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Abstract

Background: Prostaglandin I2 (PGI2), a lipid mediator currently used in treatment of human disease, is a critical regulator of
adaptive immune responses. Although PGI2 signaling suppressed Th1 and Th2 immune responses, the role of PGI2 in Th17
differentiation is not known.

Methodology/Principal Findings: In mouse CD4+CD62L+ naı̈ve T cell culture, the PGI2 analogs iloprost and cicaprost
increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was
dependent on PGI2 receptor IP signaling. In mouse bone marrow-derived CD11c+ dendritic cells (BMDCs), PGI2 analogs
increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naı̈ve T cells for IL-17A
production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental
autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords
compared to wild type mice. These results suggest that PGI2 promotes in vivo Th17 responses.

Conclusion: The preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as
PGI2 and its analogs are commonly used to treat human pulmonary hypertension.
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Introduction

Prostaglandin I2 (PGI2) is a lipid product of arachidonic acid

metabolism and signals through a seven transmembrane Gs

protein-coupled receptor known as IP [1]. PGI2 is produced in

greatest abundance by vascular tissues and signaling through IP

protects against vascular remodeling and thrombogenesis [2].

PGI2 and its analogs with longer biologic half-lives are currently

being used therapeutically in patients with primary pulmonary

hypertension, as well as in other causes of pulmonary hyperten-

sion, including scleroderma, systemic lupus erythematosus, con-

genital heart disease, HIV, and Gaucher’s disease [3]. In addition

to its vascular effects, PGI2 is also an important mediator of

inflammation. Signaling through IP inhibited Th1 inflammation in

a mouse model of respiratory syncytial virus infection and blunted

Th2 inflammation in murine allergen challenge models [4–8].

However, the role of PGI2 in modulating Th17 inflammation has

not been completely described.

Th17 cells are distinct from Th1 and Th2 cells and are

associated with autoimmune diseases, such as multiple sclerosis

and rheumatoid arthritis [9]. Cytokines responsible for the

differentiation of naı̈ve mouse T cells into Th17 cells are IL-6

and TGF-b [10–12]. IL-23 produced by dendritic cells also plays

a pivotal role in the development of Th17 cells. In vitro studies

revealed that IL-23 promoted the survival of Th17 cells,

maintained IL-17A production and induced IL-22 expression

[13,14]. Another study in mice further indicated that IL-23 was

required for driving terminal Th17 differentiation [15]. IL-23

was essential for in vivo expansion of pathogenic Th17 cells in

mouse models of autoimmune inflammation as indicated by

undetectable IL-17-producing T cells in IL-23 p19 deficient mice

[13,16]. In experimental autoimmune encephalomyelitis (EAE),
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an animal model of human multiple sclerosis, IL-23 and Th17

cells were critical for the induction, but not the effector phase, of

EAE [16]. In addition, compared to wild type (WT) mice, IL-

17A knockout (KO) mice had significantly suppressed EAE as

indicated by delayed disease onset, reduced maximum severity

scores, attenuated histological changes, and early recovery from

the disease [17].

Th17 cell differentiation and proliferation is negatively

regulated by the Th1 cytokine IFN-c and the Th2 cytokines

IL-4 and IL-13 [18,19]. Anti-IFN-c, anti-IL-4 and anti-IL-13

antibodies increased IL-17A production by CD4 T cells

polarized with TGF-b and IL-6 [18,19]. Consistently, the

STAT4 and STAT6 signaling pathways critical for Th1 and

Th2 differentiation, respectively, inhibit Th17 differentiation

[18]. We previously published that the PGI2 analogs cicaprost

and iloprost inhibited bone marrow derived dendritic cell

(BMDC) production of IL-12, a critical factor in Th1

development, as well as blunted the ability of dendritic cells

to generate an antigen-specific Th2 response [20]. We further

reported that these PGI2 analogs inhibited the production of

IFN-c by polarized Th1 cells and suppressed IL-4 and IL-13

expression by polarized Th2 cells in a dose-dependent pattern

[21]. Since PGI2 inhibited production of cytokines known to

negatively regulate Th17 production, we hypothesized that PGI2

promotes Th17 development and cytokine production.

Materials and Methods

Ethics Statement
All experimental protocols were approved by Institutional

Animal Care and Use Committee at Vanderbilt University

(Protocol # M/05/316).

Mice
Female BALB/c, C57BL/6 and OT II mice were obtained

from The Jackson Laboratory. IP KO mice were generated by

homologous recombination in embryonic stem cells and were

backcrossed to a C57BL/6 background for .10 generations [22].

OT II-IP KO mice were generated by breeding IP KO mice with

OT II mice. Age-matched C57BL/6 and OT II mice were used as

control mice for IP KO and OT II-IP KO mice, respectively. The

mice were used at 8–12 weeks old.

Reagents
Cicaprost was a gift from Dr. M. Huebner (Schering-Plough

Corporation). Iloprost was obtained from Cayman Chemicals.

Recombinant IL-4, anti-CD3 (clone 2C11) and anti-CD28 (37.51)

were from BD Biosciences. IL-23 and GM-CSF was obtained

from R&D Systems. Neutralizing anti-IL-4 and anti-IFN-c
antibodies and rat IgG1 were from BD Biosciences.

Naı̈ve CD4+CD62L+ T Cell Culture and Treatment
CD4+CD62L+ cells were obtained from mouse spleens with

mouse naı̈ve CD4+CD62L+ T cell isolation kits (Miltenyi Biotec).

These cells were resuspended at 16106 cells/ml in RPMI-1640

medium (Mediatech, Inc.) supplemented with 10% FBS (Hy-

Clone), 4 mM L-glutamine, 1 mM sodium pyruvate, 55 mM 2-

mercaptoethanol, 10 mM HEPES, 100 units/ml penicillin and

100 mg/ml streptomycin. CD4+CD62L+ T cells of OT II and OT

II-IP KO mice were stimulated with ovalbumin peptide 323–339

(OVA323–339) (1 mg/ml) and anti-CD28 (1 mg/ml) in 96-well plates

for 4 days.

CD11c+ cell-depleted CD4+CD62L+ cells of OT II, C57BL/6,

and BALB/c mice were purified by Miltenyi CD4+CD62L+ T cell

purification kit with an additional step to remove CD11c+ cells

with biotin-conjugated anti-CD11c antibody (BD Biosciences) and

streptavidin-Microbeads (Miltenyi). CD11c+ cell-depleted

CD4+CD62L+ cells were stimulated with plate-bound anti-CD3

and anti-CD28 in 96-well plates for 4 days [21]. To prepare

antibody-bound plates, sodium bicarbonate buffer (0.1 M, pH9.6)

containing anti-CD3 (5 mg/ml) and anti-CD28 (2 mg/ml) was

added to the plate (50 ml/well). The plates were incubated at 37uC
for .4 h and washed twice with RPMI 1640 before cells were

seeded.

To determine the effect of PGI2 on T cell differentiation, we

used the PGI2 analogs iloprost and cicaprost with longer

biologic half-lives than PGI2 as PGI2 is very unstable in

aqueous solution. Iloprost and cicaprost were added at 10-fold

serial-diluted concentrations (1 nM, 10 nM and 100 nM) to the

culture medium at the beginning of the cell culture. Vehicle

solutions (methyl acetate for iloprost and water for cicaprost)

were used as control treatments. All concentrations of the same

PGI2 analog were adjusted to contain same amount of vehicle.

In some experiments, IL-23 (10 ng/ml), IL-4 (10 ng/ml), anti-

IL-4 (10 mg/ml), and/or anti-IFN-c (10 mg/ml) were added to

the cell culture in addition to PGI2 analogs at the time of T cell

activation.

Flow Cytometry
CD4+CD62L+ cells isolated from OT II mouse spleens with

Miltenyi CD4+CD62L+ T cell purification kit were stained with

propidium iodide and either Alexa Fluor-labeled anti-CD11c

antibody (eBioscience) or control rat isotype IgG2a-Alexa Fluor.

The cells were analyzed by BDTM LSR II flow cytometer (BD

Bioscience). In some experiments, CD4+CD62L+CD11c2 cells of

C57BL/6 mouse spleens were purified, activated with anti-CD3

and anti-CD28, and treated with iloprost or cicaprost at 100 nM

in the presence of IL-23 (10 ng/ml) at the beginning of the cell

culture. The cells were cultured for 4 days and treated with

GolgiPlug, PMA (1 ng/ml) and ionomycin (1 mM) for 6 h before

being harvested. The cells were stained with Live/Dead Cell

Viability Assay Kit (Invitrogen), anti-IL-17A and anti-CD4 for

flow cytometry.

Cytokine Measurements by ELISA and ELISPOT
IL-17A, IL-22, IL-4 and IFN-c were measured by Quantikine

and Duoset ELISA kits (R&D Systems) according to the

manufacturer’s instructions. The ability of cells to secrete IL-17A

was analyzed by ELISPOT kits (MabTech Inc.). Briefly, after OT

II and OT II-IP KO CD4+CD62L+ cells were activated and

differentiated with OVA323–339 and anti-CD28 in the presence of

PGI2 analogs and IL-23 (10 ng/ml) for 4 days, the cells were

washed twice and seeded at 2.56105 cells/ml with OVA323–339

(1 mg/ml) in ELISPOT plates coated with IL-17A capture

antibody. The cells were cultured for 20 h followed by ELISPOT

assay according to manufacturer’s recommendations.

Dendritic Cell Culture and BMDC-T Cell Co-culture
Bone marrow-derived dendritic cells (BMDCs) were generated

using a previously described method [20]. Briefly, the bone

marrow in femurs and tibias of OT II and OT II-IP KO mice was

flushed out with RPMI 1640 medium and a single-cell suspension

was prepared by passing the bone marrow solution through a 19-

gauge needle five times. After lysis of RBC, the cells were passed

through a nylon cell strainer with a mesh size of 70 mm. The cells

were then washed and resuspended at 56105 cells/ml in complete

RPMI 1640 medium containing 5% FBS, 50 mg/ml gentamicin,

and 55 mM 2-mercaptoethanol. GM-CSF was added to the cell
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solution at 20 ng/ml. The cells were seeded at day 0 in 6-well

plates (2 ml/well) and cultured at 37uC in humidified air

containing 5% CO2. On day 3, 2 ml of complete medium

containing 20 ng/ml of GM-CSF was added to each well. On day

6, half of the culture medium was replaced with complete medium

containing 20 ng/ml GM-CSF. At day 8, non- and loosely

adherent cells were harvested. Greater than 60% of the harvested

cells were CD11c+. CD11c+ cells were further purified from the

mixed cell population with Miltenyi anti-CD11c Microbeads. The

purified cells (designated BMDCs) were .94% CD11c+ as

assessed by flow cytometry. BMDCs were treated with LPS

(1 mg/ml) and OVA protein (100 mg/ml) in the presence of

iloprost, cicaprost or vehicle solutions, and cultured for 20 h. The

culture supernatant was harvested for IL-23 and IL-12 cytokine

measurements by ELISA. For BMDC-T cell co-culture experi-

ments, BMDCs were treated with LPS, OVA protein and iloprost

(100 nM), washed 3 times to remove iloprost and co-cultured with

OT II CD4+CD62L+ T cells purified with Miltenyi CD4+CD62L+

T cell purification kit at 1:2.5 ratio (20,000 BMDCs : 50,000 T

cells) for 4 days. The co-culture supernatant was harvested for IL-

17A analyses by ELISA.

Experimental Autoimmune Encephalomyelitis (EAE)
IP KO mice and WT C57BL/6 mice were subcutaneously

immunized with 20 mg of myelin oligodendrocyte glycoprotein

(MOG) peptide 35–55 (Sigma) in 100 ml PBS emulsified with an

equal volume of Freund’s complete adjuvant containing 5 mg/ml

Mycobacterium tuberculosis H37RA (Difco). The mice were injected

with 100 ng of pertussis toxin in 100 ml PBS (List Biological

Laboratories) intraperitoneally on days 0 and 2 after immunization.

The mice were monitored every day and scored for clinical severity

for 24 days on the following scale:1, limp tail; 2, limp tail and

weakness of hind legs; 3, limp tail and complete paralysis of hind legs

(most common) or limp tail with paralysis of one front and one hind

leg; 4, limp tail, complete hind leg and partial front leg paralysis; and

5, complete hind and complete front leg paralysis, no movement

around the cage, or dead. Spinal cords were harvested on day 13

after MOG immunization. The mice were perfused with 12 ml PBS

before spinal cord harvesting. The spinal cords were minced and the

spinal cord cells were isolated with Neural Tissue Dissociation Kits

(Miltenyi) following manufacturer’s instructions. The spinal cord

cells were resuspended in 0.9 M sucrose in HBSS (Mediatech) and

pelleted at 8506g for 10 min. The mononuclear cells of the spinal

cords in the pellet were washed and counted. The isolated cells

(46105/ml) were stimulated with PMA (1 ng/ml) and ionomycin

(1 mM) for 24 h. The culture supernatant was analyzed for IL-17A

production by ELISA.

Measurement of 2,3-dinor-6-keto-PGF1a in Mouse Urine
C57BL/6 mice were immunized with either MOG peptide/

CFA or with saline as a control (15 mice per group). The mice

were placed in metabolic cages and 3 mice were placed in each

cage. Mouse urine was collected daily for measurements of 2,3-

dinor-6-keto-PGF1a, a stable metabolite of PGI2, by a gas

chromatographic-mass spectrometric assay as previously de-

scribed [23]. Creatinine in the urine was measured by a

chemical assay based on Jaffe’s reaction according to the

manufacturer’s instructions (Exocell Inc). The levels of 2,3-

dinor-6-keto-PGF1a was normalized to creatinine concentrations

in the urine samples.

Statistics Analysis
The P values were calculated by using Student’s t-test or one-

way ANOVA. Values below the limit of detection were assigned a

value that was half the lower limit of detection for that assay.

Values of P,0.05 were considered significant.

Results

PGI2 Analogs Induce IL-17A Production by Naı̈ve CD4 T
Cells of OT II Mice

To test the hypothesis that PGI2 has stimulatory effects on Th17

differentiation, we used CD4+CD62L+ naı̈ve T cells from spleens

of OT II mice for antigen-specific T cell activation and

differentiation. OT II CD4 T cells express a transgenic T cell

receptor that specifically recognizes the ovalbumin peptide 323–

339. Since OT II mice were not exposed to OVA protein before

being used in this study, T cells with transgenic TCR specific for

OVA323–339 should therefore be naı̈ve cells. We used OVA323–339

to stimulate OT II CD4+CD62L+ cells to further ensure that only

naı̈ve T cells expressing the transgenic TCR were stimulated and

activated. Therefore, we could use this system to determine the

effect of PGI2 analogs on Th17 differentiation of naı̈ve CD4 T

cells.

When OT II CD4+CD62L+ naı̈ve T cells were stimulated with

OVA323–339 and anti-CD28 antibody, the cells were activated,

proliferated and produced cytokines including IL-4 (5296105 pg/

ml), IFN-c (406689 pg/ml) and IL-17A (58626 pg/ml) during 4

days of cell culture after stimulation. Stimulation of OT II

CD4+CD62L+ cells with bovine serum albumin (BSA) and anti-

CD28 antibody did not result in cell activation or production of

detectable levels of IL-4, IFN-c and IL-17A. These data indicate

that the OT II T cell response to OVA323–339 was antigen-specific.

The activation of OT II CD4+CD62L+ T cells by OVA323–339

and anti-CD28 suggested the presence of antigen presenting cells

in the CD4+CD62L+ cell population because presentation of OVA

peptide in MHC II molecules is required for CD4 T cell

activation. Indeed, we found that 3% of the CD4+CD62L+ cell

population were CD11c+ (Figure S1). Since we used 200,000 total

cells per well in 96 well plates for the T cell culture, there were

approximately 6,000 CD11c+ cells per well. When the CD11c+

cells were depleted from the CD4+CD62L+ cell population, the

CD11c+ cell-depleted CD4+CD62L+ cells were no longer activat-

ed by stimulation with OVA323–339 and anti-CD28 and did not

produce a detectable level of IL-17A (Figure S2). Therefore the

CD11c+ cells in the cell population purified by the CD4+CD62L+

isolation kit acted as antigen presenting cells. We will use the term

CD11c+ cell-containing CD4+CD62L+ cells to describe the

CD4+CD62L+ cell population isolated by Miltenyi CD4+CD62L+

T cell purification kit in this report.

In our study, we found consistent and robust T cell activation

and proliferation in CD11c+ cell-containing OT II CD4+CD62L+

cell culture after stimulation with OVA323–339 and anti-CD28.

This provided us a T cell activation system to study the effect of

PGI2 analogs on Th17 differentiation in an antigen-specific

manner. We used this system to test the hypothesis that PGI2

analogs increased Th17 differentiation and reasoned that if we

found a pro-IL-17A effect of PGI2 analogs on CD11c+ cell-

containing CD4+CD62L+ cell culture system, we would then

further determine whether PGI2 analogs act on CD11c+ DCs or

on naı̈ve T cells, or both for their pro-Th17 function in vitro.

To test the hypothesis that PGI2 promoted Th17 differentiation,

we stimulated CD11c+ cell-containing CD4+CD62L+ cells with

OVA323–339 and anti-CD28 and treated the cells with the PGI2

analogs iloprost, cicaprost or the respective vehicles as controls at

the beginning of the cell culture. Four days after T cell activation,

the cell culture supernatant was collected for IL-17A measure-

ments by ELISA. As shown in Figure 1A, iloprost and cicaprost

PGI2 Promotes Th17 Differentiation and EAE
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dose-dependently increased IL-17A production by the T cells.

Treatment with iloprost (100 nM) resulted in a 2.6-fold increase of

IL-17A production compared to vehicle treatment (219650 pg/

ml vs. 83625 pg/ml, p,0.05). Similarly, cicaprost treatment

(100 nM) increased IL-17A production 4.6-fold compared to

vehicle treatment (270675 pg/ml vs. 59664 pg/ml, p,0.05)

(Figure 1A). Moreover, these two PGI2 analogs also dose-

dependently increased the production of IL-22 (Figure 1B),

another signature cytokine produced by Th17 cells. Cells treated

with iloprost (100 nM) produced 5.8-fold more IL-22 than vehicle-

treated cells (19856195 pg/ml vs.3416191 pg/ml, p,0.05),

while cells treated with cicaprost (100 nM) induced 5.0-fold more

IL-22 than vehicle-treated cells (17306365 pg/ml vs.

3476286 pg/ml, p,0.05) (Figure 1B). The stimulatory effect of

iloprost and cicaprost on IL-17A and IL-22 production by the in

vitro stimulated naı̈ve CD4 T cells indicates that the PGI2 analogs

promoted Th17 differentiation.

IL-23 Increases the pro-Th17 Effect of PGI2 Analogs
Since IL-23 promotes Th17 cell survival and expansion [12,24],

we then assessed whether IL-23 further increases IL-17A

production with PGI2 analogs. We treated CD11c+ cell-containing

CD4+CD62L+ cells of OT II mice with OVA323–339 and anti-

CD28 in the setting of increasing doses of iloprost, cicaprost or the

respective vehicles in the presence of IL-23. As shown in Figure 2A,

in the presence of IL-23, iloprost and cicaprost further increased

IL-17A production in a dose-dependent fashion, compared to

vehicles. Iloprost (100 nM) induced 2.3-fold more IL-17A than

vehicle (880689 pg/ml vs. 375635 pg/ml, p,0.05), while

cicaprost (100 nM) induced 1.9-fold more IL-17A than vehicle

(805678 pg/ml vs. 425667 pg/ml, p,0.05). Similarly, iloprost

and cicaprost further augmented IL-22 production up to 2-fold in

a dose-dependent manner (Figure 2B). These results indicate that

both PGI2 analogs and IL-23 stimulate IL-17A and IL-22

expression and that the effects of the individual PGI2 analog and

IL-23 on IL-17A production appeared to be additive (Figure 1 and

Figure 2).

Avni and colleagues previously reported that when naı̈ve CD4

T cells were activated, the cells produced Th1 and Th2 cytokines

in a lineage-non-specific manner during the first two days upon

TCR-stimulation and costimulatory signaling [25]. It is possible

that IL-17A in PGI2 analog-treated cell culture was produced

transiently before Th17 differentiation. To assess the effect of PGI2

analogs on Th17 differentiation, we used ELISPOT to determine

the IL-17A-producing ability of CD4+CD62L+ cells. CD11c+ cell-

containing CD4+CD62L+ cells were activated and differentiated

with OVA323–339, anti-CD28 and IL-23 in the presence of iloprost,

cicaprost or the respective vehicles for 4 days. The cells were

washed twice and stimulated with OVA323–339 for 20 h followed

by ELISPOT assay. As seen in Figure 2C and 2D, iloprost and

cicaprost dose-dependently increased the numbers of IL-17A-

producing cells as indicated by increased numbers of spots

compared to vehicle-treated cells. The treatment of cells with

the PGI2 analogs also resulted in elevated levels of IL-17A

expression at a single cell level as indicated by larger sizes of the

spots, compared to vehicle controls. Iloprost (100 nM) induced

3.2-fold more IL-17A-producing cells than the vehicle control

(93612 spots vs. 2963 spots, p,0.05), while cicaprost (100 nM)

generated 4.8-fold more IL-17A-producing cells than vehicle

(115611 spots vs. 2463 spots, p,0.05) (Figure 2D). Therefore,

PGI2 analogs drove Th17 differentiation of naı̈ve CD4 T cells and

induced IL-17A production.

PGI2 Analogs Increase IL-17A Production Through IP
Receptor Signaling

PGI2 signals through IP to increase intracellular cAMP levels

and regulate downstream gene expression [20,26]. To test the

hypothesis that the Th17 stimulatory effect of PGI2 analogs was

mediated by IP receptor signaling in an antigen-specific fashion,

we created OT II-IP KO mice that not only express OVA323–339-

specific TCR but also are deficient in IP receptor. We prepared

CD11c+ cell-containing CD4+CD62L+ cells from OT II and OT

II-IP KO mouse spleens, activated the cells with OVA323–339 and

anti-CD28 in the presence of IL-23 and treated the cells with

iloprost, cicaprost, or the respective vehicles. As expected the PGI2

analogs significantly increased IL-17A production by OT II T cells

in a dose-dependent fashion up to 3.4-fold compared to the

respective vehicles (Figure 3A and 3B). In contrast, iloprost and

cicaprost did not increase IL-17A production by OT II-IP KO T

cells (Figure 3A and 3B), indicating that the pro-IL-17A effect of

the PGI2 analogs was dependent on IP receptor signaling.

Moreover, as determined by ELISPOT, the PGI2 analogs

Figure 1. PGI2 analogs increased IL-17A and IL-22 production by CD4 T cells. CD11c+ cell-containing CD4+CD62L+ cells isolated from
spleens of OT II mice were activated with OVA323–339 (1 mg/ml) and anti-CD28 (1 mg/ml) and treated with iloprost, cicaprost, or the respective vehicles
as controls for 4 days. The levels of (A) IL-17A and (B) IL-22 in the culture supernatant were determined by ELISA. * p,0.05 vs. vehicle, n = 4. Data
(mean 6 SEM) are representative of 4 experiments.
doi:10.1371/journal.pone.0033518.g001
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increased the number of IL-17A-producing cells in OT II T cells,

but not in OT II-IP KO cells, after the cells were activated for 4

days and re-stimulated with OVA323–339 for 20 h (Figure 3C and

3D), indicating that PGI2 analog-induced Th17 differentiation was

dependent on IP receptor signaling.

Recombinant IL-4 Suppressed the Stimulatory Effect of
PGI2 Analogs on IL-17A Expression

To determine whether treatment of T cells with PGI2 analogs

during naı̈ve T cell activation and differentiation affected the

profiles of T cell cytokine production, we measured the levels of

IL-4 and IFN-c in the culture supernatant of CD11c+ cell-

containing CD4+CD62L+ OT II T cells activated by OVA323–339

and anti-CD28 and treated with the PGI2 analogs in the presence

of IL-23. As shown in Figure 4A and 4B, iloprost and cicaprost

inhibited IL-4 production in a dose-dependent fashion. At 10 nM

and higher concentrations, the PGI2 analogs almost completely

suppressed IL-4 production (Figure 4A). However, iloprost and

cicaprost did not decrease IFN-c production and iloprost at

100 nM increased IFN-c expression (Figure 4B).

Because IL-4 is a strong inhibitor of Th17 differentiation, we

hypothesized that the PGI2 analogs increased Th17 differentiation

by suppressing IL-4 production and Th2 differentiation. To test

this hypothesis, we added recombinant IL-4 to the culture of PGI2

analog-treated cells. The exogenous IL-4 abrogated the stimula-

tory effect of iloprost and cicaprost on IL-17A production

(Figure 4C), suggesting that activation of the IL-4/IL-4R signaling

pathway effectively directed the T cell differentiation away from

Th17 lineage. This result also suggests that inhibition of the IL-4/

Th2 differentiation pathway is a mechanism by which PGI2

analogs promote Th17 differentiation.

Iloprost Increases the Ratio of IL-23/IL-12 Produced by
BMDCs

The pro-Th17 effect of PGI2 analogs on CD11c+ cell-

containing CD4+CD62L+ cells suggest that PGI2 analogs may

promote Th17 differentiation by an indirect effect on DCs or a

direct function on T cells, or both. To test the hypothesis that

PGI2 analogs increased DC’s ability to stimulate T cell differen-

tiation toward Th17 cells, we assessed whether PGI2 analogs

affected the production of the Th17-driving cytokine IL-23. We

generated BMDCs from OT II mice and OT II-IP KO mice by

culturing bone marrow cells in GM-CSF for 8 days, followed by

purification of CD11c+ BMDCs and treatment of the cells with

Figure 2. PGI2 analogs increased IL-17A and IL-22 production and Th17 differentiation in the presence of IL-23. CD11c+ cell-containing
CD4+CD62L+ cells isolated from spleens of OT II mice were activated with OVA323–339 (1 mg/ml) and anti-CD28 (1 mg/ml) in the presence of IL-23
(10 ng/ml) and treated with iloprost, cicaprost, or respective vehicles for 4 days. The levels of (A) IL-17A and (B) IL-22 in the culture supernatant were
determined by ELISA. (C–D) Iloprost and cicaprost increased the number of IL-17A producing cells and augmented the levels of IL-17A production at
a single cell level. At day 4 after activation and differentiation, the cells were washed twice and re-stimulated with OVA323–339 (1 mg/ml) for 20 h for
IL-17A ELISPOT assay. (C) Representative IL-17A spots. (D) Quantitative presentation of the numbers of spots. * p,0.05 vs. vehicle, n = 4. Data (mean
6 SEM) are representative of 4 experiments (A and B) or 3 experiments (C and D).
doi:10.1371/journal.pone.0033518.g002
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iloprost or vehicle in the presence of LPS and OVA protein.

Twenty hours after the treatment, we harvested the culture

supernatant for IL-23 and IL-12 assays by ELISA. As shown in

Figure 5, iloprost did not change IL-23 production by BMDCs of

both OT II and OT II-IP KO mice (Figure 5A). In contrast,

iloprost decreased the production of the Th1-driving cytokine IL-

12 in OT II BMDCs with almost complete IL-12 suppression at

10 nM and higher concentrations (Figure 5B), compared to the

vehicle treatment, consistent with our previously published

findings [20]. Iloprost did not change IL-12 production by OT

II-IP KO BMDCs (Figure 5B), indicating that the suppressive

effect of iloprost on IL-12 was dependent on IP receptor signaling.

The differential effects of iloprost on IL-23 and IL-12 production

resulted in increased ratio of IL-23/IL-12 in the culture fluid of

iloprost-treated OT II BMDCs, compared to that of vehicle-

treated OT II BMDCs (Figure 5C).

Iloprost Increase the Ability of BMDCs to Stimulate T cell
IL-17A Production

To further test the hypothesis that PGI2 analogs increased the

BMDCs’ ability to stimulate T cell IL-17A expression, we treated

OT II BMDCs and OT II-IP KO BMDCs with iloprost and OVA

protein for 20 h, washed the cells 3 times to remove residual

iloprost and OVA protein, and co-cultured the BMDCs with OT

II CD4+CD62L+ cells for 4 days. We found that OT II BMDCs

treated with 10 nM iloprost, but not with 100 nM of iloprost,

significantly increased IL-17A protein expression in the co-culture

supernatant compared to vehicle-treated OT II BMDCs

(Figure 5D). Iloprost-treated OT II-IP KO BMDCs did not have

augmented IL-17A production in the co-culture experiments

compared to vehicle-treated OT II-IP KO BMDCs (Figure 5D),

indicating that the stimulatory effect of iloprost on BMDCs’ Th17-

induction potential was IP-dependent. Culture of iloprost-treated

BMDCs alone did not result in detectable IL-17A production (data

not shown), suggesting that IL-17A in the BMDC-T cell co-culture

supernatant was produced by CD4+CD62L+ T cells.

PGI2 Analogs Increased IL-17A Production by A Direct
Action on Naı̈ve T Cells

After we found that iloprost increased BMDC’s ability to

stimulate IL-17A responses of T cells, we investigated whether

PGI2 analogs had direct effects on T cell IL-17A production. We

used CD11c+ cell-depleted CD4+CD62L+ cells of OT II mice and

stimulated the cells with anti-CD3 and anti-CD28 antibodies. We

used the pan-TCR stimulation because CD11c+ cell-depleted

CD4+CD62L+ cells were not activated by OVA323–339 and anti-

CD28 (Figure S2). As shown in Figure 6, we found that cicaprost

increased IL-17A production by CD11c+ cell-depleted

CD4+CD62L+ cells of OT II mice (Figure 6A), indicating that

cicaprost acted directly on T cells to promote IL-17A production.

Figure 3. The stimulatory effect of PGI2 analogs on IL-17A production and Th17 differentiation was dependent on IP receptor
signaling. CD11c+ cell-containing CD4+CD62L+ cells isolated from spleens of OT II mice and OT II-IP KO mice were activated with OVA323–339 (1 mg/
ml) and anti-CD28 (1 mg/ml) in the presence of IL-23 (10 ng/ml) and treated with iloprost, cicaprost, or respective vehicles for 4 days. (A–B) The levels
of IL-17A in the culture supernatant were determined by ELISA. (C and D) The numbers of IL-17A spots in ELISPOT. At day 4 after activation and
differentiation, the cells were washed twice and re-stimulated with OVA323–339 (1 mg/ml) for 20 h for IL-17A ELISPOT assay. * p,0.05 vs. vehicle, n = 3.
Data (mean 6 SEM) are representative of 3 experiments.
doi:10.1371/journal.pone.0033518.g003
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We also activated CD11c+ cell-depleted CD4+CD62L+ T cells of

WT BALB/c or C56BL/6 mice with anti-CD3 and anti-CD28 in

the presence or absence of IL-23 and treated the cells with iloprost,

cicaprost or the respective vehicles for 4 days. We found that

iloprost and cicaprost increased IL-17A production by the cells of

BALB/c mice in the absence or presence of IL-23, compared to

respective vehicle controls (Figure 6B). Similarly, PGI2 analogs

increased IL-17A production by CD11c+ cell-depleted

CD4+CD62L+ T cells of C56BL/6 mice after stimulation with

anti-CD3 and anti-CD28 in the presence of IL-23 (Figure 6C).

These results indicate that PGI2 analogs augmented IL-17A

production by direct action on naı̈ve T cells. The stimulatory effect

of PGI2 analogs on IL-17A production by pan-TCR-stimulated

CD4 T cells in both C57BL/6 (OT II and WT C57BL/6 mice)

and BALB/c mouse genetic backgrounds supports that the PGI2

analog-driven Th17 differentiation is mouse strain-independent.

Furthermore, we determined IL-17A expression of CD11c+ cell-

depleted CD4+CD62L+ T cells of WT C56BL/6 mice after the

cells were stimulated with anti-CD3 and anti-CD28 in the

presence of IL-23 by flow cytometry. We found that PGI2 analogs

significantly increased the number of IL-17A-expressing cells

(Figure 6D and 6E). This finding supports that PGI2 analogs

promoted Th17 differentiation from naı̈ve CD4 T cells.

To further study whether the pro-Th17A effect of PGI2 was

mediated by inhibiting the IL-4/Th2 differentiation pathway, we

added anti-IL-4 neutralizing antibody to the cell culture in the

presence of IL-23. We found that CD11c+ cell-depleted

CD4+CD62L+ cells treated with cicaprost plus anti-IL-4 produced

similar levels of IL-17A compared to cells treated with cicaprost

plus rat IgG1 control (Figure 6F), suggesting that cicaprost and

anti-IL-4 did not have an additive pro-IL-17A effect and that the

suppression of IL-4 production by cicaprost seems to be a

mechanism of the pro-Th17 effect. As a control, neutralization of

IFN-c resulted in a significant increase in IL-17A production by

cicaprost-treated cells compared to IgG1 control (Figure 6F),

indicating that cicaprost did not augment IL-17A expression by

inhibiting IFN-c.

IP KO Mice have Delayed EAE Disease Onset
The in vitro pro-Th17 effect of PGI2 analogs demonstrated in

this study suggests that PGI2 plays a role in in vivo Th17

differentiation and IL-17A responses. To assess the in vivo

relevance of the pro-Th17 effect of PGI2 analogs, we used WT

and IP KO mice in a mouse model of human multiple sclerosis,

EAE, a disease associated with IL-17A as IL-17A is important for

the early phase of EAE development [27–29]. To provide a

rationale for this in vivo study, we first investigated whether PGI2

production was elevated during EAE development by measuring

the stable PGI2 metabolite, 2,3-dinor-6-keto-PGF1a, in mouse

urine. As shown in Figure 7A, WT C57BL/6 mice immunized

Figure 4. Recombinant IL-4 suppressed the stimulatory effect of PGI2 analogs on IL-17A expression. CD11c+ cell-containing
CD4+CD62L+ cells isolated from spleens of OT II mice were activated with OVA323–339 (1 mg/ml) and anti-CD28 (1 mg/ml) in the presence of IL-23
(10 ng/ml) and treated with iloprost, cicaprost, or respective vehicles for 4 days. (A and B) Iloprost and cicaprost decreased IL-4 production, but not
IFN-c production as determined by ELISA. (C) Iloprost and cicaprost did not have pro-IL-17A effect in the presence of exogenous IL-4. Recombinant IL-
4 (10 ng/ml) was added to the culture at the beginning of the cell culture and the levels of IL-17A in the supernatant at day 4 were determined by
ELISA. * p,0.05 vs. vehicle (A and B) or vs. PGI2 analog (C), n = 324. Data (mean 6 SEM) are representative of at least 3 experiments.
doi:10.1371/journal.pone.0033518.g004
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with MOG peptide 35–55 in Freund’s complete adjuvant had

significantly elevated levels of PGI2 metabolite at multiple time

points (day 3 to day 13) compared to saline-injected mice. This

result indicates that PGI2 synthesis is modulated by EAE,

suggesting a role of PGI2 in EAE pathogenesis. To examine

whether PGI2 and IP receptor signaling are involved in EAE

development, we used IP KO mice and WT C57BL/6 control

mice for EAE induction. As shown in Figure 7B, IP KO mice had

significantly delayed disease onset as indicated by greater disease

scores for WT mice than IP KO mice from day 12 to day 17. The

disease score peaked at day 17 and day 20 for WT mice and IP

KO mice, respectively, with comparable peak scores (Figure 7B),

indicating that IP deficiency caused a delay of disease onset, but

did not affect the peak disease severity. The mice of both strains

started to recover from the disease after the peak without further

difference in disease scores between WT and IP KO mice

(Figure 7B). We also found that the delayed disease onset in IP KO

mice correlated with attenuated inflammatory cell infiltration to

the spinal cord and decreased IL-17A production by mononuclear

cells in the spinal cord (Figure 7C and 7D). There were 3-fold

fewer mononuclear cells infiltrated in the spinal cord tissue in IP

KO mice than in WT mice (5610560.86105 cells/spinal cord vs.

16.2610562.96105 cells/spinal cord, p,0.05) at day 13

(Figure 7C). When the isolated mononuclear cells of the spinal

cords were in vitro stimulated with PMA and ionomycin, IP KO

cells had significantly decreased IL-17A production, compared to

WT cells (Figure 7D). Therefore, IP deficiency resulted in delayed

EAE disease onset and blunted inflammation with inhibited IL-

17A responses in the spinal cord. These results in EAE

experiments suggest that PGI2-IP signaling regulates Th17 cell

differentiation and expansion in in vivo immune responses.

Discussion

In this study, we report that PGI2 enhanced the development of

Th17 immune responses and exacerbated a model of Th17-

associated neurologic disease, EAE. We found that the presence of

PGI2 analogs at the time of naı̈ve CD4+ T cell differentiation

resulted in direct induction of Th17 cytokine secretion, and that

this effect was augmented by IL-23. At the antigen presenting cell

level, we found that PGI2 analogs increased the ratio of IL-23/IL-

12 produced by BMDCs. Importantly, the effects of the PGI2

analogs on IL-17A cytokine production by naı̈ve CD4+ T cells and

on the IL-23/IL-12 balance produced by BMDCs were IP-

specific. The importance of these in vitro findings was confirmed by

an in vivo model of a Th17-associated disease, EAE, in which IP

KO mice were significantly protected against the onset of the

neurologic sequelae characteristic of this condition. In these

Figure 5. The PGI2 analog iloprost increased the ratio of IL-23/IL-12 produced by BMDCs and BMDC’s ability to induce T cell IL-17A
responses. Bone marrow-derived DCs of OT II mice and OT II-IP KO mice were generated by culturing bone marrow cells in GM-CSF (20 ng/ml) for 8
days and CD11c+ BMDCs were purified by Miltenyi anti-CD11c Microbeads. CD11c+ BMDCs were treated with LPS (1 mg/ml), OVA protein (100 mg/ml)
and iloprost for 16 h. (A–B) The levels of IL-23 and IL-12 in the culture supernatant were determined by ELISA. (C) The ratio of IL-23/IL-12 in iloprost-
treated BMDC culture supernatant. (D) Iloprost-treated OT II BMDCs or OT II-IP KO BMDCs were washed 3 times to remove iloprost and co-cultured
with OT II CD4+CD62L+ cells for 4 days. IL-17A levels in the co-culture supernatant were determined by ELISA. * p,0.05 vs. vehicle (A–C), or vs. OT II-IP
KO BMDCs (D). Data (mean 6 SEM) are representative of 3 (A–C) and 2 (D) experiments.
doi:10.1371/journal.pone.0033518.g005
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experiments, the inability to signal through IP led to a significant

reduction of inflammatory cell infiltration and IL-17 responses in

the spinal cord 13 days after disease induction, at a time when

there was a significant difference in disease severity between WT

and IP KO mice.

We observed that the augmented IL-17A production induced

by PGI2 analogs correlated with markedly reduced IL-4, but not

IFN-c, production by CD4 T cells during differentiation. When

exogenous IL-4 was added to the cell culture, the stimulatory effect

of PGI2 analogs on IL-17A production was abrogated, suggesting

that PGI2 analogs enhanced IL-17A production by suppressing IL-

4 secretion. The finding that exogenous IL-4 effectively inhibited

IL-17A production in the presence of PGI2 analogs also implies

that IL-4 receptor signaling was not impaired by PGI2 analogs.

Therefore, PGI2 analogs appear to reduce IL-4 secretion rather

than block the IL-4 signaling pathway during T cell activation and

differentiation. Neutralizing anti-IL-4 antibody did not further

increase IL-17A production in the presence of cicaprost compared

to IgG1 control treatment (Figure 6F), also suggesting a role of

PGI2 analog-mediated IL-4 suppression in their pro-Th17A effect.

In contrast, neutralization of IFN-c further increased IL-17A

production by cicaprost-treated cells (Figure 6F), suggesting a

possible additive effect of cicaprost and anti-IFN-c on IL-17A

expression and cicaprost did not increase IL-17A production by

inhibiting IFN-c.

The PGI2 analogs iloprost and cicaprost did not decrease IFN-c
production during primary T cell activation, which is different

from the inhibitory effect of those analogs on IFN-c production by

effector T cells in our previous publication [21]. This difference

suggests that the function of PGI2 analogs on IFN-c expression

appears to be affected by T cell culture conditions and T cell

differentiation status. In this study, PGI2 analogs were added at the

beginning of CD4+CD62L+ cell culture, while in our previous

study [21] PGI2 analogs were used to treat CD4+ T cells that had

Figure 6. PGI2 analogs increased IL-17A production by CD11c+ cell-depleted CD4+CD62L+ cells. CD11c+ cell-depleted CD4+CD62L+ cells
isolated from spleens of OT II mice (A), BALB/c mice (B), and C56BL/6 mice (C–F) were activated with plate-bound anti-CD3 (5 mg/ml) and anti-CD28
(2 mg/ml) in the absence or presence of IL-23 (10 ng/ml) for 4 days. The cells were treated with iloprost (100 nM) and cicaprost (100 nM) or the
respective vehicles at the beginning of the cell culture. IL-17A production in the culture supernatant was determined by ELISA (A–C and F).
Intracellular IL-17A expression was analyzed by flow cytometry and gated for live cells (D and E). * p,0.05 vs. vehicle, n = 425 (A–C and F); or n = 3 (E).
* p,0.05 vs. cicaprost and { p,0.05 vs. cicaprost plus rat IgG1 control (F). Data (mean 6 SEM) are representative of 1 (A), 3 (B), and 2 (C–F)
experiments.
doi:10.1371/journal.pone.0033518.g006
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been activated and differentiated with anti-CD3 and anti-CD28

for 5 days under Th1 conditions and the analogs were added to

the cell culture at the time of restimulation of the differentiated

Th1 cells with anti-CD3. Various effects of PGE2 on IFN-c
production under different culture conditions were also reported

by Yao and colleagues [30]. In their study, PGE2 increased IFN-c
production by CD4+CD62L+ cells under Th1 differentiation

condition (IL-2, IL-12 and anti-IL-4), while such stimulatory effect

was lost in the absence of the Th1-driving cytokine IL-12 [30].

Our study revealed that CD4+CD62L+ cell population

isolated with Miltenyi CD4+CD62L+ T cells isolation kit

contained 3% CD11c+ cells. The CD11c+ cells had antigen-

presenting function and were responsible for the activation of

OT II CD4+CD62L+ cells stimulated with OVA323–339 and

anti-CD28. This is supported by the finding that depletion of

CD11c+ cells from the CD4+CD62L+ cell population resulted in

non-responsiveness of the CD11c+ cell-depleted CD4+CD62L+

cells to OVA323–339 and anti-CD28. PGI2 analogs increased IL-

17A production by CD11c+ cell-depleted CD4+CD62L+ cells

activated by anti-CD3 and anti-CD28, indicating that PGI2

analogs had a direct effect on naı̈ve CD4 T cell to promote IL-

17A expression. The pro-IL-17A effect in our study is supported

by Li and colleagues’ recent publication in that PGI2 further

increased IL-17A production induced by TGF-b and IL-6 in

COX-22/2 CD4 T cell culture, and iloprost increased the

number of IL-17A-producing CD4 T cells and IL-17A

production in the lung in a mouse model of OVA-induced

allergic airway inflammation [31].

Our results indicate that PGI2 may function as a pro-Th17

agent not only by a direct effect on T cells, but also by indirect

effect on DCs. The PGI2 analog-treated BMDCs had an increased

ratio of IL-23/IL-12 compared to vehicle-treated BMDCs. The

greater ratio of IL-23/IL-12 for iloprost (10 nM)-treated BMDCs

was correlated with augmented IL-17A production in BMDC-T

cell co-culture supernatant, suggesting that iloprost increased

BMDCs’ ability to stimulate Th17 differentiation. However,

although iloprost at 100 nM also increased IL-23/IL-12 ratio

compared to vehicle control, iloprost (100 nM)-treated BMDCs

did not induce increased IL-17A production in BMDC-T cell co-

culture compared to vehicle-treated BMDCs. This may be because

Figure 7. Signaling through IP increased disease development in IL-17A-mediated EAE. IP KO mice and WT C57BL/6 mice were injected
with MOG peptide 35–55/CFA and pertussis toxin for EAE induction. (A) PGI2 production was elevated during EAE development in WT mice. C57BL/6
mouse urine was collected daily from day 22 to day 13 relative to MOG immunization. The levels of PGI2 metabolite, 2,3-dinor-6-keto-PGF1a, in the
urine was measured by mass spectrometry and normalized to the creatinine levels in the urine as determined by ELISA. (B) IP signaling promoted EAE
development. EAE disease scores of WT and IP KO mice were determined based on the neural physical examination. (C and D) IP signaling increased
the number and IL-17A responses of mononuclear cells in the spinal cord at day 13 after MOG immunization. Mononuclear cells isolated from the
spinal cord were (C) counted and (D) cultured with PMA and ionomycin for 24 h for IL-17A production determined by ELISA. * p,0.05 vs. day 0 (A), or
vs. IP KO mice (B, C and D). n = 4 (A, each data point had 3 mice), n = 34–37 mice (B) and 10 mice per group (C and D). Data (mean 6 SEM) are
representative of 2 experiments (A), 3 experiments (C and D) or combined results of 4 experiments (B).
doi:10.1371/journal.pone.0033518.g007
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iloprost at high concentrations further inhibited BMDC activation

and expression of MHC II molecules and the co-stimulatory

molecule CD86 as we previously reported [20].

Similar to PGI2 analogs, PGE2 has been shown to promote

Th17 differentiation of human and mouse CD4 T cells [30,32]. In

human cells, TCR stimulation of CD4 T cells in the presence of

PGE2 increased IL-17A production [33]. PGE2 increased human

Th17 cell expansion in the presence of IL-23 [34]. Mouse models

of Th17-associated diseases revealed that PGE2 regulated IL-17A

responses. For instance, in vivo administration of PGE2 induced IL-

23-dependent IL-17A production and administration of the PGE2

analog misoprostol exacerbated collagen-induced arthritis [35,36].

PGE2 increased the numbers of CD4+IL-17A+ T cells and

neutrophils in the colonic tissue in a mouse model of experimental

inflammatory bowel disease [37]. In LPS-stimulated mouse

BMDC culture, PGE2 resulted in enhanced IL-23 production

and diminished IL-12 secretion [38]. The potent effects of PGI2

and PGE2 on both DCs and T cells suggest an important role of

the products in the arachidonic acid metabolic pathway in

immune responses. The differential stimulation of Th17 differen-

tiation by PGI2 and PGE2 suggests a strong ability of these lipid

molecules in regulating immune responses.

The in vivo relevance of the in vitro effect of PGI2 analogs on

Th17 differentiation is demonstrated in the current study by

delayed disease onset of Th17-associated EAE in IP KO mice

compared to WT control mice. The incomplete prevention of

EAE development in IP KO mice suggests that the disease

pathogenesis is partially dependent on IP signaling. While IP

deficiency significantly delayed disease onset, it is not known why

the inability to signal through IP did not change the peak disease

severity. IP signaling may promote initial generation of IL-17A-

producing cells and therefore accelerate the development of EAE,

while the magnitude of EAE disease course is not determined by

PGI2/IP signaling. Consistently, IL-17A-producing Th17 cells

were reported to be crucial for the induction of EAE [28,29] and

IL-17A expression correlated with the induction phase and the

onset of EAE, but not with the peak disease and resolution phases

of EAE [27]. PGI2 is abundantly formed by endothelial cells [39]

that are present in the lymph tissues. As the levels of PGI2 were

elevated during EAE development and PGI2 signaling accelerated

disease onset of EAE, PGI2 seems to be actively involved in the

development of Th17 responses and the disease pathogenesis.

Similarly, signaling through the EP4 receptor of PGE2 also

contributed to the disease development and IL-17A responses in

EAE [30], suggesting a common function of these lipid products in

EAE pathogenesis.

The finding that PGI2 regulates Th17 differentiation and IL-

17A production presents possible important health related issues.

PGI2 and its analogs are used therapeutically to treat primary

pulmonary hypertension, in addition to secondary causes of

pulmonary hypertension such as scleroderma, systemic lupus

erythematosus, congenital heart disease, HIV, and Gaucher’s

disease [3]. Therefore, it is possible that PGI2 used to treat

pulmonary hypertensive disorders could exacerbate autoimmune

conditions presumed to be driven by Th17-associated inflamma-

tion such as multiple sclerosis or Crohn’s disease [40]. Whether

this occurs clinically is unknown, as to our knowledge, a formal

review of the effect of PGI2 on these conditions has not been

made. On the other hand, IP antagonists might be beneficial in

preventing these autoimmune disease states. Further, upregulation

of IL-17A production by PGI2 might protect against extracellular

pathogens, such as Klebsiella pneumoniae or Mycoplasma pulmonis that

require IL-17A to resolve the infection [41,42]. Specific investi-

gation exploring the in vivo role of PGI2 in regulating these

infections will have to be performed to determine if this eicosanoid

modulates immune responses against these organisms in vivo.

In conclusion, our study highlights the role of the inflammatory

microenvironment as a crucial factor in the regulation of Th17

development. These results add critical information to previous

studies which revealed that PGI2 negatively regulated Th1 and

Th2 helper T cell function and cytokine production, while our

investigations revealed that this prostanoid promoted Th17

differentiation highlighting the complexity and fine balance of

CD4 differentiation and development.

Supporting Information

Figure S1 Presence of CD11c+ cells in the CD4+CD62L+

cell population purified with Miltenyi CD4+CD62L+ T
cell isolation kit. CD4+CD62L+ T cells of OT II mice isolated

with Miltenyi CD4+CD62L+ T cell isolation kit were stained with

propidium iodide and either Alexa Fluor 647-labeled rat IgG2a or

Alexa Fluor 647-labeled anti-CD11c antibody. The cells were

analyzed by flow cytometry and gated for PI– live cells.

(TIF)

Figure S2 CD11c+ cell-depleted CD4+CD62L+cells were
activated by pan-TCR stimulation, but not by OVA323–339

and anti-CD28. CD11c+ cell-depleted CD4+CD62L+ cells

isolated by Miltenyi CD4+CD62L+ T cell isolation kit with an

additional step to remove CD11c+ cells. The cells were cultured

with OVA323–339 plus anti-CD28 or anti-CD3 plus anti-CD28. (A)

Cell images were taken at day 4 after stimulation. Activated and

proliferated cells formed colonies after stimulation with anti-CD3

and anti-CD28, but not with OVA323–339 and anti-CD28. (B) The

level of IL-17A in the culture supernatant collected at day 4 was

determined by ELISA. * p,0.05 vs. OVA323–339 plus anti-CD28,

n = 4.

(TIF)
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