associated with obe-
sity include MC4R (3), SH2B1, BDNF (7, 8), and, although less
consistently replicated, INSIG2 (9). More recent GWAS studies
also implicate TNNI3K, NISCH-STABI, MTIF3, MAP2KS, and
QPCTL/GIPR (6). INSIG2 and the Prol2Ala polymorphism in
PPARG have also been associated with the degree of weight loss
in response to behavioral interventions (10-12).
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Many of these genes are expressed in the brain, particularly in
the feeding centers of the hypothalamus, emphasizing the role of
the central nervous system and potentially dietary intake in
obesity predisposition (8). Studies in children indicated that the
obesity risk allele at 1$9939609 in the FTO gene is associated
with preference for energy-dense food (13), greater consumption
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of fat and calories (14), consumption of palatable food after
having eaten a meal (15), and reduced satiety (16), although
a lack of association between FTO rs9939609 and caloric intake
or the percentage of energy from fat has also been reported (17).
In adult populations, MC4R obesity risk alleles were shown to
be associated with a greater caloric intake and a greater per-
centage of energy from fat in one study of women from the
Nurses’ Health Study (18) but not in a second sample of men
and women of Scottish descent (19). Obesity risk alleles at
SH2B1 were associated with greater total fat intake, SFA intake,
and MUFA intake in Dutch women (20), but no associations of
dietary intake with FTO or MC4R were observed.

The goal of the current study was to determine the association
of obesity risk single nucleotide polymorphisms (SNPs) identi-
fied through GWAS (within or in the regions of FTO, SH2BI,
BDNF, INSIG2, TNNI3K, NISCH-STABI, MTIF3, MAP2KS,
OPCTL/GIPR, MC4R, INSIG2, and PPARG) and available on
the ITMAT-Broad-CARe array chip (IBC) (21) or through ad-
ditional genotyping with measures of dietary intake in the Look
AHEAD (Action for Health in Diabetes) cohort—a sample of
ethnically diverse overweight and obese participants with type 2
diabetes.

SUBJECTS AND METHODS

Participants

The design and methods of the Look AHEAD trial have been
reported elsewhere (22), as have the baseline characteristics of
the randomized cohort (23). Of the 5145 ethnically diverse
overweight and obese Look AHEAD subjects with type 2 di-
abetes, aged 45-76 y at baseline, the first 2757 completed the
dietary substudy (24); 2163 of the participants in the dietary
substudy provided genetic consent and were in clinical centers
participating in this ancillary study. Of the 2163, 65 were missing
genetic data as a result of failed genotyping, and 23 were missing
genetic data as a result of a high degree of missing genotype calls
(>5%), yielding an effective sample size of 2075 (Figure 1).
Participants who completed the Look AHEAD dietary substudy
were somewhat younger than those who did not (§7.2 = 7.2 y
compared with 60.5 = 5.9 y; P < 0.0001) because of a change in
the age inclusion criteria during year 2 of the recruitment period.
No significant differences in sex, race, or educational attainment
were found between the 2 groups. All participants included in this
study provided written informed consent for participation in the
Look AHEAD trial and genetic analyses in accordance with the
requirements of the Institutional Review Board at their local in-
stitution. The current data analysis was approved by the Miriam
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Hospital Institutional Review Board, and the procedures that
were followed were in accordance with The Miriam Hospital
Guidelines.

Anthropometric measures

Weight and height were measured in duplicate by using
adigital scale and a standard wall-mounted stadiometer. BMI was
calculated as weight (in kg) divided by height (in m) squared.

Dietary assessment

The Look AHEAD semiquantitative, previously validated food-
frequency questionnaire (FFQ) was selected to measure food and
nutrient intakes (24-26). The FFQ is a modified version of the
Diabetes Prevention Program Food-Frequency questionnaire and
was designed to collect information about usual intake of food
items during the preceding 6 mo. The Diabetes Prevention Program
food list, developed for regional and ethnic sensitivity, was formed
the basis of the Look AHEAD FFQ food list. The FFQ contained
134 line items, 20 items that can be used to adjust the 134 main
items (ie, type of oil used when cooking, fat added to vegetables),
and 3 quality-control questions. Meal-replacement beverages and
bars were added as line items to the FFQ.

For each line item, the respondents reported their frequency of
consumption and portion size consumed. The 9 frequency cat-
egories for food items ranged from “never or less than once per
month” to “2 or more times per day.” The 9 frequency categories
for beverages ranged from “never or less than once per month” to
“6 or more times per day.” Portion sizes were listed as small,
medium, or large. The maximum category of frequency of
consumption for foods does not apply to meal replacements that
could be considered foods (bars) or beverages (liquid meal re-
placements or reconstituted powders). The maximum category
for frequency of consumption of meal replacements (either
liquid, bar, or powder) was >4 times/d.

Estimates of The Food Guide Pyramid (27) food group and
nutrient intake were conducted by using the Health Habits and
History Questionnaire/DietSys software and Look AHEAD-
specific programming written to incorporate the Look AHEAD
modifications to the questionnaire. The nutrient database was
modified from the Diabetes Prevention Program database to
incorporate foods added for the Look AHEAD FFQ. These
nutrient values were obtained primarily from the Nutrition Data
System for Research (version 4.01_30, 1999; Nutrition Co-
ordinating Center). The number of daily eating episodes was
defined as the total number of meals and snacks consumed per
day as reported on the FFQ.

Genotyping

The genomic DNA extraction is based on the use of the
FlexiGene DNA Kit (Qiagen Inc) as described by the manu-
facturer, and DNA quantitation was performed by using the
PicoGreen dsDNA Quantitation Reagent (Invitrogen Inc). Gen-
otyping was carried out at the Children’s Hospital of Philadelphia
by using the IBC chip, a gene-centric 50,000-SNP array designed
to assess potentially relevant loci across a range of cardiovas-
cular, metabolic, and inflammatory syndromes (21). The data set
with 14 SNP genotypes at or near 9 reported genes was filtered for
individuals with <5% missing genotypes and SNPs with <5%



OBESITY SUSCEPTIBILITY LOCI AND DIET IN LOOK AHEAD

[ Enrollment ]

Participated in Look AHEAD

1479

Available DNA sample

dietary substudy
(n=2757)

(n=4041)

Dietary data and DNA
sample
(n=2163)

!

A 4

Failed IBC genotyping (n=65)

hd

SNP missingness rate >5% (n=23)

Total Sample

(n=2075)

FIGURE 1. Consort flow diagram. IBC, ITMAT-Broad-CARe array chip; Look AHEAD, Look AHEAD (Action for Health in Diabetes) clinical trial; SNP,

single nucleotide polymorphism.

missing data. The mean genotyping success rate for the candi-
date SNPs was 99.6%. Two additional SNPs in the regions of 2
additional genes were genotyped with Tagman Applied Bio-
systems Assays-On-Demand by using an Applied Biosystems
7900HT: the MC4R polymorphism rs17782313 (Applied Bio-
systems catalog number C__32667060_10) and the INSIG2
rs7566605 polymorphism (Applied Biosystems catalog number
C__29404113_20).

Gene and SNP selection

We searched the published literature and selected SNPs that
had been associated with obesity by GWAS (2-9, 28, 29) or
weight loss (10, 12) and appeared on the IBC (21) or, in the case
of MC4R and INSIG2, were genotyped by Tagman. The SNP
array also included Ancestry Informative SNP Markers and
haplotype-tagging SNPs. GWAS obesity SNPs not on the IBC
were replaced by proxies when possible by using the SNP An-
notation and Proxy Search tool (30) based on haplotype maps of
US residents of European ancestry (CEU) and Yoruba people of
Ibadan (YRI) as follows: FTO rs9930506 was replaced by
rs9922708 [distance 681 base pair (bp) 7 =1.00, D’ = 1.00 in
both CEU and YRI], BDNF 15925946 was replaced by
151401635 (distance 26,789 bp +* = 0.96, D’ = 1.00 in CEU; no
proxy was available in YRI), SH2BI rs7498665 was replaced by
rs4788099 (distance 27,514 bp P2 = 1.00, D’ =1.00 in CEU and
D’ = 1.00 and 7* = 0.94 in YRI), TNNI3K 151514175 was re-
placed by rs1514176 (distance 48 bp r* = 1.00, D’ = 1.00 in
CEU and 7* = 1.00, D' = 1.00 in YRI), NISCH-STABI
rs6784615 was replaced by rs4687617 (distance 2851 bp =
1.00, D’ = 1.00 in CEU; no proxy was available in YRI), MTIF3
154771122 was replaced by rs7988412 (distance 19898, r* =
0.83, D’ = 1.00 in CEU; no proxy was available in YRI),
MAP2KS5 152241423 was replaced by 152241420 (distance 4022
bp, ¥ =0.91, D’ = 1.00 in CEU, r* = 0.97, D’ = 1.00 in YRI),

and QPCTL/GIPR r1s2287019 was replaced by rs11672660
(distance 21988 bp, /> = 0.83, D’ = 1.00 in CEU, * = 0.892,
D’ = 1.00 in YRI).

Statistical analysis

Observed genotype frequencies were compared with those
expected under Hardy-Weinberg equilibrium by using a chi-square
test in the 2 most populous racial-ethnic groups (non-Hispanic
whites and African Americans). Pearson correlations were used to
examine the association between dietary variables, BMI, and
weight. Multivariable linear regression analyses were carried out to
examine genetic associations with the dietary variables. Additive
coding for the number of copies of rare alleles was used, unless the
marker minor allele frequency (MAF) fell below 20%, in which
case the rare genotype was combined with the intermediate ge-
notype. Therefore, linear regression coefficients capture the effect
either of a single copy of the rare allele (MAF >0.20) or of being
arare allele carrier (MAF <<0.20). In cases in which the risk allele
differs from the rare allele, negating the regression coefficients
gives the effect of each additional copy of the risk allele (MAF
>0.20) or of being a risk allele homozygote (MAF <0.20).

All analyses were adjusted for age, sex, study site, and pop-
ulation stratification. For total caloric intake, we further con-
sidered whether any observed associations were attributable to
weight in secondary models. For eating occasions and the Food
Guide Pyramid food groups, we considered whether any observed
associations were attributable to total caloric intake by including
total caloric intake as a covariate in secondary models. A Huber-
White sandwich estimator was used to produce SE robust to
deviations from normality (31, 32). Principal component analysis
of the genotypic correlation matrix of the 16 markers of interest
suggested that the effective number of linearly independent
markers in the data set was only 13 (33). Therefore, one can
maintain the family-wise error rate at 0.05 via Sidak’s adjustment
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for multiplicity by declaring as statistically significant only those
markers with a nominal significance level of 0.05/13 =0.004 (34).
However, because the markers were selected a priori due to their
association with obesity, we also consider associations reaching
a nominal threshold for statistical significance of 0.05. Analyses
were performed by using Splus 8.2 for Solaris/Linux (35). The
analyses were performed at Brown University.

To control for admixed study population, all IBC SNPs were
examined by principal component analysis using the EIGEN-
STRAT algorithm (36) as implemented in Golden Helix version
7.1 (Bozeman). Results indicated that most of the variance among
the Look AHEAD cohort was accounted for by the first 2
principal components, which agreed with self-reported ethnicity.
Accordingly, the first 2 principal components were included as
covariates in our analyses to adjust for population stratification in
the multi-ethnic Look AHEAD cohort.

RESULTS

Participant characteristics of the subcohort of Look AHEAD
used in these analyses are shown in Table 1. Participants came
from an ethnically diverse background, and 56% were women.
They had an average age of 57.6 y and a BMI in the obese range.
Participants reported consuming ~2000 kcal/d over an average
of 4.7 eating episodes. Forty percent of calories were derived
from fat, 44% from carbohydrate, and 17% from protein.

SNP characteristics, including the obesity-risk allele identified
in the prior literature, are presented in Table 2. All SNPs under
study conformed to Hardy-Weinberg equilibrium, except for
rs2241420 in non-Hispanic whites (P < 0.001) and rs1401635
in African Americans (P = 0.02). Given that this sample was
selected for being overweight/obese and having type 2 diabetes
and that the genetic markers were selected for association with
obesity, we retained these markers in analyses.

The 4 FTO SNPs were in strong linkage disequilibrium in our
white subsample (** = 0.80-0.99), but differed in the degree of
disequilibrium in our African American subsample (rs3751812
and rs1421085: /> = 0.96; rs3751812 and rs9922708: r* = 0.51;
rs1421085 and rs9922708: * = 0.48; rs9939609 with other
SNPs: 1* < 0.13). Two BDNF SNPs, rs6265 and rs10767664,
were in strong linkage disequilibrium in both our white (> =
0.79) and African American (r2 = 0.69) subsamples. The third
BDNF SNP, rs1401635, appeared unrelated to the first two (r2 <
0.11 in both whites and African Americans).

Total caloric intake was positively associated with weight (r =
0.22, P < 0.001), BMI (r = 0.14, P < 0.001), and number of
eating episodes (r = 0.17, P < 0.001). Number of eating epi-
sodes showed no association with BMI (r = 0.00, P = 0.926) or
weight (r = —0.04, P = 0.108).

Total calories

Obesity risk markers within BDNF and FTO were nominally
associated with greater total caloric intake (Table 3). Risk alleles
at FTO 1rs1421085, rs3751812, and rs9922708 were associated
with 57-60 more calories per day per copy (P = 0.031-0.035).
Carriers of the AA genotype at BDNF rs10767664 or the GG
genotype at BDNF rs6265 consumed on average >100 kcal/d
more than did carriers of the less common genotypes (P = 0.006—
0.007). The effect of the 3 FTO SNPs on dietary intake was di-
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TABLE 1
Baseline characteristics

Characteristic Value (n = 2075)
Women [n (%)] 1163 (56.0)
Race [n (%)]

African American 324 (15.6)

American Indian/Alaskan Native’ 12 (0.6)

Asian/Pacific Islander 23 (1.1)

White 1595 (76.9)

Other (multiple) 121 (5.8)
Ethnicity [n (%)]

Hispanic/Latino 161 (8.2)
Age (y) 57.6 + 7.27
BMI (kg/m?) 36.3 * 6.1

Dietary intake
Total energy intake (kcal) 1992.1 = 875.7
Eating occasions (no./d) 47 1.2

Carbohydrate (% of energy) 43.6 = 7.7
Fat (% of energy) 40.0 = 7.0
Protein (% of energy) 172 £29
Bread, cereal, rice, pasta (servings/d) 32+ 1.7
Vegetables (servings/d) 29+ 15
Fruit (servings/d) 1.9+ 14
Milk, yogurt, cheese (servings/d) 22+ 1.6
Meat, poultry, fish, dry beans, eggs, nuts (servings/d) 27 * 15
Fats, oils, sweets (servings/d) 22+ 1.8

’ The number of American Indian participants included in this study is
less than that in the parent Look AHEAD trial.
2 Mean = SD (all such values).

minished by statistical adjustment for weight (P = 0.066-0.068).
However, BDNF 1510767664 and rs6265 remained nominally
associated with total caloric intake after statistical adjustment for
weight (156265, P = 0.007; rs10767664, P = 0.007).

Number of eating episodes

Genetic associations with number of eating episodes are
presented in Table 4. Obesity risk alleles at rs1421085 within
FTO were significantly associated with eating a greater number
of meals and snacks per day (P = 0.001), an effect that persisted
after further adjustment for total caloric intake (P = 0.004).
Obesity risk alleles at FTO rs3751812, 1s9922708, and rs9939609
showed similar effects in the same direction but significance was
nominal (P = 0.014-0.039). For QPCTL/GIPR rs11672660, MC4R
rs17782313, and PPARG rs1801282, risk alleles associated with
obesity or diabetes and resistance to weight loss in the prior
literature were nominally associated with fewer eating occasions
per day. Statistical adjustment for total caloric intake did not
substantially alter these associations.

Percentage of energy from fat, carbohydrate, and protein

Genetic associations with percentage of energy from fat,
carbohydrate, and protein are presented elsewhere (see Supple-
mental Table 1 under “Supplemental data” in the online issue).
The obesity risk allele at rs1514176 (TNNI3K region) was sig-
nificantly associated with a lower percentage of energy from
protein (P = 0.002; —0.28% per copy). Each copy of the obesity
risk allele at FTO rs1421085 was also nominally associated with
a greater percentage of energy from fat (P = 0.019; 0.52% per
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Obesity risk

Chromosome Closest gene SNP Major allele Minor allele MAF allele
1 TNNI3K rs1514176 A G 0.48 G
2 INSIG2 rs7566605 G C 0.31 C
3 PPARG rs1801282 C G 0.09 c?
3 NISCH-STABI rs4687617 A G 0.05 A
11 BDNF rs10767664 A T 0.18 A
11 BDNF 1s6265 G A 0.16 G
11 BDNF rs1401635 G C 0.29 C
13 MTIF3 rs7988412 G A 0.18 A
15 MAP2KS5 2241420 G A 0.30 G
16 SH2B1 rs4788099 A G 0.37 G
16 FTO rs1421085 T C 0.40 C
16 FTO rs3751812 C A 0.39 A
16 FTO 1s9922708 G A 0.43 A
16 FTO 1rs9939609 T A 0.45 A
18 MC4R rs17782313 T C 0.25 C
19 QPCTL/GIPR 511672660 G A 0.19 G

! MAF, minor allele frequency; SNP, single nucleotide polymorphism.
2 The C allele at PPARG 151801282 has been associated with diabetes and resistance to weight loss.

copy). No association with percentage of energy from carbohy-
drate and no other associations between the obesity risk alleles
and percentage of energy from fat or carbohydrate were observed.

Food Guide Pyramid food groups

Several associations of obesity risk alleles with daily servings
of breads, cereals, rice and pasta (pyramid food group 1 [PFG1]);
dairy products (PFG4); meats, eggs, nuts and beans (PFG5); and
fats, oils, and sweets (PFG6) were observed (see Supplemental

TABLE 3

Table 2 under “Supplemental data” in the online issue). For
example, risk variants within BDNF were significantly associ-
ated with more servings from the dairy product and the meat,
eggs, nuts, and beans food groups (P < 0.004), whereas the risk
allele at SH2B1 rs4788099 was also significantly associated with
more servings of dairy products (P = 0.001). Statistical adjust-
ment for total caloric intake largely diminished these associa-
tions, which suggests that any genetic associations with servings
within these food groups were likely mediated via previously
noted effects on total caloric intake. In the primary exception,

Baseline association of the minor allele at each single nucleotide polymorphism with total caloric intake’

Single nucleotide

Adjusted for age, sex, study
site, and population stratification

Adjusted for age, sex, study site,
population stratification, and weight

Gene polymorphism Minor allele p = SE P value p = SE P value

Total energy intake (kcal)
TNNI3K rs1514176 G 45.193 *+ 26.169 0.085 42.724 + 25711 0.097
INSIG?2 157566605 C —20.850 £ 27.815 0.453 —17.082 £ 27.434 0.534
PPARG rs1801282 G? 97.386 = 52.528 0.064 94.497 *+ 52.129 0.070
NISCH-STAB1 rs4687617 G 85.890 = 61.122 0.160 78.626 = 60.108 0.191
BDNF rs10767664 T? —104.005 % 38.290 0.007° —103.103 * 37.993 0.007°
BDNF rs6265 A’ —107.090 *+ 38.659 0.006’ —103.370 + 38.332 0.007°
BDNF rs1401635 C —25.061 * 26.324 0.341 —23.982 * 26.115 0.359
MTIF3 rs7988412 A 3.427 *+ 40.260 0.932 0.223 *+ 39.938 0.995
MAP2KS5 1s2241420 A 8.400 = 28.813 0.771 14.043 = 28.402 0.621
SH2BI1 rs4788099 G? 33.762 *= 27.025 0.211 22.708 *= 26.838 0.398
FTO rs1421085 C 60.139 = 27.833 0.031° 50.581 = 27.638 0.067
FTO 13751812 A 58.685 = 27.836 0.035% 50.746 *= 27.618 0.066
FTO rs9922708 A 56.935 *= 26.736 0.033’ 48.480 * 26.540 0.068
FTO rs9939609 A 45.604 *+ 27.764 0.101 38.738 * 27.434 0.158
MC4R rs17782313 C 17.953 = 30.710 0.559 12.429 * 30.497 0.684
QPCTL/GIPR rs11672660 A? 27.161 £ 40.326 0.501 34.735 £ 39.823 0.383

" All analyses were conducted with multivariable linear regression with the statistical covariates listed in the table (n = 2075). Statistical significance was

determined after correction for multiple comparisons, or P < 0.004.

2 As the marker minor allele frequency fell below 20%, the rare genotype was combined with the intermediate genotype.

3 . Cen
P values of nominal significance.
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TABLE 4

McCAFFERY ET AL

Baseline association of the minor allele at each single nucleotide polymorphism with the number of eating occasions’

Single nucleotide

Adjusted for age, sex, study site,
population stratification, and total
energy intake

Adjusted for age, sex, study
site, and population stratification

Gene polymorphism Minor allele p = SE P value p = SE P value

Eating occasions (no./d)
TNNI3K 51514176 G —0.030 * 0.037 0.414 —0.041 + 0.036 0.255
INSIG2 187566605 C —0.042 * 0.038 0.263 —0.037 *+ 0.037 0317
PPARG rs1801282 G? 0.153 + 0.074 0.038% 0.128 + 0.073 0.080
NISCH-STABI s4687617 G 0.027 = 0.082 0.742 0.006 =+ 0.081 0.945
BDNF 510767664 T? —0.024 *+ 0.056 0.661 0.003 + 0.055 0.951
BDNF 186265 A? —0.005 * 0.058 0.927 0.023 =+ 0.057 0.682
BDNF 1s1401635 C —0.054 *+ 0.039 0.160 —0.048 + 0.038 0.205
MTIF3 s7988412 A 0.028 = 0.054 0.601 0.026 =+ 0.053 0.623
MAP2KS5 1s2241420 —0.023 * 0.037 0.524 —0.026 + 0.036 0.470
SH2BI rs4788099 G? —0.003 * 0.038 0.936 —0.011 * 0.037 0.758
FTO 1s1421085 C 0.125 = 0.039 0.001# 0.109 + 0.038 0.004*
FTO rs3751812 A 0.096 = 0.039 0.014° 0.081 =+ 0.038 0.034°
FTO 1$9922708 A 0.077 * 0.037 0.039° 0.063 + 0.037 0.087
FTO $9939609 A 0.087 = 0.037 0.018° 0.075 + 0.036 0.037°
MC4R rs17782313 C —0.113 * 0.041 0.006° —0.112 * 0.041 0.006°
OPCTL/GIPR 511672660 A? 0.154 + 0.054 0.005° 0.146 *+ 0.053 0.006°

' All analyses were conducted with multivariable linear regression with the statistical covariates listed in the table (n = 2075).
2 Because the marker minor allele frequency fell below 20%, the rare genotype was combined with the intermediate genotype.

3 - . .
P values of nominal significance.

# Statistical significance after correction for multiple comparisons, or P < 0.004.

statistical adjustment for total caloric intake did not substantially
alter the association of SH2BI rs4788099 with more servings
per day of dairy products (P = 0.002). No associations were
observed with servings of vegetables (PFG2) or fruit (PFG3)
before or after statistical adjustment for total caloric intake.

DISCUSSION

GWAS have been successful in identifying common genetic
variants that are associated with obesity. However, the mecha-
nisms through which these polymorphisms affect obesity remain
unclear. Here we report that select obesity genetic risk markers
may affect meal patterning and servings per day within specific
Food Guide Pyramid food groups, such as dairy products, as
measured by an FFQ.

Obesity risk alleles at FTO rs1421085 were significantly as-
sociated with a greater number of meals and snacks per day,
with nominal associations with greater total caloric intake,
greater percentage of energy from fat, and more servings of fats,
oils, and sweets. The association of FTO obesity risk SNPs with
a greater number of eating occasions was not substantially di-
minished by adjustment for total caloric intake. The overall
picture suggests that variation in F70 may bias meal patterning
and perhaps total caloric intake and consumption of sweet or
high-fat foods.

Because rs1421085 is in high linkage disequilibrium with
1s9939609, our results are largely consistent with prior research
in children, which indicates that F70 rs9939609 is associated
with a preference for energy-dense food (13), greater con-
sumption of fat and calories (14), consumption of palatable food
after having eaten a meal (37), and reduced satiety (15). How-

ever, we tested rs9939609 directly in our analyses and found
more consistent associations with rs1421085. Previously in
adults, no association between F70O rs9939609 and caloric in-
take or percentage of energy from fat intake has been found (17,
20). Although this suggests that rs1421085 may better capture
the effect of this region on dietary intake, the functional sig-
nificance of this locus in obesity and the role of both rs1421085
and rs9939609 remain to be determined (38, 39).

Risk alleles at BDNF 1s6265 and rs10767664 predicted
a pattern of dietary variables, including servings of meats, eggs,
nuts, and beans and servings of dairy products with nominal
associations with total caloric intake; servings of breads, cereals,
rice, and pasta; and servings of sweets and fats. BDNF and its
primary receptor TrkB are expressed key brain regions of the
hypothalamus and dorsal vagal complex related to body weight
and energy homeostasis (40—44). Targeted disruption of BDNF
in transgenic models results in hyperphagia and obesity (45-49).
BDNF 156265 leads to a valine-to-methionine substitution at
position 66 (Val66Met) in the prodomain of the gene. Moreover,
at least one case study also links rare mutations in BDNF to
severe obesity in an 8-y-old girl (50). The associations with
servings within the various food groups were diminished on
statistical adjustment for total caloric intake, which suggests that
the primary effect was on caloric intake but that the total was
achieved through servings with the associated food groups.

The risk allele at rs1514176, an intronic SNP located within
TNNI3K, was significantly associated with a lower percentage of
energy from protein and nominally associated with more daily
servings of fats, oils, and sweets. TNNI3K is a cardiac troponin-
interacting kinase expressed primarily in the heart (51). Little is
currently known about the mechanisms through which this gene
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region influences obesity. Because protein is considered to be
the most satiating macronutrient (52), diets lower in protein
intake may actually contribute to increased overall energy intake
as a result of reduced overall feelings of fullness and thereby to
a greater degree of positive energy balance.

The risk allele at rs4788099 in the SH2BI region was sig-
nificantly associated with more daily servings of dairy products.
SH2BI is involved in leptin signaling. Deletions in this region,
including SH2B1, have been associated with early-onset obesity
(53). Whereas consumption of more daily servings of dairy
products, particularly lower-fat dairy products, has been asso-
ciated with lower adiposity (54), the food group in this in-
vestigation contains both low- and high-fat products. Thus, this
relation may be driven by greater intake of high-fat dairy product
servings.

It was interesting to note that the number of eating episodes
was among the dietary phenotypes most strongly associated with
genetic polymorphisms. The relation of number of eating oc-
casions and risk of overweight has been debated. In laboratory
studies, it has been shown in some but not all (55, 56) studies that
spreading the same total caloric intake over a greater number of
meals per day may better control appetite. In free-living pop-
ulations, it is quite plausible that extra eating occasions could
promote greater caloric intake and weight gain; however, the data
appear mixed. Certain studies find that a greater number of meals
per day is associated with lower body weight (57), whereas others
find the opposite effect or no association (58, 59).

The strengths of this study included a large ethnically diverse
sample inclusive of men and women, control for population
stratifications, use of a well-validated FFQ, and genotyping of
many genetic markers previously associated with obesity.

Limitations include basing conclusions on a select cohort of
individuals (overweight or obese with type 2 diabetes) and,
therefore, conclusions may not be generalizable. Similar to other
genetic association studies, the size of the cohort may have
prevented us from detecting more modest effects. Although we
observed consistent patterns of association, many of the asso-
ciations were of nominal significance and replication in an in-
dependent cohort should be conducted to support or refute these
results.

Our study was also cross-sectional in design, which prevented
us from determining the time precedence of genetic associations
with diet and obesity (eg, whether genetic associations with diet
preceded genetic associations with obesity, or vice versa). For
example, if diet is a mechanism through which these SNPs in-
crease risk of obesity, it would be expected that associations with
diet would precede associations with obesity. It is also possible
that people with larger body sizes eat more to maintain their
weight, in which case genetic associations with obesity would be
expected to precede those with diet. These are important ques-
tions for future research with longitudinal modeling.

The measurement of dietary intake also has limitations.
Whereas the USDA’s 5-pass method, 24-h dietary recall is
currently considered to be the gold standard of dietary assessment
(60, 61), FFQs are usually used in large samples to assess dietary
intake over a specified time period because of their low cost, ease
of administration (62), and prior validation against the 24-h
dietary recall (26). Because FFQs are conducted by self-report, it
is recognized that underreporting of dietary intake is common,
particularly in individuals who are overweight (63-66), have
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diabetes (66), and are wanting to reduce their weight (64). It is
plausible that a tendency to underreport dietary intake may have
influenced our results. Given the variability of body weight in the
sample, it is also possible that systematic underreporting may
have occurred, such that greater underreporting occurred among
those with the highest BMI. Moreover, physical activity and other
factors that determine energy expenditure and thereby energy
intake may influence the correlation between weight and caloric
intake. Nonetheless, underreporting should have restricted the
range of self-reported dietary intake in our sample, rendering
the detection of significant associations more difficult. Thus, the
identification of genetic associations with dietary intake via FFQs
suggests that the strength of these associations may improve with
more precise measurement.

In summary, our results suggest that select obesity genetic risk
markers—particularly markers within FTO, BDNF, TNNI3K, and
SH2BI]—predict a pattern of obesogenic dietary intake, in-
cluding a higher number of eating occasions per day and more
servings from calorically dense food groups. If replicated, these
results could inform the mechanisms through which these ge-
netic markers are associated with adiposity.
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