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Abstract

Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the
potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms
are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by
a particular transcription factor. Here we used ChIP–seq to uncover two distinct binding modes for the ETS transcription
factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second,
ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding
site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of
functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique
binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an
unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory
mechanisms used, and the functional categories of target genes controlled.
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Introduction

Eukaryotic transcription factors are grouped into families based

on their common DNA binding domains and these families can

extend to dozens of members in mammalian cells. This is typified

by the ETS-domain containing transcription factors, with human

cells encoding 28 different proteins (reviewed in [1]). All these

transcription factors contain very similar DNA-binding domains,

and at least in vitro, their DNA binding specificities are very similar

[2]. It is therefore a challenge to understand how individual family

members can control specific gene expression programmes

without unwanted crosstalk. Such crosstalk would potentially lead

to functional redundancy due to the ability of different family

members to bind to the same sites. Indeed, this has been suggested

by genome-wide interrogation of DNA binding by different ETS

transcription factors, where multiple family members can associate

with the same genomic regions [3–5]. Such functional redundancy

might explain why many of the phenotypes caused by the loss of

ETS proteins are relatively subtle, despite the widespread

expression of these transcription factors (reviewed in [6]).

However, even with this huge potential for functional redundancy,

several mouse knockout studies have revealed specific phenotypes

for individual ETS transcription factors, suggesting that they

function at least partially in a non-redundant fashion. One way for

helping to achieve this specificity of action is through functional

cooperation with other transcription factors. This is illustrated by

the association of ETS1 with RUNX1 [4] and ELK1 with SRF

[5], although in both cases, this co-association is only extended to a

minority of the binding events identified in vivo.

ELK1 together with ELK4/SAP-1 and ELK3/SAP-2/Net,

constitute the ternary complex factor (TCF) subfamily of ETS-

domain transcription factors (reviewed in [7–8]). Like all ETS

proteins, these transcription factors all bind to variants of the

GGAA/T motif embedded in a larger 10 bp consensus sequence in

vitro, and in the case of ELK1, this binding preference is also

recapitulated in vivo [5]. Members of the TCF subfamily can

function in a cooperative manner with SRF, and this is driven in

part through the close juxta-positioning of their DNA binding

sites, but also through direct protein-protein interactions [9–11].

Amongst the TCFs, ELK1 is the best studied and it is directly

activated by phosphorylation in response to activation of the MAP

kinase signalling cascades [reviewed in 7–8]. Mouse knockouts

show minimal phenotypic changes [12], suggesting that there

might be functional redundancy amongst members of this

subfamily. This was recently demonstrated to be the case in the

context of T-cell differentiation, where the loss of ELK1 caused

only subtle effects and there was clear redundancy of function

between ELK1 and ELK4 [13]. This redundancy of function was

demonstrated at both the level of DNA binding and target gene

regulation. Similarly, redundancy at the level of chromatin

binding has been shown to occur in HeLa-S3 cells, where

depletion of ELK1 led to decreased binding to chromatin, and a

concomitant rise in the binding of ELK4 to the same regions in a

subset of targets [14]. Thus, understanding the function of ELK1

and other TCFs is complicated by the compounding factors

associated with functional redundancy in this transcription factor

family. Recently however, a genome-wide RNAi screening study

identified ELK1 as a critical factor in promoting cell survival in
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human breast-derived MCF10A cells [15]. MCF10A cells

therefore provide a tractable system for dissecting ELK1 function.

Here, we have combined ChIP-seq and gene expression array

analysis to interrogate the ELK1 target gene network in MCF10A

cells. We demonstrate that ELK1 binds to its target regions in two

distinct ways: uniquely or redundantly with other ETS proteins.

The binding regions associated with these two types of interaction

show different characteristics concerning the frequency and

quality of the ELK1 binding sites and the association with the

binding of heterotypic transcription factors. Unexpectedly, the two

types of binding regions are associated with different modes of

target gene regulation and moreover, this differential regulation

also affects distinct functional categories of target genes. This is

demonstrated for the unique ELK1 binding mode, where this

factor controls cell migration, through acting in a positive manner

to activate a set of functionally related target genes.

Results

Identification of an ELK1-regulated target gene network
Functional redundancy amongst members of multi-gene tran-

scription factor families such as the ETS transcription factors is a

potential problem when attempting to uncover the function of

individual family members (reviewed in [1]). We therefore selected

the human breast epithelia-derived MCF10A cells to dissect the

role of ELK1 in controlling gene transcription, as ELK1 has been

shown to be important for their survival and its deficiency cannot

therefore be fully compensated for by other family members [15].

First, we depleted ELK1 levels in MCF10A cells and measured the

effect this had on the transcriptome. The effect of ELK1 depletion

was assessed in cells grown in the absence of EGF or in cells

treated with EGF for 30 mins to activate ERK MAP kinase

pathway signalling. ELK1 levels were efficiently reduced following

treatment with siRNA (Figure 1A) and ERK activation and ELK1

phosphorylation were rapidly induced by EGF treatment

(Figure 1B). Over 6000 genes consistently changed their expression

(P-value,0.05; Q-value,0.1) following depletion of ELK1 either

in the presence or absence of EGF, and roughly equal numbers of

genes were up- and down-regulated in each case (Figure 1C; Table

S1). In contrast, far fewer genes consistently changed their

expression upon treatment with EGF (Figure S1), suggesting a

more pleiotropic cellular response to ELK1 loss. Importantly, the

majority of genes whose expression changed upon ELK1 depletion

did so irrespective of the activity status of the ERK signalling

pathway as only 10% of siELK1-sensitive genes were uniquely

altered by ELK1 depletion in the presence on EGF, while 73%

were changed both in the presence and absence of EGF

(Figure 1D). This suggests a role for ELK1 in controlling gene

expression which is largely independent from EGF signalling

status.

The large number of gene expression changes elicited in

MCF10A cells by ELK1 depletion suggested that a sizeable

proportion of the changes likely arise as an indirect consequence of

ELK1 loss. Therefore we used ChIP-seq to establish the direct

target genes for ELK1. These studies were performed in MCF10A

cells grown in the absence of EGF, as ELK1 binding to chromatin

is thought to occur irrespective of signalling conditions [16]. A

total of 529 genomic binding regions for ELK1 were identified in

two independent experiments (FDR,10), and denoted as a ‘‘high

confidence’’ dataset (Table S2). By assigning binding regions to the

nearest annotated TSS, 516 target genes were identified. A range

of binding regions were validated by ChIP followed by qPCR and

all the regions tested showed significant enrichment for ELK1

binding compared to a control non-specific antibody (Figure 2A;

Figure S2). We also tested several regions from a lower confidence

dataset where peaks were only identified in one of the two

experiments and although these scored positive in qPCR-based

assays, their relative enrichment levels were generally lower than

observed for the high confidence data set (Figure 2A; Figure S2).

Many of the regions in the high confidence dataset are also bound

by ELK1 in a different human breast cell derived line, MDA-MB-

231 cells (Figure S3A). Moreover, there is a large overlap of ELK1

binding regions with those identified in two previous studies using

ChIP-chip (59%; [5]) and ChIP-seq (43%; [17]) in HeLa cells,

with 106 (33%) regions in common between all three studies

(Figure S4). This suggests that there is a core set of ELK1 binding

regions common to several cell types but also a number of cell

type-specific binding events. ELK1 binding regions in MCF10A

cells are enriched in promoter -proximal regions with 36% within

10 kb upstream from the TSS of the nearest gene (Figure 2B).

Functionally, the ELK1 binding regions were associated with

genes grouped under a number of distinct gene ontology

classifications by analysis using GREAT [18]. Prominent catego-

ries included a number of terms associated with the regulation of

gene expression (e.g. ‘‘ribosomal subunit’’ and ‘‘mediator com-

plex’’) and with the actin cytoskeleton and cell adhesion (Figure

S5). The association of ELK1 with genes encoding the core gene

expression machinery was expected from previous results [5], but

a role in potentially controlling genes involved in cytoskeletal-

mediated events is a novel discovery.

Next, we assigned each ELK1 binding region to the nearest

gene annotated in the RefSeq database, and compared this list

with the ELK1-regulated genes revealed by expression microarray

analysis. Over half of the genes associated with ELK1 binding

regions (273 out of 516 genes) are also deregulated under at least

one of the conditions we tested upon ELK1 depletion (245 were

changed in the absence of EGF and 223 in the presence of EGF).

Roughly equal numbers of ELK1 binding regions are associated

with up- and downregulated genes, irrespective of EGF treatment

(Figure 2C). Importantly, comparison of the ChIP-seq-derived

Author Summary

One of the major outstanding questions in eukaryotic
gene regulation is how transcription factors with seem-
ingly very similar DNA binding specificities elicit specific
biological responses. The ETS transcription factor family
provides a paradigm for investigating this phenomenon.
Here, we have focused on the ETS transcription factor
ELK1, and by combining genome-wide binding analysis
coupled with gene expression analysis we have dissected
two distinct gene regulatory activities for this transcription
factor. In each of these regulatory modes, ELK1 exhibits
distinct DNA binding characteristics which correlate with
either positive or negative transcriptional activities and
give rise to functionally distinct gene expression pro-
grammes. We demonstrate a novel function for ELK1 in
controlling cell migration through one of these regulatory
modes. Thus, we have demonstrated a clear link between
the types of regulatory region bound by a transcription
factor and its ability to control gene expression (i.e. in a
positive or negative manner) and the functional down-
stream consequences of its target gene cohort. This work
has implications for understanding how members of other
multi-protein transcription factor families might function
to generate different downstream functional consequenc-
es through engaging with different types of regulatory
regions.

DNA Binding Modes Determine Transcription Programs
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ELK1 target genes with randomly selected gene sets demonstrated

that the overlaps with the ELK1-regulated gene expression data

are highly significant in all cases (z-scores ranging from 3.65 to

4.99). Further analysis of the results demonstrated that the

majority of the 273 deregulated genes associated with ELK1

binding regions are the same irrespective of whether EGF was

added to the cells or not (Figure 2D). However, amongst genes

which are upregulated by EGF, there are 17 that are bound by

ELK1, and of these, 13 show diminished expression following

ELK1 depletion. This is in keeping with previous findings that

ELK1 is associated with EGF/ERK pathway-mediated target

gene activation but further illustrates that this appears to be a

relatively minor role of ELK1 in this system. Functionally, the

direct ELK1 target genes defined by this analysis retained

categories identified in the entire ChIP-seq data set such as

association with gene expression control and the actin cytoskeleton

but in addition, a new category, apoptosis/cell death, was

identified as being regulated by ELK1 (Figure S6A–S6C).

Together, these results identify a core set of direct ELK1 target

genes, whose regulatory regions are bound by ELK1 and whose

expression is perturbed upon depletion of ELK1. This set of genes

likely represent directly regulated ELK1 target genes which we

subsequently analysed further and are henceforth referred to as

‘‘ELK1 target genes’’.

ELK1 binding regions can be subdivided based on co-
occurring regulatory features

Previous ChIP-chip studies using promoter arrays demonstrated

that ELK1 binding regions fall into three broad categories; regions

that are also bound by SRF, regions that can also be bound by

other ETS transcription factors and regions which are apparently

uniquely bound by ELK1 independently from these other

transcription factors [5,14]. To establish whether we could detect

similar overlaps with ELK1 binding regions on a genome-wide

scale, we compared our ChIP-seq data with published ChIP-seq

data for SRF and other ETS transcription factors. First, to address

the potential for redundant binding of different ETS proteins, we

compared the ELK1 ChIP-seq data with that of a divergent ETS

factor GABPA [19]. A substantial overlap was observed between

ELK1 and GABPA binding regions (43% of ELK1 binding

regions) despite the differences in cell types analysed (Figure 3A).

This overlap in binding suggests potential redundancy of binding

site occupancy by these different ETS factors. We define the group

of regions which can potentially be bound by both ELK1 and the

divergent ETS protein GABPA as ‘‘ELK1 redundantly bound

regions’’, whereas those bound by ELK1 and not GABPA are

termed ‘‘ELK1 uniquely bound regions’’. To establish whether

this subcategorisation held true when other ETS transcription

factors were considered, we compared ChIP-seq data for nine

other ETS transcription factors performed in a variety of cell lines

with ELK1 binding regions which were classified as ‘‘unique’’ and

‘‘redundant’’. With the exception of the highly related subfamily

member ELK4, very little overlap was seen with binding regions in

the ‘‘unique’’ subcategory but in 8/10 cases, there was significantly

more overlap of these other ETS transcription factors with the

‘‘redundant’’ dataset (Figure S7B). Importantly, 67% of the

‘‘unique’’ ELK1 binding regions were not bound by any of the

more divergent ETS proteins in any of these studies, supporting

our subcategorisation of these regions. We also compared our

ChIP-seq data with ChIP-seq data for SRF from Jurkat cells [19].

Again, a substantial overlap was seen between ELK1 and SRF

binding regions despite the different cell types involved (28% of

ELK1 binding regions; P,0.001) (Figure S7C). A comparison of

ELK1 and SRF bound regions with the binding regions for

GABPA permits further subcategorisation of binding events, and

reveals a group of regions which are bound by ELK1 alone in the

absence of potential redundant binding with GABPA or co-

binding with SRF (Figure S7C).

In order to look for potential reasons for the non-identical

transcription factor occupancy, we compared the regions bound

uniquely by ELK1 (termed ‘‘unique’’) and those which can also be

bound by GABPA (termed ‘‘redundant’’). First, we examined their

location relative to the nearest TSS. The ‘‘unique’’ regions showed

Figure 1. Depletion of ELK1 affects gene expression. Western blots of (A) ELK1 and ERK2 levels in MCF10A cells starved for EGF and treated
with siGAPDH or siELK1 and (B) ELK1 and ERK2 phosphorylation levels in MCF10A cells following EGF treatment for the indicated times. Arrows
indicate slower migrating phosphorylated ELK1 species. (C) Summary of microarray analysis of gene expression changes caused by ELK1 depletion in
either EGF-starved or EGF-stimulated cells. The numbers of genes which become up- or down-regulated upon ELK1 depletion are indicated. (D)
Overlap between genes which show a siELK1-induced change in mRNA levels at 0 min and 30 min of EGF stimulation.
doi:10.1371/journal.pgen.1002694.g001
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a broad distribution with only 26% being located within 2 kb of

the TSS, whereas 93% of the ‘‘redundant’’ regions were located in

this region and these were largely tightly centered around the TSS

(Figure 3B). Next, we implemented a de novo search for over-

represented DNA motifs within the binding regions. Three

prominent motifs were identified in the ‘‘unique’’ dataset

corresponding to ETS, SRF and AP1 binding sites, whereas the

‘‘redundant’’ dataset revealed only a motif corresponding to an

ETS transcription factor binding site (Figure 3C). Similar results

were obtained when using position weight matrices for all known

human transcription factor binding motifs listed in the JASPAR

and TRANSFAC databases to search for over-represented motifs

in these two datasets (data not shown). The ETS motifs identified

in the ELK1 binding peaks closely resembled the motifs identified

in a recent high throughput in vitro binding site selection study [2]

(Figure S8) and what was identified in a ChIP-chip study for ELK1

performed in HeLa cells [5], although differences in nucleotide

preferences at several positions can be observed, generally being

more stringent in vitro. Further inspection of the ELK1 binding

regions demonstrated that the frequency of the three hexamers

comprising the core CCGGAAGT binding motif was much higher

in the ‘‘redundant’’ (763 sites in 226 regions) than in the ‘‘unique’’

dataset (403 sites in 303 regions). This also suggests that more than

one binding event might be associated with ‘‘redundant’’ regions.

Indeed, the number of motifs per region corresponding to

hexameric derivatives of CCGGAAGT is significantly higher in

the ‘‘redundantly’’ bound regions (commonly three sites per

region) than in the ‘‘unique’’ regions (generally only one site per

region) (Figure 3D). We investigated whether there were any

particular spatial constraints among the multiple ETS sites found

in the ‘‘redundant’’ regions but there was nothing obvious

detected. In contrast to the differences seen when considering

the core CCGGAAGT binding motif, the occurrence of

hexameric derivatives of the variant ETS binding motif CAG-

GATGT is virtually identical in the two datasets (Figure 3D).

However, some unique regions have only this relaxed variant,

whereas all redundant regions have at least one ‘‘strong’’

consensus site. This suggests that the binding specificity is

generally more divergent from the core consensus when unique

binding of ELK1 is observed. Part of the reason for the relaxed

binding specificity likely relates to the presence of co-occurring

SRF binding motifs which are present in 54% of ‘‘unique’’ regions

Figure 2. Identification of directly regulated ELK1 target genes. (A) Summary of ChIP-seq data validation (see Figure S2). Box plots show the
median (horizontal lines) and the distribution of the enrichment levels, in qPCR validation of ELK1 or IgG ChIP samples. Binding regions were
randomly selected from the high or low confidence ChIP-seq datasets. As a comparison, the values from regions which do not detectably bind ELK1
are shown (Neg). Data are from three biological repeats. (B) Genomic distribution of ELK1 ChIP-seq regions from the high confidence dataset (left)
compared to a random distribution (right). Sectors corresponding to the promoter (up to 10 kb upstream from the TSS), the downstream region (up
to 10 kb downstream from the TTS) and the UTRs are indicated. (C) Overlap between genes assigned to ELK1 ChIP-seq regions and genes which show
a change in mRNA levels upon ELK1 depletion under the indicated conditions of EGF stimulation. Z-scores were obtained by comparing with an
overlap of the ChIP-seq gene list with 10,000 random lists containing the same numbers of genes. (D) Overlap between numbers of genes which are
associated with ELK1 binding events and show a siELK1-induced change in mRNA levels at 0 min and 30 min of EGF stimulation.
doi:10.1371/journal.pgen.1002694.g002
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but only 27% of ‘‘redundant’’ regions. Indeed, a significantly

greater number (P-value,161026) of SRF motifs appear to form

‘‘modules’’ with adjacent ETS motifs in the ‘‘unique’’ dataset,

where the two motifs co-occur within a 50 bp window (Figure 3E).

It is possible that co-binding of factors to AP1 binding motifs also

influences the binding specificity and functionality of ELK1, as the

frequency of FOS binding to the same regions in a different ChIP-

seq study [20] is significantly higher with the ‘‘unique’’ binding

regions (Figure 3F). Interestingly, there are significantly more

overlaps between ELK1 binding and FOS binding in regions

associated with genes activated by ELK1 (27/141) rather than in

genes where ELK1 acts in a negative manner (13/137) (P-

value = 0.021), which is suggestive of a role for AP1 in enhancing

the activity of ELK1. In keeping with a potential role for AP1 in

modulating ELK1 function, the frequency of occurrence of AP1

binding motifs is also significantly higher in the ‘‘unique’’ binding

regions (Figure S7D). Indeed, we can detect binding of the AP1

component FOS to several of the ‘‘unique’’ ELK1 binding regions

(Figure S7F).

Together, these results therefore identify two major types of

ELK1 binding regions which can be independently characterized

by their locations, the types and numbers of DNA binding motifs

Figure 3. ELK1 binding region characterisation. (A) Overlap between regions bound by ELK1 (MCF10A cells) and GABPA (Jurkat cells; [17]). (B)
Distribution of distances between peak summits and the nearest TSS for regions bound uniquely by ELK1 (‘‘unique’’-top) or redundantly with GABPA
(‘‘redundant’’ -bottom)(limited to within 2 kb up- or downstream). (C) TFBS logos obtained through STAMP-assisted visualisation of Weeder-derived
position weight matrices of motifs overrepresented in ‘‘unique’’ (top) and ‘‘redundant’’ (bottom) ELK1-bound regions. Only the logos most closely
resembling transcription factor binding sites present in the JASPAR database are shown. The second and third logos shown for the ‘‘unique’’ regions
were identified by sequentially masking out the ETS and SRF binding motifs respectively. (D) Distributions of the number of ETS motifs found in the
‘‘unique’’ and ‘‘redundant’’ ELK1-bound regions. Occurrences of non-overlapping unique hexamers, corresponding to exact matches to derivatives of
the octameric motifs shown above the graphs were counted. ‘‘Background’’ represents the distribution of an inverted ETS motif. (E) Occurrence of an
ETS-SRF module in ‘‘unique’’ and ‘‘redundant’’ ELK1-bound regions. A module is defined as containing an ETS and SRF site within 100 bp of the ELK1
peak summit and a distance between the ETS and SRF motifs of less than 50 bp. (F) Overlap between the indicated categories of regions bound by
ELK1 in MCF10A cells and regions bound by FOS in HeLa-S3 cells [18].
doi:10.1371/journal.pgen.1002694.g003
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Figure 4. ‘‘Unique’’ and ‘‘redundant’’ ELK1-bound regions regulate distinct sets of target genes. (A) K-means clustering of expression
levels of genes associated with ELK1-bound regions that show a significant response to siELK1 and/or EGF treatment. Individual clusters (1–8) are
separated by dotted lines. (B) Summary profiles of the target genes in clusters 2, 4, 7 and 8. The data are presented as changes of individual (grey) and
average (black) expression values of genes in each cluster under each of the four experimental conditions. For each gene, the mean of the signals
across all four conditions was set as zero, and expression levels (z-transformed) presented are relative to this value. (C) Distribution of ‘‘unique’’ and
‘‘redundant’’ region-associated ELK1 target genes in the clusters identified in (A), with Chi square or Fisher Exact test-derived P-values. (D) Distribution
of genes up- and down-regulated by ELK1 depletion in the ‘‘unique’’ (U) and ‘‘redundant’’ (R) ELK1 target gene datasets after 0 or 30 mins EGF
stimulation. (E) Heatmap summary of changes in expression of three genes from the ‘‘redundant’’ ELK1 target dataset upon treatment with siELK1
(from microarrays) or siGABPA (by RT-PCR) (relative to a siGAPDH-transfected control), at 0 and 30 minutes of EGF stimulation. (F) Enrichment of the
indicated GO categories in expression clusters identified in (A); P-values were obtained in a Chi-square test and refer to the cumulative enrichment of
clusters which cross the dashed line vs. those that do not. (G) Heatmap of the distribution of GO terms identified for ‘‘unique’’ and ‘‘redundant’’ ELK1-
associated genes. Each GO term is scored by 2log10(P-value). Lines on the left mark terms related to gene expression (grey), actin/migration (green)
and cell survival (red).
doi:10.1371/journal.pgen.1002694.g004
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they contain and the factors which can potentially co-occupy or

compete for binding to these sites. Regions which are uniquely

bound by ELK1 tend to contain fewer and/or weak ETS binding

motifs and are often bound by other partner transcription factors

such as SRF and AP1, whereas those redundantly bound by

different ETS factors more often contain multiple strong ETS

binding motifs, and there is little evidence for the occurrence of

common co-binding transcription factors.

Different ELK1 binding modes are associated with
distinct categories of target genes

Having defined two different types of ELK1 binding regions, we

next wished to investigate whether these regions are associated

either with different gene regulatory mechanisms, and/or with

controlling different cellular processes. First, we used unsupervised

k-means cluster analysis to provide an unbiased way to identify

groups of genes which responded differently to ELK1 depletion in

the presence and absence of concurrent treatment with EGF.

Here, we focussed only on the 273 direct target genes identified as

being associated with regions bound by ELK1 in the ChIP-seq

analysis. Data are depicted relative to average expression of each

gene across all conditions to enable common regulatory patterns to

be discerned. Eight gene expression clusters were identified which

show distinct patterns of responses to these different treatments

(Figure 4A, 4B; Figure S9; Table S3). We then examined whether

the ‘‘unique’’ or ‘‘redundant’’ ELK1 target genes were associated

with any particular cluster(s). Interestingly, we found a clear

separation of target gene response associated with different ELK1

binding modes. Clusters 2 and 4 were significantly enriched for

‘‘unique’’ binding whereas clusters 7 and 8 were enriched for

‘‘redundant’’ binding (Figure 4C). Cluster 2 contains genes which

are upregulated by EGF treatment but show an attenuated

response upon ELK1 depletion, whereas genes in cluster 4 are

largely unaffected by EGF but downregulated following ELK1

depletion (Figure 4A and 4B). In contrast, the genes in clusters 7

and 8 are largely non-responsive to EGF treatment but their

expression is enhanced upon ELK1 depletion (Figure 4A and 4B).

In total, over 75% (205) of the ELK1 target genes are found within

the clusters which are strongly correlated with either ‘‘unique’’ or

‘‘redundant’’ binding. We analysed this further by comparing the

response of genes bound either by ELK1 alone (‘‘unique’’) or by

ELK1 and GABPA (‘‘redundant’’) (see Figure 3A) to ELK1

depletion. Here, a significant shift in the regulatory mode could

clearly be seen, with ‘‘uniquely’’ bound genes being largely

downregulated while ‘‘redundantly’’ bound genes were upregu-

lated following ELK1 loss (Figure 4D). Mechanistically, one likely

mode of regulation of the latter class of genes, is that ELK1

normally acts repressively at these genes and upon depletion is

replaced by a different transcription factor such as GABPA which

can potentially provide stronger gene activation. To provide data

supporting this prediction, we compared cells depleted of either

ELK1 or GABPA and examined the response of three genes

predicted to be redundantly bound by ELK1 and GABPA. The

expression of all three genes increased upon depletion of ELK1.

However, the reciprocal occurred upon depletion of GABPA and

decreased expression of all three genes was observed (Figure 4E).

Thus, ELK1 and GABPA work antagonistically in controlling

gene expression and this is particularly evident in clusters 7 and 8

for targets such as SCNM1 and MDM4. Overall, these results

indicate that the regulatory mode attributed to ELK1 strongly

correlates with the type of ELK1 binding mode adopted on the

target genes.

Next, we wanted to examine whether the type of binding and

regulation adopted by ELK1 might also relate to functionally

distinct outcomes in terms of the cohorts of genes regulated. We

therefore examined whether any of the enriched GO term

categories for the direct ELK1 target genes are preferentially

associated with any of the different expression clusters. Impor-

tantly, we found that genes from particular functional categories

are not evenly spread throughout the clusters (Figure 4F). Instead,

genes forming the category ‘‘cytoskeleton and migration’’ are

enriched in clusters 2, 4, 5 and 6, while genes within the ‘‘cell

survival’’-related terms are enriched in clusters 2 and 6. As one

common defining feature of clusters 2, 4, 5 and 6 is downregu-

lation following ELK1 depletion, these data suggest a positive role

for ELK1 in driving transcription of genes in these functional

categories. Therefore the gene expression clusters associated with

particular ELK1 binding and regulatory modes are associated with

distinct functional categories of genes. This suggests that the two

types of ELK1 binding regions might regulate the expression of

genes encoding proteins involved in distinct cellular processes and

ultimately lead to distinct functional outcomes. To examine

whether this is the case, we separated the direct ELK1 target gene

dataset into ‘‘unique’’ and ‘‘redundant’’ groups according to the

type of ELK1 binding mode, and screened these datasets for

different functional categories of genes using DAVID [21]. We

then ranked the resulting enriched GO terms according to

statistical significance and saw a clear separation of these GO

terms, according to association with either ‘‘unique’’ or ‘‘redun-

dant’’ ELK1 binding with only minimal overlap (Figure 4G; Table

S4). Genes ‘‘uniquely’’ bound by ELK1 were generally associated

with terms related to the actin cytoskeleton (e.g. actin binding,

focal adhesions etc.), whereas ‘‘redundantly’’ bound genes were

generally associated with gene expression control (e.g. RNA

processing, translation etc.). Some GO term categories related to

gene expression were also associated with genes assigned to

‘‘uniquely’’ bound ELK1 regions but these strongly differed from

the categories associated with genes assigned to ‘‘redundantly’’

bound regions, demonstrating a further separation of binding

mode with respect to the types of genes regulated. Interestingly,

terms related to cell survival were generally associated with genes

assigned to ‘‘uniquely’’ bound ELK1 regions but also appeared in

the ‘‘redundantly’’ bound dataset, albeit with lower significance.

These results therefore reveal an unexpected link between the

mode of ELK1 binding to the regulatory region of a gene, the type

of regulation of the associated genes and the functional classifi-

cations of the target genes controlled. In particular, genes

associated with the cytoskeleton and migration, tend to be

regulated in a positive manner by ELK1, and also are apparently

bound specifically by ELK1 as they are not targets for potential

redundant binding by alternative ETS transcription factors like

GABPA.

ELK1 controls cell migration
The above results indicate that a key role for ELK1 is mediated

through its ‘‘unique’’ binding mode where it controls the activity of

genes associated with the actin cytoskeleton and cell migration. To

explore the functional significance of this association, we created

networks of proteins encoded by ‘‘unique’’ and ‘‘redundant’’

ELK1 target genes using coexpression, textmining, knowledge and

experimental data as proximity criteria to identify interconnectiv-

ities. These networks were screened for enrichment in GO terms

centred on specific cellular functions. The genes associated with

‘‘migration/cytoskeleton’’ formed a prominent subnetwork within

the ‘‘unique’’ dataset; more interestingly, a large number of the

genes which form the core of this subnetwork were shown by

microarray analysis to be misregulated following ELK1 depletion

(Figure 5A and Figure S11). The role of ELK1 in controlling key
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nodes in this subnetwork was confirmed by qPCR. Nine different

target genes were selected from the GO term category ‘‘migra-

tion/cytoskeleton’’, whose regulatory regions are bound by ELK1.

The majority of these showed decreases in expression upon ELK1

depletion from MCF10A cells in the absence and/or presence of

EGF (Figure 5B, and Figure S10A). The majority of these

decreases in ELK1 target gene expression were also observed in

MDA-MB-231 cells (Figure S3B). Importantly, depletion of

GABPA did not cause any significant changes in expression of

these genes, in keeping with our designation of these genes as

‘‘unique’’ targets for ELK1 (Figure S10B). SRF has also been

associated with controlling genes involved in the actin cytoskeleton

and cell migration [22,23]. We therefore also assessed the role of

SRF in regulating the same group of genes. The expression of

three genes was significantly reduced upon siRNA depletion

(Figure S10C). Two of these, CTGF and ACTB, are also positively

regulated by ELK1. Thus ELK1 and SRF appear to have both

distinct and common targets amongst the ‘‘migration/cytoskele-

ton’’ gene network.

A second subnetwork of ‘‘cell survival’’ was also identified which

is comprised of genes associated with the ‘‘unique’’ ELK1 dataset

(Figure S12), but for the ‘‘gene expression’’ category, two different

types of network could be observed (Figure S13A and S13B). In

the latter case, again a subnetwork could be identified which is

controlled through the ‘‘unique’’ binding of ELK1 and which

features clusters of genes encoding signal-responsive transcription

factors including immediate-early gene products and several

nuclear hormone receptors. In contrast, an additional subnetwork

was revealed which is apparently rather controlled through regions

that can be redundantly bound by ELK1 and other ETS factors

such as GABPA, and is mainly made up of genes encoding

ribosomal subunits and mediator components. These findings

support the association of different ELK1 binding modes with

different functional categories of target genes, but also highlight

the importance of ELK1 in controlling key nodes in the networks.

Our results predict that the loss of ELK1 should have profound

consequences for the cellular phenotype due to the collapse of the

networks involved with controlling the relevant cellular functions,

especially in processes associated with the cytoskeleton and

downstream effects such as cell migration. To test this, we first

investigated the status of the cytoskeleton following ELK1

depletion in MCF10A cells. Following ELK1 depletion, cells

became less spread and exhibited altered cytoskeletal character-

istics, including a loss of membrane protrusions and enhanced

levels of subcortical actin (Figure 6A and 6B). The loss of

membrane protrusions suggested that the cells might lose their

migratory properties. To test this, we used wound healing assays,

and upon ELK1 depletion wound closure was greatly attenuated

(Figure 6C and 6D). ELK1 depletion also led to reductions in cell

numbers (Figure S14) which could at least in part contribute to the

reductions in wound closure efficiency. We therefore used single

cell tracking to examine the movement of individual cells

associated with cell clusters. Fewer cells detached from these

clusters in the siELK1-transfected population (Figure 6E) and

those cells which did detach showed greatly impaired migration

(Figure 6F). Many of the same phenotypic features could be

observed upon ELK1 depletion in MDA-MB-231 cells (Figure

S3C–S3E).

These results confirm that ELK1-mediated regulation of a

target gene network associated with the actin cytoskeleton and cell

migration correlates with the expected phenotypic consequences.

To confirm that the key ELK1 target genes in this network play a

role in controlling cytoskeletal-related activities such as cell

migration, we individually depleted nine of these genes (Figure

S15A) and analysed the resulting cellular phenotypes. Defects in

the actin cytoskeleton (Figure S15B and S15C) and reduced

wound healing (Figure S15D and S15E) were observed in several

cases. Importantly, cell migration was defective in the majority of

cases (Figure 6G and Figure S16), clearly demonstrating that the

ELK1 target genes play a role in controlling this process.

Discussion

Genome-wide studies are beginning to reveal the target genes

for many transcription factors and one of the unanswered

questions is how specific responses are generated by a particular

transcription factor, especially in the presence of other proteins

from the same family that can potentially bind the same sites. Here

we have investigated the ETS family transcription factor ELK1

and made the unexpected discovery, that the types of binding

mode exhibited by ELK1, correlate not only with the regulatory

outcomes at the associated target genes but lead to the control of

distinct networks of genes with defined cellular functions.

Figure 5. ELK1 controls a network of actin/migration-related
genes. (A) Network formed by proteins encoded by actin cytoskeleton/
migration-related genes associated with ‘‘unique’’ ELK1-bound regions
(each protein denoted by a circle). Asterisks mark genes tested in (B)
(PFN1 is associated with a redundant region). Grey circles indicate that
gene expression is changed upon ELK1 depletion. See Figure S11 for
details of gene names. (B) mRNA levels of nine actin cytoskeleton- and
migration-associated genes were measured by RT-qPCR in serum
starved MCF10A cells transfected with siELK1 and normalised to an
siGAPDH-transfected control; bars show average values from three
biological repeats with standard deviations. Levels of ELK1 mRNA
indicate the efficiency of depletion; RBL2, EFR3A are negative controls
which do not associate with ELK1. * P,0.05, ** P,0.01 (Student’s paired
t-test).
doi:10.1371/journal.pgen.1002694.g005
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Our results clearly demonstrate that ELK1 target genes can be

functionally classified according to their mode of ELK1 binding

and this in turn controls their mode of regulation. Inspection of

ELK1 binding regions demonstrates that these can be divided into

at least three distinct categories based on the binding of other

transcription factors; co-binding with a different transcription

factor SRF, competition with GABPA (and potentially other ETS

proteins) and binding in a distinct manner independently from

these. To simplify our analysis, and concentrate on the potential

interplay with other ETS transcription factor family members, we

focused on two modes of ELK1 binding; regions which can be

occupied by GABPA and ELK1 (‘‘redundant’’ regions) or regions

that can be occupied by ELK1 and apparently not GABPA

(‘‘unique regions’’). While further analysis of the redundant and

unique regions for binding by other ETS proteins from other

ChIP-seq studies broadly supports this classification, it is important

Figure 6. Depletion of ELK1 affects the cytoskeleton and the motility of MCF10A cells. (A) Control and ELK1-depleted MCF10A cells were
starved for EGF for 48 h, subsequently stimulated with EGF for 24 hours and stained with phalloidin to visualise the actin cytoskeleton. Nuclei are
stained with Hoechst (blue). Red arrows – subcortical actin, white arrowheads – membrane protrusions. (B) Quantification of the percentage of cells
exhibiting membrane protrusions from siGAPDH- and siELK1-transfected cells. Bars show average values from three biological repeats with standard
deviations; three fields were scored for each repeat. (C) Representative images of wounds created in monolayers of siGAPDH- or siELK1-transfected
MCF10A cells, at t = 1 h and t = 15 h post-stimulation with EGF. Lines show borders of areas which were used for quantification. (D) Areas of wounds
in monolayers of MCF10A cell treated as in (C) were measured at one-hour intervals of live imaging experiments; data are shown for the siELK1-
treated population as a percentage increase of area compared to control siGAPDH treated cells. Graph shows average of three biological repeats with
standard deviation. (E) Quantification of MCF10A cells which detached from clusters in the siGAPDH and siELK1-treated populations between
t = 60 min and t = 460 min after EGF treatment. The experiment was performed in three biological repeats and in each case the fate of 20 cells was
determined. (F) Migratory trajectories of MCF10A cells transfected with siGAPDH or siELK1, manually tracked between t = 1 h and t = 7 h of EGF
stimulation. Each coloured line represents the path travelled by an individual cell. (G) Box plots of the distributions of trajectory lengths for MCF10A
cells transfected with the indicated siRNA species, manually tracked between t = 1 h and t = 7 h after EGF stimulation. The experiment was performed
in 3 biological repeats, in each case 10 cells were tracked. The grey shaded area corresponds to the second and third quartiles of the migratory range
covered in control (GAPDH siRNA transfected) cells. Statistical significance was determined in Student’s paired t-tests (B and F) or P-values were
obtained from Kolomogorov-Smirnov tests (E and G). * P,0.05 ** P,0.01 *** P,0.005.
doi:10.1371/journal.pgen.1002694.g006
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to emphasise that we cannot definitively conclude that the

apparently ‘‘unique’’ regions cannot be bound by another ETS

factor under different conditions or in another cell type.

Nevertheless, this classification enabled us to ultimately define an

important role for ELK1 in controlling cell behaviour where it acts

through genes associated with the ‘‘unique’’ regions. These two

types of binding regions showed distinct characteristics. ‘‘Redun-

dant’’ regions are generally centered on the TSS and at the

sequence motif level, contain multiple sites which closely match

the generic consensus ETS protein binding motif CCGGAAGT.

Moreover, there is little evidence for the occurrence of common

co-binding transcription factors. In contrast, the ‘‘unique’’ regions

are located in a wide distribution around the TSS and generally

show a relaxed match to the ETS binding motif. Furthermore,

these regions contain fewer ETS-like binding motifs than the

‘‘redundant’’ regions. The ‘‘unique’’ regions also show motif

enrichment and binding of other classes of transcription factors;

AP1 and SRF. The association between ELK1 and SRF has been

well established previously (reviewed in [5,24]) but the association

with AP1 is a novel finding. This AP1 connection is related to early

studies on the ELK1-regulated FOS promoter which suggested

feedback inhibition by FOS [25]. Furthermore, recent genome-

wide ChIP-seq studies demonstrate that the ETS proteins ERG,

ETV1, and ETV4 exhibit strong co-binding with AP1 in prostate-

derived cells whereas others (ETS1 and GABPA) do not [26].

Thus, co-association with AP1 appears to be a common mode of

action for a subset of ETS transcription factors, including ELK1.

Several other features of ELK1 binding have previously been

reported from genome-wide binding analyses for other ETS

transcription factors. For example, as observed for ELK1, ETS1

generally shows redundant occupancy of proximal promoters with

GABPA but specific interactions with a coregulatory partner,

RUNX1, generally take place in more distally located regions

where ETS1 binds in a ‘‘unique’’ manner [4]. This study also

revealed a putative link between ‘‘unique’’ binding of ETS1 and

gene function with an association with T cell-specific genes being

observed but this link remained functionally untested. Further-

more, the sequence characteristics of the core ETS1 binding sites

differ between ‘‘unique’’ and ‘‘redundant’’ binding sites, as we

observed in this study for ELK1. Thus, there are clear similarities

in how ETS transcription factors generate specificity in their

mechanism of action and biological functions. However, despite

these underlying similarities, our study clearly demonstrates that

ELK1 and ETS1 function in a different manner. Furthermore, our

study was also able to make links to regulatory outcomes (see

below) at different classes of target genes which have not yet been

established for ETS1.

Importantly, the location of the ELK1 binding sites in proximal

promoter (defined as +/22 kb from the TSS) versus distal regions

is not as effective at partitioning of the data. Indeed, the ‘‘unique’’

ELK1 binding sites in the proximal promoter regions share

characteristics such as the distribution of binding motifs, over-

represented functional categories of targets, and association of

common regulatory events, with ‘‘unique’’ ELK1 binding sites

located in the distal regions (data not shown). Thus, the

mechanistic, regulatory, and functional connections that we

observe are not due to binding site location and instead reflect

whether ELK1 is likely working in a ‘‘unique’’ manner. However,

when we partitioned the data according to a different definition of

proximal binding (ie 27 kb to +2 kb from the TSS), we could

readily detect SRF and AP1 motifs in the distal regions but ETS

motifs were less obvious; the reciprocal was true in promoter-

proximal regions (data not shown). Moreover, there were

significantly more overlaps between distal ELK1 binding motifs

with FOS ChIP-seq data [19] (58/229) than with promoter-

proximal regions (20/300) (P-value,161026). This might reflect a

more combinatorial mode of action of ELK1 when it is associated

with distal binding regions.

Once the two types of ELK1 binding mode had been

established, we were then able to correlate binding with regulatory

outcomes. ‘‘Uniquely’’ bound regions are generally associated with

genes where ELK1 functions in an activating capacity, whereas

the converse is true of ‘‘redundantly’’ bound regions. Direct ELK1

target genes which are upregulated by EGF treatment are

generally associated with ‘‘unique’’ ELK1 binding regions,

consistent with a role for ELK1 as an EGF-responsive transcrip-

tional activator. Strikingly, the majority of ELK1 target genes were

barely affected by EGF treatment, despite the fact that ELK1 plays

a regulatory role at a large proportion of these. Thus although

ELK1 is generally thought to function by acting as a direct

recipient of ERK pathway signaling, this appears to be the

exception rather than the rule when considering its broader

cellular function (reviewed in [7–8,24]). It should, however, be

emphasised that even in the absence of EGF, basal ERK

activation is present in MCF10A cells (Figure 1C) and thus we

cannot rule out a role for constitutive low level signaling working

through ELK1 to its target genes.

The lack of EGF response is particularly prominent among the

‘‘redundantly’’ bound ELK1 target genes. In these cases it appears

likely that other ETS transcription factors such as GABPA can

substitute for ELK1 binding, and the function of ELK1 is to

compete for DNA occupancy with those ETS transcription factors.

Indeed, depletion of ELK1 or GABPA has a reciprocal effect on

the expression of ‘‘redundantly’’ bound target genes, suggesting

that a dynamic equilibrium between these transcription factors

exists in the cell to maintain target gene expression at the correct

level. In this scenario, ELK1 would either be repressive in nature

and GABPA activating, or alternatively, both might activate but

with GABPA activating to a higher level than ELK1. Similar

effects could occur amongst different family members as has been

suggested previously, at least at the level of DNA binding [3].

Importantly, our data also suggest that while redundancy at the

level of binding is observed, this binding might not translate into

functional redundancy.

Given the different binding modes identified for ELK1 and their

correlation with different regulatory outcomes for the associated

target genes, we then wished to examine whether this translated

into specific phenotypic responses. Unexpectedly, we uncovered a

clear distinction between the type of ELK1 binding mode

employed and the categories of target genes regulated. The

‘‘unique’’ ELK1 binding regions were closely associated with genes

encoding proteins involved in the actin cytoskeleton and related

processes, whereas the ‘‘redundantly’’ bound regions were

generally associated with genes encoding proteins controlling

aspects of gene expression. The latter observation suggests a

general role for ETS proteins in maintaining the levels of genes

encoding the gene expression machinery at the correct levels. A

similar conclusion was reached based on overlapping binding of

different ETS-proteins in a ChIP-chip study, where commonly

bound target genes were often designated as ‘‘housekeeping’’ [3].

However, our results suggested a unique non-redundant function

for ELK1 in controlling the expression of proteins associated with

the actin cytoskeleton and we subsequently demonstrated that this

was indeed the case. Upon ELK1 depletion, cytoskeletal defects

were observed and these led to defects in cell migration. A

previous study provided hints at such a connection with MMP9

identified as an ELK1 target gene relevant to cell migration [27].

However, a direct link was not made between ELK1 and cell
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migration control and this gene was not identified as a direct target

for ELK1 in our study.

Interestingly, SRF has also been associated with controlling the

actin cytoskeleton and cell migration [22,23] but the role of ELK1

as a potential partner protein in that process has not been

addressed. Indeed, it is thought that the alternative SRF partner

protein MAL/MRTF plays the major role in this process

(reviewed in [28]). More recently, two different types of SRF

binding sites have been shown to control cytoskeletal gene

expression, where SRF binds either together or independently

with the ETS transcription factor PU.1 and these binding events

correlate with activation through ubiquitous promoter- and cell

type-specific enhancer driven mechanisms, respectively [29].

Thus, different SRF binding modes are associated with the same

biological process and type of regulation, while here we reveal that

ELK1 binding modes dictate different downstream outcomes.

Many of the target genes that are directly regulated by ELK1

differ from the SRF-regulated genes encoding proteins associated

with the actin cytoskeleton. Indeed, of the 57 genes in the actin/

migration network associated with ELK1 binding, only 14 were

previously shown to be direct SRF targets in HeLa cells [5]. This

suggests that these two transcription factors may control the

expression of different components of the network rather than

acting in a more general coordinated fashion. Indeed, we have

shown that only a subset of the ELK1 target genes which rely on

ELK1 for their expression, are also positively regulated by SRF.

One of these, ACTB, encodes b-actin, and is a well established

SRF target gene [e.g. 22, 23]. Importantly, we have confirmed the

role of ELK1 in controlling cell migration in several human breast-

derived epithelial cell lines, and it is possible that ELK1 may play a

role in cellular metastasis in the context of breast cancer. The

other major categories of ELK1-regulated target genes are

associated with cell survival and apoptosis. However both

‘‘uniquely’’ and ‘‘redundantly’’ bound target genes appear to be

involved. This association was expected due to the original

observation that ELK1 is required for the survival of MCF10A

cells [15].

In summary, this study has identified an intriguing link between

different modes of transcription factor binding and the control of

different functional categories of target genes. This permits a

specific phenotypic response to be achieved depending on the

intrinsic properties and the co-regulatory activities occurring at

different transcription factor binding sites. In the case of ELK1, we

uncover a specific role in controlling genes associated with the

actin cytoskeleton and also determine that it has a second function

in which it acts in a dynamic fashion with other ETS transcription

factors to maintain the correct expression of components of the

gene expression machinery. Future studies will attempt to uncover

the mechanistic differences utilized by ELK1 in the different

regulatory scenarios.

Materials and Methods

Tissue culture, RNA interference, and RT–PCR
MCF10A cells were maintained in DMEM/F12 containing 5%

horse serum, 20 ng/ml EGF, 10 mg/ml insulin, 100 ng/ml

cholera toxin and 0.5 mg/ml hydrocortisone. MDA-MB-231 cells

were grown in DMEM containing 10% FBS.

For RNAi, MCF10A and MDA-MB-231 cells were plated out

into a mixture of 83% growth medium, 17% OptiMEM

(Invitrogen), 20 nM siRNA and 0.33% Lipofectamine2000

(Invitrogen) followed by replacement of the transfection mix with

appropriate growth media after 12 hours. All siRNA constructs

were ON-TARGETplus SMART pools from Dharmacon except

for ELK1, where a custom-designed siRNA duplex corresponding

to the sequence GGCAATGGCCACATCATCT was used, and

for GABPA where additional duplexes were used from Santa-

Cruz. For experiments involving the culture of siRNA-transfected

cells longer than 64 hours, siRNA transfections were repeated at

t = 48 hrs. For SRF knockdown followed by RT-PCR analysis,

two repeats were done with an ON-TARGETplus SMART pool

(Dharmacon) and one was performed with an alternative siRNA

duplex (Santa Cruz).

Real time RT-PCR was carried out as described previously

[30]. The primer pairs used for RT-PCR experiments are listed in

Table S5.

Expression microarray analysis
MCF10A cells were seeded into 6-well plates (520,000/well),

transfected with siELK1 or siGAPDH (control) and maintained in

media depleted of EGF for 48 hours. Cells were then stimulated

with complete media containing EGF for 30 minutes (with non-

stimulated populations used as control). Three biological replicates

were performed for each condition. RNA was isolated using the

RNeasy kit (QIAgene) according to the manufacturer’s protocol

and quantifiied with a Nanodrop ND-1000 spectrophotometer

(Nanodrop Technologies). Sample labeling and hybridization to

Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays were

performed according to manufacturer’s instructions.

Upon collection of signal, technical quality control was

performed with dChip (V2005) [31] using default settings.

Background correction, quantile normalization, and gene expres-

sion analysis were performed using RMA in Bioconductor [32].

Principal component analysis (PCA) was performed with Partek

Genomics Solution (version 6.5, Copyright 2010, Partek Inc., St.

Charles, MO, USA). Differential expression analysis between

samples was performed using Limma with the functions lmFit and

eBayes [33]. A two-factor ANOVA model was used with batch

pairing, since batch pairing was evident in the PCA analysis. Gene

lists of differentially expressed genes were controlled for false

discovery rate (FDR) errors using the method of QVALUE. All

probesets with signals lower than or equal to the background level

in the EGF treated control samples were discarded. For fold

changes of signal between any two conditions, only probesets with

Q values lower than 0.1 and P values lower than 0.05 were

retained. For probesets complementary to multiple HUGO official

gene symbols, only one gene name was retained. Probesets

associated with gene names showing changes of signal in opposite

directions were excluded from further analysis and if multiple

probesets were associated with one official gene symbol, only the

probeset exhibiting the largest change of expression was retained

for further analysis. The microarray expression data have been

submitted to array express (accession number E-MEXP-3407).

For clustering, signal intensities assigned to each probeset were

log10-transformed and z-scores were calculated [34]. These

transformed signal intensities were subsequently clustered in

MultiExperimentViewer (MeV) [35] using the k-means algorithm

with a preset of 8 clusters. These were subsequently organised

using the hierarchical clustering algorithm.

Wound healing, cell tracking assays, and
immunofluorescent staining

Cells seeded in duplicate into 12-well plates were transfected

with appropriate types of siRNA in media depleted of EGF

(MCF10A cells) or FBS (MDA-MB-231 cells). After 48 hours

wounds were created in each well using sterile pipette tips; wounds

were scanned visually to ensure similar width. Cells were washed

twice with 16 PBS and media containing either 20 ng/ml EGF
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(MCF10A cells) or 10% FBS (MDA-MB-231 cells) was added. For

MDA-MB-231 cells, after 18 hours cells were stained with crystal

violet. Four images were taken for each of the tested conditions,

the area unoccupied by cells in each image was measured. Average

values for each biological repeat were normalised to control

(siGAPDH transfection). For MCF10A cells, upon stimulation

plates were transferred to a chamber heated to 37uC and aerated

with 5% CO2 and imaged for 15 hours. The area unoccupied by

cells was measured at one hour intervals and normalised to values

specific for the siGAPDH-transfected control. Alternatively, after

15 hours cells were fixed and stained with crystal violet. For single

cell tracking, sparsely seeded cultured of MCF10A cells were

treated identically as in wound healing assays (without the

formation of wounds). All images were processed and analysed

using ImageJ and Adobe Photoshop CS2.

Fixed cells were visualised using a Leica DMIL upright

microscope coupled with a diagnostic instruments HRP045-NIK

camera and a 20x/0.30 CPlan Ph1 – air objective. Images were

acquired through the SPOT Basic software (Diagnostic Instru-

ments) and processed in ImageJ and Adobe Photoshop CS2. Live

cells were imaged in a heated, CO2-enriched chamber of a Leica

DM IRE microscope equipped with motorised XYZ stages

(Mauhauser) and a 20x/0.50 HC PlanFluotar (Ph2) objective.

Images were acquired with a Coolsnap HQ CCD camera

(Photometrics) through the Image Pro 6.3 software (Media

Cybernetics LtD) and later processed using ImageJ.

For immunofluoresence experiments, cells were fixed with 3.7%

paraformaldehyde in 16PBS, permeabilised with 0.01% Triton

X-100 in 16PBS, washed twice with 16PBS, stained for 20 min

with a solution of AlexaFluor488 phalloidin (Invitrogen), then

washed three times with PBS. For detecting DNA, cells were co-

stained with a 1 mg/ml solution of the Hoechst dye. Cells were

imaged using Olympus BX51 upright microscopes equipped with

20x/0.50 UPlanFln – air objectives and captured with a Coolsnap

HQ camera through MetaVue Software (Molecular Devices).

Western blot analysis
Western blotting was carried out with the primary antibodies;

ELK1 (Epitomics, #1277-1), cFOS (SantaCruz, sc7202), ERK2

(SantaCruz, sc154), and phospho-ERK (Cell Signalling, 9106S).

The proteins were detected either by chemiluminescence with

SuperSignal West Dura Substrate (Pierce) and visualised with a

Fluor-S MultiImager (Bio-Rad) or for infrared dye-conjugated

antibodies, signal was collected with a Li-cor Odyssey Infrared

Imager.

Chromatin immunoprecipitation (ChIP) assays
ChIP assays using control IgG (Millipore) or antibodies specific

to ELK1 (Epitomics) or cFOS (Santa Cruz) were performed

essentially as described previously (O’Donnell et al. 2008) using

36106 MCF10A cells for a standard ChIP and 5.46107 cells for a

ChIP-seq experiment, grown in media depleted for EGF for 48 hrs

for ELK1 ChIP or following stimulation with EGF re-addition for

2 hours for FOS. Bound promoters were detected by quantitative

PCR using primers listed in Table S5. Quantitative PCR was

performed at least in duplicate, from at least three independent

experiments, and analysed as described previously [5].

ChIP–seq assays
Samples for ChIP-seq were prepared as described above and

libraries were generated and sequencing was performed on a Life

Technologies SOLiD 3.5 System (Applied Biosystems) according

to the manufacturer’s protocols. Two repeats were performed.

SOLiD (Applied Biosystems) *.csfasta sequencer reads were

truncated to 32 nt using a perl script: SOLiD_preprocess_filter_v1.pl,

available at http://hts.rutgers.edu/filter/. Reads were then

aligned to build 18 of human genome from March 2006 (hereafter

referred to as hg18) using Corona-Lite 4.2.2 (Life Technologies)

and allowing from 0 to 3 mismatches. Aligned reads were used for

identification of peaks by MACS v. 1.3.7.1 [36]. For each of the

two repeats, the ELK1 signal was compared sequentially to the

IgG and input signals and the overlaps of the resulting sets of

regions were carried out using Galaxy [37,38]. The resulting sets

of ELK1-specific peaks for each repeat experiment were once

more overlapped and a high confidence dataset was defined as

regions identified in repeat 2 that overlapped those identified in

repeat 1. Regions identified only in repeat 2 are considered to be

low-confidence targets. In both cases, only regions characterised

by a False Discovery Rate (FDR) lower than 10% were retained.

The ChIP-seq data have been submitted to array express

(accession number E-MTAB-830).

For association of ELK1 binding regions with potential

regulated genes, each ChIP-seq region was assigned to its nearest

gene annotated in the refGene table (release 41, May 2010) of the

RefSeq Genes track, downloaded from the UCSC Table

Browser. This was based on the position of summit of each peak

(identified by MACS) and the position of the TSS of the relevant

RefSeq gene. Overlaps between ChIP-seq-associated genes and

microarray-generated gene expression data were determined

using an online tool (http://jura.wi.mit.edu/bioc/tools/compare.

php).

Bioinformatics analysis
The genomic distribution of peaks was determined using CEAS

[39]. De novo motif discovery was carried out using Weeder v. 1.4.2

[40]. The resulting top scoring position weight matrices (PWMs)

were parsed against known transcription factor PWMs from the

JASPAR 2010 database [41] using STAMP [42].

Word-based motif searches were performed using two PERL

scripts: CountRegexGFF_IUPAC_1input_nosummary.pl (identifies num-

ber of occurrences of a particular IUPAC string on one or both

strands of one or more sequences provided in FASTA format) and

CountRegexGFF_IUPAC_1input_simple_output.pl (returns positions of

all occurrences of a given IUPAC string within given FASTA

sequences).

For constructing networks, lists of gene names assigned to ChIP-

seq regions were uploaded into STRING [43]. The resulting

networks were saved as *.txt files and then uploaded into

Cytoscape (v. 2.7.0) with cumulative scores of coexpression,

textmining, knowledge and experimental data as proximity

criteria. yFilesRorganic network layouts were applied and the

positioning and graphic representation of nodes were adjusted

manually for increased clarity.

For functional profiling of ELK1 binding regions identified

by ChIP-seq, Gene Ontology was performed using GREAT v.

1.2.6 [18] with the default (basal plus extension) gene

regulatory definition option. Here, each ChIP-seq region is

assigned to all genes whose domains it overlaps. Significance

was determined by FDR,0.05, and terms significant by both

the region-based binomial test and gene name-based hyper-

geometric test are reported. Gene Ontology analysis of lists of

gene names was performed using DAVID v. 6.7 [21] and terms

with P-values,0.05 were retained. In each case, Official Gene

Symbol was used. Gene Ontology of networks was carried out

using the Cytoscape plugin BiNGO (v. 2.42) [44] with default

settings.
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Statistical analysis
Statistical analysis for qRT-PCR studies and ChIP assays were

performed using paired, 2-tailed Student’s t test. The error bars in

all graphs represent standard deviation. Fisher’s Exact tests and

Chi-square tests were used to compare two different distributions

of pairs of datasets with respect to a particular condition. Z-score

analysis of overlaps between two gene name lists was performed

using a PERL script using 10000 background lists of Official Gene

Names of size of one of the comparator datasets. Average overlap

with standard deviation was recorded and z-score was calculated

as the ratio of difference between actual overlap and this average

overlap over the standard deviation. Kolomogorov-Smirnov tests

were used to determine the statistical significance of differences in

shape and range between two distributions. The Genomic

HyperBrowser was used to determine the statistical significance

of overlaps of sets DNA regions with the following settings: regions

of dataset 1 fixed, region sizes and number of dataset 2 fixed,

tested hypothesis: overlaps more than expected, overlap tested for

the whole genome, with each chromosome treated as a separate

bin (maximum possible bin size).

Data release
The ChIP-seq and microarray expression data have been

submitted to array express (accession numbers E-MTAB-830 and

E-MEXP-3407) and the data will be released upon publication.

Supporting Information

Figure S1 Summary of microarray analysis of gene expression

changes in either siGAPDH or siELK1-treated cells upon EGF

stimulation. The numbers of genes which become up- or down-

regulated upon EGF stimulation are indicated.

(PDF)

Figure S2 Validation of ChIP-seq datasets. qPCR validation of

a range of ELK1 binding regions identified by ChIP-seq. Binding

regions were ordered by descending tag count and candidates

were selected by taking binding regions approximately every

fiftieth and every one-hundredth position in the lists from the high

and lower confidence ELK1 ChIP-seq datasets. ChIP-seq peak

profiles for the ELK1 (blue vertical line) and IgG (yellow vertical

line) samples are shown on the left. Bars in profile windows

indicate 500 nt; RefSeq annotated genes are shown (if present) and

the TSS is indicated by an arrow. The signal range (y-axis) is 0 to

100 for all regions apart from region 2 in the high confidence

dataset (WNK1), where the maximum reaches 225. Specific

binding of ELK1 to each region was validated in ChIP-qPCR

experiments carried out in three biological repeats (shown on the

right of the corresponding peak profiles); bars show the average

percentages of input precipitated with the ELK1 antibody (blue

bars) or non-specific IgG (yellow bars) with standard deviations.

Titles of the graphs indicate the position of each region on a list

ordered with descending tag count of ELK1 signal (prefix ‘‘L’’

denotes position on lower confidence list) and the name of the

nearest annotated RefSeq gene. Binding regions from the lower

confidence dataset are boxed. ABLIM2, CPLX1 and intron 3 of the

SRF gene (SRFint3) are negative controls and EGR2 is a positive

control. Data are summarized in Figure 2A.

(PDF)

Figure S3 Role of ELK1 in MDA-MB-231 cells. (A) ChIP-

qPCR experiments were carried out in MDA-MB-231 cells for

regions bound by ELK1 in MCF10A cells (see Figure 2A, and

Figure S2; only the high confidence dataset was tested). Bars show

the average percentages of input precipitated with the ELK1

antibody (black bars) or non-specific IgG (grey bars) with standard

deviations. Numbers above bars show fold enrichment of ELK1

signal over IgG. EGR2 – positive control, ABLIM2, CPLX1,

SRFint3 – negative controls. (B) The effect of depletion of ELK1 on

mRNA levels of the indicated actin cytoskeleton- and migration-

associated genes. RT-qPCR analysis of the mRNA levels of the

indicated genes was carried out in serum starved MDA-MB-231

cells transfected with siELK1, with normalisation to an siGAPDH-

transfected control; bars show average values from three biological

repeats with standard deviations. Levels of ELK1 mRNA indicate

the efficiency of depletion and RBL2 and EFR3A are control genes

not associated with ELK1 Binding regions; * P,0.05, ** P,0.01

(Student’s paired t-test). (C) Representative images of wounds

created in monolayers of siGAPDH- or siELK1-transfected MDA-

MB-231 cells, 18 hours post-stimulation with media containing

10% FBS. Lines show borders of areas which were used for

quantification. (D) Areas of wounds in MDA-MB-231 cells treated

as in (C) were measured in duplicates and normalised to control

(siGAPDH). Bars show the average of three biological repeats with

standard deviation. P-value was obtained from a two-tailed paired

Student’s t-test. (E) Numbers of MDA-MB-231 cells in a siELK1-

transfected population were counted at 48 and 96 hours post-

initial transfection and normalised to control (siGAPDH). Bars

show average values of three biological repeats (performed in

duplicates) with standard deviations. * P,0.05 (Student’s paired t-

test).

(PDF)

Figure S4 Overlaps between ELK1 binding regions in MCF10A

cells and HeLa cells. (A) Overlap between regions identified by

ChIP-seq as bound by ELK1 in MCF10A cells, and by ChIP-chip

as bound by ELK1 in HeLa cells [5]. (B) Overlap between regions

identified by ChIP-seq as bound by ELK1 in MCF10A cells, and

by ChIP-seq as bound by ELK1 in HeLa cells [17]. The ChIP-seq

data from MCF10A cells is partitioned into promoter proximal

(210 kb to +2.5 kb from the TSS) and distal binding regions to

enable comparison with the ChIP-chip data which only samples

this region of the genome.

(PDF)

Figure S5 Gene Ontology analysis of regions bound by ELK1.

GREAT Gene Ontology analysis was carried out for all regions

from the high confidence dataset using default settings. Signifi-

cantly enriched categories are shown. Categories associated with

the actin cytoskeleton and migration are indicated by arrows.

(PDF)

Figure S6 Depletion of ELK1 changes the expression of distinct

functional categories of genes. (A) DAVID functional clustering

analysis was carried out for genes assigned to ELK1 ChIP-seq

regions which show a significant change in expression levels in

MCF10A cells depleted of ELK1 (as compared to an siGAPDH-

transfected control), at either time point of EGF stimulation.

Functional assignments of the top ten clusters are shown. GO

terms were classified as gene expression-related (grey), actin

cytoskeleton/migration-related (green) and cell survival related

(orange). (B) DAVID functional clustering results for genes

upregulated upon ELK1 depletion; the top five clusters are

shown. (C) As in (B), but for downregulated genes.

(PDF)

Figure S7 Overlaps between ELK1 binding regions and binding

of other transcription factors; FOS/AP1 binding associates with

‘‘unique’’ ELK1-bound regions. (A) Overlap between regions

identified by ChIP-seq as bound by ELK1 (MCF10A cells) and

ELK4 (HeLa cells) [17]. (B) Overlap between regions identified by
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ChIP-seq as bound by ELK1 (MCF10A cells) and the indicated

ETS transcription factors [2,17,24]. RPWE1 are normal prostate,

Jurkat are T cell lymphoma, VCaP are prostate cancer, HL60 are

leukaemia and HeLa are cervical cancer cells. The data are

compared to the 303 ‘‘unique’’ and 226 ‘‘redundant’’ ELK1

binding regions, and the % overlap is presented (relative to the

number of ELK1 regions). P-values are calculated in Chi square

tests and significance values assigned to datasets which show a

preferential differential enrichment with the ‘‘redundant’’ ELK1

binding regions. (C) Overlap between regions identified by ChIP-

seq as bound by ELK1 (MCF10A cells), SRF (Jurkat cells; [19])

and GABPA (Jurkat cells; [19]). (D) Occurrence of FOS/AP1

motifs corresponding to the TGANTCA consensus (purple

quadrants) in ‘‘unique’’ and ‘‘redundant’’ ELK1-bound regions.

P-values were calculated using a Chi square test. (E) Western blot

showing expression levels of FOS in MCF10A cells at indicated

times after EGF addition. (F) Binding of FOS to ‘‘unique’’ (WNK1,

ITGAV, PAPLN) and ‘‘redundant’’ (CAP1) regions was determined

in MCF10A cells two hours post-EGF stimulation in ChIP-qPCR

assays. Numbers above bars indicate fold enrichment of FOS

signal over IgG. KLF9 – positive control.

(PDF)

Figure S8 Comparison of ELK1 binding motifs found in vivo and

in vitro. TFBS logos obtained through STAMP-assisted visualisa-

tion of Weeder-derived position weight matrices of motifs

overrepresented in ‘‘unique’’ and ‘‘redundant’’ ELK1-bound

regions from the ChIP-seq experiment in MCF10A cells (see

Figure 3C). For comparison, the logo for the ELK1 binding site

obtained from an in vitro site-selection study [2] is shown at the

bottom.

(PDF)

Figure S9 ‘‘Unique’’ and ‘‘redundant’’ ELK1-bound regions

regulate distinct sets of target genes. Summary profiles of the target

genes in clusters 1, 3, 5 and 6 (see Figure 4A). The data are

presented as changes of the individual (grey) and average (black)

expression values of genes in each cluster under each of the four

experimental conditions. For each gene, the mean of the signals

across all four conditions was set as zero, and expression levels (z-

transformed) are presented relative to this value.

(PDF)

Figure S10 The role of ELK1, GABPA and SRF in regulating

‘‘unique’’ ELK1 target genes. (A–C) mRNA levels of nine actin

cytoskeleton- and migration-associated genes were measured by

RT-qPCR from MCF10A cells grown in the absence of EGF (B

and C) or additionally treated with EGF for 30 mins (A) and

transfected with siRNAs against ELK1 (A), GABPA (B) or SRF

(C); these were then normalised to an siGAPDH-transfected

control (taken as 1). Bars show average values from two to three

biological repeats with standard deviations. Levels of ELK1,

GABPA and SRF mRNAs indicate the efficiency of depletion;

RBL2, EFR3A are negative controls which do not associate with

ELK1. Significantly altered expression is depicted with orange

bars; * P,0.05, ** P,0.01 (Student’s paired t-test).

(PDF)

Figure S11 ELK1 controls a network of actin/migration-related

genes. Network formed by proteins encoded by actin cytoskeleton/

migration-related genes associated with ‘‘unique’’ ELK1-bound

regions (each protein denoted by a circle). Asterisks mark genes

tested in Figure S10 and Figure 5A (PFN1 is associated with a

redundant region). Pink circles indicate that gene expression is

changed upon ELK1 depletion. Circles to the right of the figure

show ELK1 target genes attributed to these functional terms but

which do not have catalogued connections to the other genes in

the network.

(PDF)

Figure S12 ELK1 controls a network of survival-related genes.

Networks formed by proteins encoded by survival-related genes

associated with ‘‘unique’’ or ‘‘redundant’’ ELK1-bound regions

(each protein denoted by a circle). Asterisks mark genes tested in

Figure 5A and Figure S10, Pink and green circles indicate that the

genes are associated with ‘‘unique’’ ELK1 binding regions and

their gene expression is changed or unchanged respectively upon

ELK1 depletion. Yellow and blue circles indicate that the genes

are associated with ‘‘redundant’’ ELK1 binding regions and their

gene expression is changed or unchanged respectively upon ELK1

depletion. Circles to the right of the figure show ELK1 target

genes attributed to these functional terms but which do not have

catalogued connections to the other genes in the network.

(PDF)

Figure S13 ELK1 controls a network of gene expression-related

genes. Networks formed by proteins encoded by gene expression-

related genes associated with ‘‘unique’’ (A) and ‘‘redundant’’ (B)

ELK1-bound regions. Asterisks mark genes tested in Figure S10,

Figure 5A. Pink and yellow circles indicate that the genes are

associated with ‘‘unique’’ and ‘‘redundant’’ ELK1 binding regions

and their gene expression is changed upon ELK1 depletion

whereas green and blue circles indicate that the genes are

associated with ‘‘unique’’ and ‘‘redundant’’ ELK1 binding regions

and their gene expression is unchanged upon ELK1 depletion.

Circles to the right of the figure show ELK1 target genes

attributed to these functional terms but which do not have

catalogued connections to the other genes in the network.

Subclusters of proteins that correspond to distinct categories of

regulators are boxed.

(PDF)

Figure S14 Depletion of ELK1 impairs MCF10A cell survival.

The numbers of MCF10A cells were determined 48 h and 96 h

post-initial treatement with ELK1 siRNA and normalised to

siGAPDH-transfected control. Cells were stimulated with EGF at

t = 48 h (together with the second transfection). The experiment

was performed in duplicate; average values and standard

deviations from three biological repeats are shown. Significance

was determined in a Student’s paired t-test, * P,0.05.

(PDF)

Figure S15 ELK1-regulated genes control the actin cytoskeleton

and motility of MCF10A cells. (A) Depletion levels of each of the

indicated mRNA species following siRNA treatment were

determined in RT-qPCR reactions. Bars show average values

from three biological repeats with standard deviations, and are

shown relative to cells treated with siGAPDH (taken as 1). (B)

Representative images of MCF10A cells transfected with the

indicated siRNA species, starved for EGF for 48 h and

subsequently stimulated with EGF for 24 h and stained with

phalloidin (green) and the Hoechst dye (blue). (C) The percentage

of cells exhibiting membrane protrusions was calculated for each

of the indicated siRNA transfections, as well as for siGAPDH

(negative) and siELK1 (positive) – transfected controls. Bars show

average values from three biological repeats with standard

deviations; three fields were scored for each repeat. (D)

Representative images of wounds created in monolayers of

MCF10A cells transfected with the indicated siRNAs, are shown

15 hours post-stimulation with EGF (cells were stained with crystal

violet). (E) Areas of wounds in MCF10A cells treated as in (D) were

measured in duplicates and normalised to control (siGAPDH).
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Bars show average values of three biological repeats with standard

deviations. P-values were calculated in Student’s paired t-tests, *

P,0.05

(PDF)

Figure S16 Depletion of ELK1 target genes impairs MCF10A

cell migration. Migratory trajectories of MCF10A cells transfected

with the indicated mRNA species, manually tracked between

t = 1 h and t = 7 h of EGF stimulation. Each coloured line

represents the path travelled by an individual cell.

(PDF)

Table S1 Microarray analysis of gene expression changes upon

EGF treatment and/or depletion of ELK1 in MCF10A cells. Data

are shown for (A) all the genes which show significant changes in

expression upon EGF treatment and/or depletion of ELK1 and

(B) genes which show significant changes in expression upon EGF

treatment and/or depletion of ELK1 and are also associated with

ELK1 binding regions. Only probesets with Q values lower than

0.1 and P values lower than 0.05 were retained, and only one

probeset per gene was considered, see Materials and Methods for

details.

(XLSX)

Table S2 ChIP-seq analysis of ELK1 binding regions in

MCF10A cells. Data are shown for (A) high confidence binding

regions which have a FDR,10% and appear in two independent

experiments and (B) lower confidence binding regions which have

a FDR,10% but appear in only one experiment. Genomic

coordinates, summits, tag numbers and significance values are

shown for each region from the experiment (repeat 2) which gave

peaks with more stringent P-values.

(XLSX)

Table S3 Z-transformed mRNA expression data for clustering

analysis. The mRNA expression changes for genes associated with

ELK1-bound regions that show a significant response to siELK1

and/or EGF treatment are shown as z-transformed data for each

of four different experimental conditions, i.e. plus/minus siELK1

treatment, plus/minus EGF treatment for 30 mins. This data was

used for generating the k-means clustering of expression levels

shown in Figure 4A.

(XLSX)

Table S4 ‘‘Unique’’ and ‘‘redundant’’ ELK1-bound genes

associate with distinct sets of GO terms. DAVID Gene Ontology

was performed on lists of genes associated with ‘‘unique’’ or

‘‘redundant’’ ELK1-bound regions that changed expression upon

depletion of ELK1. Lists were sorted with ascending P-values of

individual terms. These data are shown as a heatmap in Figure 4G.

(XLSX)

Table S5 List of PCR primers used in (A) ChIP and (B) RT-

PCR experiments. Nucleotide sequences are given in both cases,

and the chromosomal locations of the primers used for ChIP

(according to the hg18 genome assembly).

(PDF)
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