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Abstract

The COP9 signalosome (CSN) is a highly conserved multifunctional complex that has two major biochemical roles: cleaving
NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the
JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point
mutations of key residues in the metal-binding motif (EXnHXHX10D) of the CSN-5 JAMM domain disrupted CSN dened-
dylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins.
Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We
found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCFFWD-1 complex and
partially restore the degradation of the circadian clock protein FREQUENCY (FRQ) in vivo. Furthermore, we showed that CSN
containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion
of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN
integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.
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Introduction

The COP9 signalosome (CSN) is an evolutionarily conserved

multifunctional complex in eukaryotes; it is composed of eight sub-

units (CSN1–CSN8) in plants and mammals [1]. The CSN was

initially discovered to be an important regulator of photomorpho-

genesis in Arabidopsis thaliana [2] and was later found to participate

in a wide range of processes [1,3]. The CSN potentially influences

these cellular pathways by regulating the activity of cullin-RING

ubiquitin ligases (CRLs, e.g., CRL1, CRL3, and CRL4 complexes

in most eukaryotes) [3,4,5]. CRLs are a big family of ubiquitin

ligases that share a common cullin/RING-E2 module [6,7,8].

They are necessary for substrate ubiquitination in a cascade of

enzymatic reactions involving E1, E2, and E3 [9]. Under the con-

trol of the CSN-regulated ubiquitin-proteasome pathway, cells

coordinate the expression of an array of genes involved in the

regulation of growth and development in order to respond to en-

vironmental signals, such as light, temperature, and changes in

nutrient conditions [1,10]. Loss-of-function mutations in CSN sub-

units result in dysfunction of hundreds of CRLs [3], which explains

the pleiotropic phenotypes observed in CSN mutants [1,3,7].

In 2002, Deshaies and his colleagues first described that the

CSN-5 metalloprotease (JAMM) motif is required for removing

the ubiquitin-like protein NEDD8 from Cul1 [11]. Later studies

confirmed that the isopeptidase activity of the CSN complex is

responsible for cullin deneddylation in eukaryotes [1,3,4,5,12]. In

this process, the CSN binds to CRL E3 ligase and cleaves NEDD8

from cullins via the catalytic activity of its CSN-5 subunit, and

then inhibits CRL activity [5,13,14,15]. Thus, the deneddylation

activity of CSN requires the metalloprotease motif located in

the CSN-5 subunit and the functional core subunits of the CSN

[11,16]. However, CSN-5–dependent metalloprotease activity is

not essential in Schizosaccharomyces pombe, as no obvious phenotype

was detected in csn-5 deletion strains [17,18].

The physiological importance of CSN deneddylation activity in

development and cell differentiation was examined in Drosophila

melanogaster, in which the lethality of csn-5D/D animals was rescued

by expression of a CSN-5 transgene but no adult flies were re-

covered upon equivalent expression of CSN-5 (D148N) (loss of

deneddylation activity) [11,19]. In CSN-5-downregulated HeLa

cells, however, the accelerated degradation of c-Jun was rescued

equally by over-expression of either the JAMM domain mutant

CSN-5D151N or wild-type CSN-5 [20]. These results suggest that

the requirement for neddylation/deneddylation cycle of cullins is

not absolutely necessary during normal growth and certain devel-

opmental stages. In plants, genetic studies suggest that although

neddylation/deneddylation cycle is not absolutely necessary

during early embryonic development and germination, it is re-

quired during seedling establishment and the later developmental

stages [12,21]. In Aspergillus nidulans, deletion of csnE/csn-5 or
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mutation in JAMM domain results in a block in fruiting body

formation at the primordial stage, with a few other observed

phenotypic changes, such as light-dependent signaling [22,23].

Although deneddylation is a major activity of the CSN, it alone

cannot explain all of the phenomena described above. These ob-

servations raise the possibility that the CSN may have other func-

tional activities in addition to its deneddylation activity.

Recent genetic evidence suggest that the CSN has one addi-

tional major function: it controls the stability of CRL ubiquitin

ligases in vivo by mediating assembly/disassembly of CRL com-

plexes and by protecting substrate receptors in CRLs from de-

gradation [3,24,25,26,27,28]. A recent structural and biochemical

study showed that the protective effect of the CSN on DDB2 and

CSA autoubiquitination in CRL4 complexes does not require

CSN-5–mediated deneddylation activity [29]. However, both of

the CSN activities occur when CSN associates with cullins in CRL

E3 complexes. Furthermore, there is also a tight correlation be-

tween CSN deneddylation activity and the ability of the complex

to modulate the stability of CRLs [3]. Thus, it is difficult to deter-

mine which function is more important for growth and devel-

opment through regulation of CRL activity, or how these two

functions cooperate with each other in regulating CRL dynamicity

in eukaryotes. In A. thaliana, the MPN (Mpr-Pad1-N-terminal

domain) subunits CSN-5 and CSN-6 are essential for the struc-

tural integrity of the CSN holocomplex [12]. Several studies have

shown that point mutations in the JAMM metal-binding site of

CSN-5 do not interfere with the proper assembly of CSN

complexes in S. pombe, A. thaliana, and A. nidulans [11,21,23]. In

N. crassa, CSN-5 is not an essential gene; the deletion mutant can

survive, and displays obvious growth and developmental defects,

making it an excellent model system for investigating the dis-

tinctions between the deneddylation and CRL complex assembly/

disassembly functions of the CSN [16].

The CSN takes part in a wide range of cellular and devel-

opmental processes in N. crassa, including hyphal growth, conidial

formation, light and temperature responses, and circadian clock

function [16,24]. To further investigate its biological function in

vivo, we created a series of point mutations in the JAMM metal-

binding motif of the CSN-5 subunit to disrupt the deneddylation

activity of the CSN complex. In those mutant strains, the integrity

of the CSN and its interactions with Cul1 and Cul4 were not

affected. Surprisingly, mutated CSN-5 almost retained the ability

to restore the phenotypic defects of a csn-5KO strain and partially

maintained the stability of the SCFFWD-1 complex, which was

able to carry out degradation of the clock protein FREQUENCY

(FRQ) in vivo. Moreover, the stability of four other substrate

receptors of CRLs can be efficiently restored by the CSN con-

taining mutant CSN-5. However, deletion of the CAND1ortholog

in N. crassa had little effect on conidiation circadian rhythm and

the degradation of FRQ. Our results suggest that the integrity of

CSN plays major roles in hyphal growth, conidial development,

and circadian function in N. crassa.

Results

Mutations within the CSN-5 JAMM metal-binding site
abolish CSN–mediated deneddylation of cullins

The N. crassa genome encodes seven COP9 signalosome sub-

units (CSN-1–CSN-7) [16,24]. Several studies have shown that the

JAMM metal-binding sites in the MPN domain of CSN-5 are

required for metalloprotease activity in the CSN [11,21,23]. When

the CSN-5 protein sequence was used in a BLAST search against

protein databases, a highly conserved MPN domain in the N. crassa

CSN-5 subunit was identified. As shown in Figure 1A, three con-

served residues corresponding to His127, His129, and Asp140 lie

within the putative metal-binding motif (EXnHXHX10D) of the

N. crassa CSN-5 JAMM domain. To determine whether these

conserved residues form the metalloprotease-like active site of

JAMM, we used the JAMM domain of Archaeoglobus fulgidus as a

template to generate the tertiary structure of N. crassa CSN-5 [30].

Because of the low similarity between these two JAMM domains,

the generated structure was poor. Thus, we instructed SWISS-

MODEL to automatically select a template protein for generating

the structure of N. crassa CSN-5 [31]. SWISS-MODEL selected

the pre-mRNA splicing factor Prp8 as template (Protein Data

Bank [PDB] accession number 2P8R) for N. crassa CSN-5. The

functional sites were mapped into predicted structure according to

the structural alignment with AfJAMM (PDB accession number

1R5X). As shown in Figure 1B, His127, His129, and Asp140

within EXnHXHX10D of the N. crassa CSN-5 JAMM correspond-

ed to the putative metal-binding motif as metalloprotease-like

active site in AfJAMM [30,32].

To confirm the contribution of CSN-5 to CSN-mediated

deneddylation of cullins, we mutated these three highly conserved

amino acids (H127A, H129A or D140N) using site-directed mu-

tagenesis. We then introduced quinic acid (QA)–inducible Myc-

tagged wild-type CSN-5 or one of the three mutant CSN-5 con-

structs into a csn-5KO strain expressing Myc-Cul1 protein. As

shown in Figure 1C, Myc-CSN-5, Myc-CSN-5H127A, Myc-CSN-

5H129A, and Myc-CSN-5D140N were expressed in the csn-5KO

strains in the presence of QA. Expression of Myc-tagged wild-type

CSN-5 in the csn-5KO strain resulted in a decrease in hyperneddy-

lated Cul1 to the level of the wild-type strain (Figure 1C), in-

dicating that the Myc-tagged CSN-5 protein was functional for

CSN deneddylation activity. In contrast, expression of mutant

CSN-5 (H127A, H129A, or D140N) failed to decrease the hyper-

neddylated Cul1 in the csn-5KO strain (Figure 1C). Similarly,

hyperneddylation of Cul3 (Figure 1D) and Cul4 (Figure 1E) in the

csn-5KO strain was rescued by expressing the Myc-tagged wild-

type CSN-5, but not by any of the mutated Myc-CSN-5s. This

Author Summary

Cullin-RING E3 ubiquitin ligases (CRLs) play important roles
in regulating a wide range of processes, such as signal
transduction, transcription, cell cycle progression, circadian
rhythm, and development, via the ubiquitin-proteasome
pathway. The activity and stability of CRLs is precisely
controlled by the COP9 signalosome (CSN), an evolution-
arily conserved multisubunit protein complex. Under the
control of the CSN, CRL activity can be either downreg-
ulated via cleavage of NEDD8 (an ubiquitin-like protein)
from cullin proteins (deneddylation) or preserved by
maintaining the stability of CRL components. We gener-
ated point mutations of key residues in the JAMM domain
of the CSN-5 subunit to disrupt CSN deneddylation
activity, thereby creating a series of mutants containing
the intact CSN complex but lacking deneddylation activity.
Surprisingly, hyphal growth, conidial development, circa-
dian rhythm, and stability of the SCFFWD-1 complex in these
CSN-5 point mutants were comparable to that observed in
wild-type N. crassa. Furthermore, we showed that CSN
containing mutant CSN-5 efficiently prevents degradation
of the substrate receptors of CRLs. Finally, deletion of the
N. crassa ortholog of CAND1 (cullin-associated NEDD8-
dissociated protein 1) had little effect on conidial
development and the circadian clock. Our results suggest
that the integrity of the CSN is important for growth and
development in N. crassa.
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Figure 1. Mutations within the JAMM motif of CSN-5 abolish CSN–mediated deneddylation activity for Cul1, Cul3, and Cul4. (A)
Amino acid alignment of conserved JAMM motifs of CSN-5 homologs from Neurospora crassa (Ncr), Homo sapiens (Hsa), Arabidopsis thaliana (Ath),
Drosophila melanogaster (Dme), Caenorhabditis elegans (Cel), and Schizosaccharomyces pombe (Spb). (B) Predicted structure of the N. crassa CSN-5
JAMM domain. The structure was generated by the SWISS-MODEL using the structure of the pre-mRNA splicing factor Prp8 as template (PDB
accession number 2P8R), and the functional sites (His127, His129, and Asp140) were mapped according to the structure alignment with the AfJAMM
structure (PDB accession number 1R5X). (C–E) Western blot analyses with c-Myc antibody of expression profiles of Myc-Cul1 (C), Myc-Cul3 (D), and
Myc-Cul4 (E) in the wild-type strain, csn-5KO, and CSN-5 complementation strains. (F) Western blot analysis showing the expression of Cul4 in the wild-
type, cul4KO, and csn-5KO strains. (G) Western blot analyses with c-Myc antibody of expression profiles of Myc-Cul1 in the wild-type strain, csn-5KO, and
csn-5KO, pcsn-5-Myc-CSN-5 or csn-5KO, pcsn-5-Myc-CSN-5tri complementation strains. (H) Western blot analyses showing the expression of
endogenous Cul4 in the wild-type strain, csn-5KO, csn-5KO, pcsn-5-Myc-CSN-5 or csn-5KO, pcsn-5-Myc-CSN-5tri complementation strains. The asterisk
indicates a nonspecific cross-reacted protein band recognized by our Cul4 antiserum (in F and H).
doi:10.1371/journal.pgen.1002712.g001
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indicates that the metal-binding motif of JAMM is essential for

CSN-mediated deneddylation of cullins.

Because all of the Cul3 and Cul4 was neddylated while not all of

the Cul1 was neddylated in the csn-5KO strain and csn-5KO strains

complemented by JAMM-domain mutant CSN-5, we rechecked

Cul1 modification in the csn mutants. As shown in Figure S1, c-

Myc antibody detected three specific protein bands in first

generation of csn-5KO or csn-6KO transformants and two specific

bands in the csn-1KO transformants. In most positive transformants,

there was slightly less unneddylated Cul1 than neddylated Cul1,

but the signal remained strong. This is different from the studies in

yeast, plants, and fruit fly in which deletion of csn-5 results in

hyperneddylation of Cul1 [11,21,33]. Possible explanations are

that N. crassa genome codes for another deneddylase in addition to

CSN complex or there is large amount of newly synthesized Cul1

proteins. We next examined the neddylation of Cul4 using a

polyclonal antibody that recognizes the N terminus of N. crassa

Cul4. As shown in Figure 1F, only the neddylated Cul4 was de-

tected in csn-5KO strain, while in the wild-type strain, most of the

detected Cul4 was unneddylated. Next, we transferred endoge-

nous csn-5 promoter-driven constructs of either wild-type CSN-5

or CSN-5 with JAMM triple point mutations (H127A, H129A,

and D140N) (hereafter referred to as CSN-5tri) into a csn-5KO

strain expressing Myc-Cul1 protein. Myc-CSN-5 and Myc-CSN-

5tri were expressed in the csn-5KO strains (Figure 1G). Similar to

what we observed in csn-5KO expressing CSN-5 with a single point

mutation (Figure 1C), expression of the CSN-5tri failed to decrease

the hyperneddylation of Cul1 in the csn-5KO strain (Figure 1G) as

well. Interestingly, the amount of unneddylated Cul1 in csn-5KO

strains expressing either single (Figure 1C) or triple (Figure 1G)

point mutant CSN-5 was less than that in a csn-5KO strain.

Furthermore, expression of CSN-5tri in the csn-5KO strain also

failed to decrease hyperneddylated Cul4 to the levels observed in

the wild-type or csn-5KO strain complemented with wild-type CSN-

5 (Figure 1H). Taken together, these data confirm that the JAMM

domain metal-binding motif of N. crassa CSN-5 is essential for the

deneddylation activity of the CSN.

The rescue of growth and developmental defects in the
csn-5KO strain by CSN-5 with JAMM domain mutations

To examine whether the JAMM metal-binding site of CSN-5

functions in growth and development, we analyzed the phenotypes

of the csn-5KO strain expressing either Myc-tagged wild-type or

mutant CSN-5. On minimal slants with QA, the csn-5KO strain

produced fewer aerial hyphae and conidia than the wild-type

strain (Figure 2A). Expression of wild-type CSN-5 in the csn-5KO

strain restored aerial hyphal growth and conidial formation to

levels similar to those in the wild-type strain (Figure 2A). Sur-

prisingly, when csn-5KO, Myc-CSN-5H127A; csn-5KO, Myc-CSN-

5H129A; and csn-5KO, Myc-CSN-5D140N strains (hereafter re-

ferred to as csn-5H127A, csn-5H129A, and csn-5D140N, respectively)

were grown in minimal slants containing QA, the transformants

exhibited hyphal formation and conidiation that were the same as

the wild-type strain and the csn-5KO, Myc-CSN-5 strain (Figure 2A).

We next measured the growth rates of the wild-type strain, the csn-

5KO strain, and the transformants by race tube assay in constant

darkness. Interestingly, the growth of csn-5H127A, csn-5H129A, and

csn-5D140N strains was slightly faster than that of the wild-type

strain (approximately 4.2 cm per day vs. 3.7 cm per day, res-

pectively) and the csn-5KO, Myc-CSN-5 strain (Figure 2B). These

results suggest that these CSN-5s with a point mutation within the

JAMM metal-binding motif function similarly as the wild-type

CSN-5 on N. crassa growth and conidiation. In QA-containing

race tubes, the conidiation rhythms of the csn-5H127A, csn-5H129A,

and csn-5D140N strains (a period of about 22.5 h) were pretty much

(only slightly longer) to those of the wild-type and csn-5KO, Myc-

CSN-5 strains (a period about 22.2 h) (Figure 2C) in constant

darkness after light entrainment. To characterize the effect on light

response of each CSN-5 point mutation, we further examined the

light-entrained conidiation rhythm of each csn-5KO transformant

during light–dark (LD) cycles (12 h light/12 h dark). As shown in

Figure 2D, although the LD cycles entrained the conidiation

rhythm of the csn-5KO strains expressing wild-type CSN-5 or mu-

tant CSN-5, however, the conidiation bands of the csn-5H127A, csn-

5H129A, and csn-5D140N strains were broader than those of the wild-

type and csn-5KO, Myc-CSN-5 strains. Similarly, 12 h 27uC/12 h

22uC temperature cycles entrained the conidiation rhythm of the

csn-5H127A, csn-5H129A, and csn-5D140N strains, but not the patterns

of conidiation bands (Figure 2E). Taken together, these results

suggest that point mutations within CSN-5 are functional in

growth and conidiation, and partially functional in circadian

rhythm, light response, and temperature-entrained clock process.

JAMM domain mutations do not disrupt CSN complex
integrity or its interactions with Cul1 and Cul4

The loss of deneddylation activity of the JAMM domain mu-

tations may be due to the disruption of the CSN complex. To

examine this, we tested the interactions between the CSN-6

subunit and wild-type or mutant CSN-5s. Myc-tagged CSN-6 was

co-expressed with Flag-tagged CSN-5 or mutant CSN-5 proteins

in csn-5KO strains. As shown in Figure 3A, the Flag-tagged CSN-5

strongly interacted with Myc-tagged CSN-6 in an immunoprecip-

itation reaction, suggesting that they were both in the intact CSN

complexes. As expected, the Flag antibody pulled down the Myc-

tagged CSN-6 protein in the csn-5KO strain co-expressing Myc-

CSN-6 and each of the mutant Flag-CSN-5 proteins (Figure 3A),

similar to what was observed in the csn-5KO strain co-expressing

CSN-6 and wild-type CSN-5. This result indicates that the point

mutations within the CSN-5 JAMM metal-binding motif did not

affect the interactions between the CSN-5 and CSN-6 subunits

and those two MPN proteins within PCI (Proteasome, COP9,

eukaryotic Initiation factor 3) complexes may form dimers. To

further examine whether Myc-His-tagged CSN-5 point mutants

are incorporated into a larger molecular mass CSN complex, we

performed gel filtration and followed by Western blot analysis. As

shown in Figure 3B, like wild-type CSN-5, CSN-5H127A, CSN-

5H129A, and CSN-5D140N fusion proteins were eluted in larger

molecular mass fractions, suggesting that each of the Myc-tagged

CSN-5 point mutants can be incorporated into the intact CSN

complex.

Using protein affinity purification followed by Mass Spectrom-

etry analysis, we further examined whether the CSN complex is

properly assembled with CSN-5 point mutants. Myc-His-tagged

CSN-5H127A, CSN-5H129A, CSN-5D140N, or wild-type CSN-

5 was purified on a nickel column followed by immunoprecipi-

tation with a c-Myc monoclonal antibody. As shown in Figure 3C,

similar immunoprecipitated protein profiles were detected in the

Myc-His-CSN-5H127A, Myc-His-CSN-5H129A, Myc-His-CSN-

5D140N, and Myc-His-CSN-5 (wild-type CSN-5) samples, but not

in the wild-type strain (negative control). Liquid chromatography–

mass spectrometry/mass spectrometry (LC-MS/MS) analysis of

excised gel bands led to the identification of seven subunits, from

CSN-1 to CSN-7a, in the Myc-His-CSN-5 purified products and

in the Myc-His-CSN-5H127A purified products (Figure 3C).

COP9 Integrity Is Essential for Its Function
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Taken together, these results confirm that the integrity of the CSN

complex is not affected by mutations within the JAMM motif of

CSN-5 in N. crassa.

Next, we examined whether CSN complexes with mutant CSN-

5 subunits can still interact with Cul1 protein. As shown in

Figure 3D, both wild-type CSN-5 and each of the mutant CSN-5

proteins co-immunoprecipitated with Cul1 protein. We further

examined whether CSN complexes with mutant CSN-5 subunits

can also interact with Cul4 protein in vivo by IP/western blotting

experiments. As shown in Figure 3E, the Myc-tagged wild-type

CSN-5 co-immunoprecipitated with the neddylated and unned-

dylated Cul4, indicating that the N. crassa CSN complex can in-

teract with all species of Cul4 in vivo. Similarly, the Myc-tagged

mutant CSN-5s also co-precipitated with Cul4 (Figure 3E), further

confirming that mutations within the JAMM metal-binding motif

of CSN-5 do not interfere with interaction between CSN and

cullins. These results strongly suggest that the point mutations

within the JAMM metal-binding motif abolish NEDD8 isopepti-

dase activity but have no effect on the integrity of the CSN or on

its interactions with cullins.

CSN-5 with mutations in the metal-binding motif of
JAMM domain can partially restore SCF-mediated FRQ
degradation in the csn-5KO strain

In N. crassa, the clock protein FREQUENCY (FRQ) is a

negative regulator in the negative feedback loop that controls the

circadian clock under constant conditions [34,35]. Impaired FRQ

degradation in csn-2 mutants results in the loss of circadian rhythm

[24]. To investigate whether the mutant CSN-5s can rescue cir-

cadian rhythm defects in the csn-5KO strain, we examined the de-

gradation of FRQ protein in the wild-type and csn-5KO strains

expressing wild-type CSN-5 or mutant CSN-5s after addition of

the protein synthesis inhibitor cycloheximide (CHX). In the wild-

type strain, the FRQ was gradually degraded after CHX treat-

ment, with a half-life of about 2.5 h (Figure 4A and 4B). However,

in the csn-5KO strain, the degradation of FRQ was mostly blocked

(Figure 4A and 4B), similar to what was observed in the csn-2KO

strain and the fwd1RIP mutant [24,36]. As shown in Figure 4A and

4B, the expression of Myc-tagged wild-type CSN-5 in the csn-5KO

strain restored the degradation of FRQ to wild-type levels, so that

the conidiation period on race tubes was similar to that of the wild-

type strain (Figure 2C). We next checked FRQ degradation in the

csn-5KO strain expressing CSN-5 proteins with mutations in the

JAMM metal-binding site. As shown in Figure 4A and 4B, the

expression of Myc-tagged CSN-5H127A, CSN-5H129A, or CSN-

5D140N in the csn-5KO strain partially rescued the degradation of

FRQ in the csn-5KO strain. FRQ was degraded slightly slower in

the mutants than the wild-type strain or the csn-5KO strain com-

plemented by wild-type CSN-5, with a half-life of ,5 h, consistent

with the prolonged period of the conidiation rhythms in the csn-

5KO strains expressing the mutant CSN-5, indicating that both

deneddylation activity and integrity of CSN are needed in this

process. Taken together, these results demonstrate that CSN-5

with point mutations in the JAMM metal-binding site partially

restore the SCF-mediated FRQ degradation.

Catalytically dead CSN-5 partially stabilizes the SCFFWD-1

complex
Previous studies showed that FRQ ubiquitination and degra-

dation is mediated by the SCFFWD-1 E3 ligase complex [24,36],

and that the stability of E3 ligase components is controlled by

CSN in vivo [3,7,16,24]. Because the ectopic expression of mutated

CSN-5 partially rescued both the circadian conidiation rhythm

and FRQ degradation in the csn-5KO strain, we decided to check

whether CSN with mutant CSN-5 can prevent the degradation of

components of the SCFFWD-1complex. As shown in Figure 5A,

Myc-Cul1 was stable after induced expression of Myc-CSN-5 in

the csn-5KO strain, with a half-life of .9 h in the presence of

CHX, similar to that of the wild-type strain. In the csn-5 mutant,

however, both the neddylated and unneddylated Myc-Cul1 be-

came very unstable, with a half-life about 1.5 h (Figure 5A and

5D) [16]. Interestingly, the expression of JAMM mutant CSN-5

had a differential effect on the neddylated and unneddylated Cul1.

In mutant CSN-5 transformants, the stability of neddylated Cul1

was only partially rescued, with a half-life of .3 h in the presence

of CHX (Figure 5A and 5D), whereas the stability of unneddylated

Cul1 was almost rescued, with a half-life of .12 h (Figure 5A and

5D). These data indicate that although CSN containing JAMM

mutated CSN-5 fails to cleave NEDD8 from neddylated Cul1, it

still functions to protect hyperneddylated and unneddylated Cul1

from degradation to a certain extent.

In N. crassa, deletion of csn-5 or csn-3 has no effect on the stability

of SKP-1 protein in the SCFFWD-1 complex [16]. As expected,

Myc-SKP-1 were very stable in the wild-type strain and the csn-

5KO strain and in the complementation strains with mutant CSN-5,

with a half-life of .12 h (Figure 5B and 5E).

FWD-1, the substrate-recruiting subunit of the SCFFWD-1 com-

plex, was quite stable in the wild-type strain, whereas it became

undetectable after only 3 h of CHX treatment in csn-5KO strain

(Figure 5C and 5F). In the csn-5H127A, csn-5H129A, and csn-5D140N

strains, however, FWD-1 signals could still be detected after 6 h of

CHX treatment (Figure 5C and 5F), indicating that CSN with

mutated CSN-5 partially functions to protect F-box proteins from

degradation. This finding further confirms that regulation of SCF-

mediated FRQ degradation by the CSN is a key step in the N.

crassa circadian clock. Therefore, both the deneddylation activity

and the integrity of the CSN are important for preventing the

degradation of components of the SCFFWD-1 complex.

CSN complex containing mutant CSN-5 efficiently
prevents degradation of substrate receptors of CRLs

We next asked whether CSN with mutated CSN-5 still functions

to protect other CRL substrate receptors from degradation. N.

crassa SCON-2, an F-box protein involved in regulating sulfur me-

tabolism, was previously shown to interact with SKP-1 and is very

unstable in a csn-2KO strain [24,37]. We compared the stability of

Myc-SCON-2 in wild-type, csn-5KO and csn-5KO expressing wild-

type CSN-5 or mutant CSN-5H127A strains. The half-life of Myc-

SCON-2 was approximately 12 h in the wild-type and csn-5KO

expressing wild-type CSN-5 strains in the presence of CHX. Myc-

SCON-2 was very unstable in the csn-5 mutant and became

Figure 2. Rescue of growth and developmental defects in the csn-5KO strain by the expression of JAMM-motif mutant CSN-5. (A)
Wild-type, csn-5KO, and the different CSN-5 complementation strains growing on slants containing QA. csn-5KO strains produced significantly less
conidia and aerial hyphae than wild-type or CSN-5 complementation strains. (B) Growth rates of the wild-type, csn-5KO, and CSN-5 complementation
strains, measured at 25uC by race tube assays in constant darkness after 1 d of light treatment. (C–E) Rescue of conidiation rhythms in the different
CSN-5 complementation strains, measured by race tube assay in dark–dark (C), light–dark (D), and temperature cycles (E). At least four replicates were
tested under each condition. Black lines indicate the growth fronts every 24 h.
doi:10.1371/journal.pgen.1002712.g002
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undetectable after 3 h of CHX treatment (Figure 6A and 6B). In

the csn-5H127A strain, the detection of Myc-SCON-2 signal ex-

tended to 6 h after CHX treatment (Figure 6A and 6B). FBP94

(NCU04785), another F-box–containing protein in N. crassa, can

also interact with SKP-1 (data not shown). As shown in Figure 6C

and 6D, FBP94 was quite stable in the wild-type strain and csn-5KO

Figure 3. Point mutations do not disrupt integrity of the CSN or interactions of the CSN with Cul1 and Cul4. (A) Immunoprecipitation
assays confirming interactions between different versions of Flag-CSN-5 and Myc-CSN-6. Wild-type strain and wild-type strain expressing Myc-CSN-6
were used as negative controls. (B) The Myc-CSN-5, Myc-CSN-5H127A, Myc-CSN-5H129A, or Myc-CSN-5D140N in csn-5KO properly incorporates into
CSN complex. (C) Silver-stained SDS-PAGE showing the two-step purification of Myc-His-CSN-5, Myc-His-CSN-5H127A, Myc-His-CSN-5H129A, or Myc-
His-CSN-5D140N in the csn-5KO strains. A wild-type strain was used as the negative control. CSN subunits identified by mass spectrometry analysis in
products of Myc-His-CSN-5 or Myc- His-CSN-5H127A are indicated. Asterisks indicate the two IgG bands. (D) Immunoprecipitation assays confirming
the interaction between different versions of Flag-CSN-5 and Myc-Cul1. (E) Immunoprecipitation assays showing the interaction between different
versions of Myc-CSN-5 and endogenous Cul4. The asterisk indicates a nonspecific cross-reacted protein band recognized by our Cul4 antiserum.
doi:10.1371/journal.pgen.1002712.g003
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strain complemented with Myc-CSN-5, whereas in the csn-5KO

strain it became undetectable after only 6 h of CHX treatment. In

the csn-5H127A strain, detection of FBP94 signal extended to 12 h

after CHX treatment (Figure 6C and 6D). Therefore, CSN com-

plex with mutated JAMM domain can partially function in main-

taining the stability of other F-box–containing adaptor proteins.

In a previous study, we determined that the N. crassa Cul3 pro-

tein interacts with BTB1 protein, and both proteins become

unstable in the csn-5KO strain [16]. The half-life of Myc-BTB1 was

.12 h in the wild-type and csn-5KO expressing wild-type CSN-5

strains in the presence of CHX, whereas in the csn-5KO strain it

became undetectable after 6 h of CHX treatment (Figure 6E and

6F). As expected, in the csn-5H127A strain, BTB1 signals were de-

tectable at 12 h after CHX treatment (Figure 6E and 6F), indi-

cating that CSN with the JAMM mutated CSN-5 still partially

functions to protect the substrate adaptor proteins of CRL3 from

degradation. We also investigated whether CSN with the JAMM

mutated CSN-5 regulates the substrate receptor protein of CRL4

in a similar manner. N. crassa Cul4 was previously shown to inter-

act with DCAF11, a putative substrate receptor of CRL4DCAF11

[16,38]. As shown in Figure 6G and 6H, the half-life of Myc-

DCAF11 was .12 h in the wild-type and csn-5KO expressing wild-

type CSN-5 strains in the presence of CHX, whereas in the csn-5KO

strain it became undetectable after 6 h of CHX treatment [16]. As

expected, in the csn-5H127A strain, the detection of DCAF11 signal

was extended to 9 h after CHX treatment (Figure 6G and 6H).

Taken together, these in vivo results indicate that the CSN complex

containing mutant CSN-5 efficiently prevents degradation of sub-

strate receptors of CRLs.

CAND1 is not required for regulation of the circadian
rhythm and SCFFWD-1 ubiquitin ligase

Current models suggest that the activity and assembly of CRLs are

controlled by cycles of CRL deneddylation and CAND1 bind-

ing of deneddylated cullins [39,40,41,42,43,44,45,46]. In plants and

worms, CAND1 mutants exhibit defects consistent with a positive

role in regulating the function of a subset of CRLs [40,47,48,49].

However, in yeast and human cells, loss of CAND1 has little effect on

the abundance of neddylated cullins, suggesting that the neddylation/

deneddylation cycle may function independently of CAND1 [50,51].

To test whether CAND1 is involved in maintaining the function of

CRLs in N. crassa, we examined the role of CAND1 in the regulation

of circadian conidiation rhythm and proper functioning of the

SCFFWD-1 complex. We first measured the growth rates of the wild-

type and cand1KO strains by race tube assay under constant darkness.

The growth of the cand1KO strain (about 3.0 cm per day) was slightly

slower than that of the wild-type strain (about 3.7 cm per day),

suggesting that CAND1 is involved in regulating hyphal growth.

After entrainment by light, like the wild-type strain, the cand1KO strain

exhibited a robust circadian conidiation rhythm with a period of

about 22 h at 25uC in constant darkness (Figure 7A), suggesting that

CAND1 is not required for circadian rhythms in N. crassa. To test

whether CAND1 functions in a manner similar to the CSN, we

examined the conidiation rhythms of the cand1 mutant in LD cycles

(12 h light/12 h dark). As shown in Figure 7B, the conidiation

rhythms of the cand1KO strain were entrained by LD cycles, indicating

that unlike CSN, CAND1 is not required in light regulation of the

circadian clock. We also examined the responses of the cand1 mutant

to temperature entrainment using race tube assays. As expected, in

12 h 27uC/12 h 22uC temperature cycles, as shown in Figure 7C,

like the wild-type strain, the conidiation rhythm of the cand1KO strain

was synchronized by the temperature cycles, indicating that CAND1

is not required for the temperature-entrained conidiation process.

These results suggest that CAND1 does not play a significant role in

the regulation of circadian rhythm in N. crassa.

Deletion of cand1 also had no effect on degradation of the clock

protein FRQ, which is the substrate of the SCFFWD-1 ubiquitin

ligase complex in N. crassa (Figure 8A and 8B). We also examined

the stability of FWD-1 of the SCFFWD-1 complex in the cand1KO

strain. As shown in Figure 8C and 8D, FWD-1 was very stable

in the cand1 mutant, as in the wild-type strain, with a half-life

of .12 h. Together, these results suggest that CAND1 is not

required for regulation of the circadian rhythm and for main-

taining the proper function of the SCFFWD-1 complex in N. crassa.

Discussion

In eukaryotes, the COP9 signalosome (CSN) is a highly con-

served multifunctional complex that has two major biochemical

roles: cleaving NEDD8 from cullin proteins [1,3,7,11] and main-

taining the stability of the CRL components [7,24]. In this study,

we used mutation analysis to confirm that the JAMM metal-

binding motif of the CSN-5 subunit is responsible for NEDD8

cleavage from cullin proteins in N. crassa. Point mutations of the

Figure 4. Mutations in the JAMM motif of CSN-5 partially restore SCF-mediated FRQ degradation in the csn-5KO strain. (A) Western
blot analyses showing degradation of FRQ protein in csn-5 mutant and the different CSN-5 complementation strains after addition of cycloheximide
(10 mg/mL). Asterisks indicate nonspecific bands detected by FRQ antibody. (B) Densitometric analyses from four independent experiments showing
the degradation of FRQ in different strains.
doi:10.1371/journal.pgen.1002712.g004
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key residues in the metal-binding motif (EXnHXHX10D) of the

CSN-5 disrupted CSN deneddylation activity without interfering

with the CSN assembly. We demonstrated that those mutant

CSN-5s could almost restore the growth and conidiation defects of

the csn-5KO strain. Furthermore, even without the deneddylation

activity, the CSN partially maintained the stability of the SCFFWD-1

complex and partially restored the degradation of clock protein

FRQ in vivo. Finally, we also showed that CSN containing mutant

CSN-5 could efficiently prevent the degradation of the substrate

receptors of CRLs. In addition, deletion of the CAND1 ortholog in

N. crassa had little effect on the circadian rhythm of conidiation.

Thus, our results suggest that maintenance of CRL stability by the

CSN integrity is even more crucial in hyphal growth, conidial de-

velopment, and circadian function in N. crassa.

Both deneddylation activity and integrity of CSN are
required for maintenance of CRL stability

As the key regulator of CRLs, both deneddylation and main-

tenance of CRL stability by the CSN occurs when the CSN binds

to CRLs. Thus, it is difficult to distinguish which function is more

important for maintaining the proper function of CRLs in eu-

karyotes. To precisely determine the function of the CSN in

maintaining the stability of CRLs, we sought to separate the two

functional aspects of CSN from one other in N. crassa. In those csn-

Figure 5. CSN-5–mutated CSN efficiently prevents degradation of components of the SCFFWD-1 complex. (A–C) Western blot analyses
with labeled antibodies showing degradation of Myc-Cul1 (A), Myc-SKP-1 (B), and FWD-1 (C) after addition of cycloheximide (10 mg/mL) in the wild-
type, csn-5KO, and different CSN-5 complementation strains. Arrows point out FWD-1 protein bands. Asterisks indicate nonspecific bands detected by
FWD-1 antibody. (D–F) Densitometric analyses from four independent experiments showing the degradation of Myc-Cul1 (D), Myc-SKP-1 (E), and
FWD-1 (F).
doi:10.1371/journal.pgen.1002712.g005
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5KO strains expressing CSN-5 proteins with different point mu-

tations in the JAMM metal-binding motif, the deneddylation

activity was disrupted, while the assembly of the CSN complex

and interactions between CSN and cullin proteins were not af-

fected. Therefore, this system has great potential as a model for

distinguishing between the two activities of the CSN.

A recent study suggests that neddylated Cul1 and Cul3 are

unstable in D. melanogaster csn mutant cells due to a defect in CSN

deneddylation activity, whereas unneddylated cullins are stable in

csn-5 mutant cells [33]. The results presented here show that un-

stable forms of Cul1 in the csn-5 mutant were partially restored by

expression of mutant CSN-5 protein without deneddylation ac-

tivity. Like the stability of unneddylated Cul1 and Cul3 in D.

melanogaster CSN-5–defective cells [33], unneddylated Cul1 re-

mained stable in the csn-5H127A, csn-5H129A, and csn-5D140N strains,

similar to that in the wild-type strain (Figure 5A), indicating that

CSN integrity with catalytically dead CSN-5 effectively maintains

the stability of cullins. Studies in D. melanogaster and A. nidulans

CSN-5 mutants indicated that the CSN deneddylation activity is

essential for cell differentiation and developmental initiation [11,

19,22,33]. However, in the A. thaliana fus6/C231 mutant (a CSN1

N-terminal deletion mutant), although the Cul1 neddylation still

works in a wild-type pattern, it was lethal and exhibited severe

gene expression defects [52]. This genetic evidence raises questions

concerning whether the CSN has other important functions aside

from its deneddylation activity. The accelerated degradation of

Figure 6. CSN containing mutant CSN-5 efficiently prevents degradation of substrate receptors of CRLs. Western blot analyses with
labeled antibody showing degradation of Myc-SCON-2 (A), Myc-FBP94 (C), Myc-BTB1 (E), and Myc-DCAF11 (G) after addition of cycloheximide (10 mg/
mL) in the wild-type, csn-5KO, csn-5KO complementation with CSN-5 and CSN-5H127A strains. Densitometric analyses from four independent
experiments showing the degradation of Myc-SCON-2 (B), Myc-FBP94 (D), Myc-BTB1 (F), and Myc-DCAF11 (H).
doi:10.1371/journal.pgen.1002712.g006
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c-Jun in HeLa cells in which CSN-5 is downregulated is rescued

equally by over-expression of the deneddylation mutant CSN-

5D151N or wild-type CSN-5 [20]. These data suggest that two

activities of CSN may function parallel for regulating the activity

of CRLs.

Bennett et al. found that Cul1K720R (a constitutively unneddy-

lated Cul1 mutant) assembles with CSN, SKP-1, and most F-box

proteins to the same extent as wild-type Cul1 [51]. Our IP

experiments also show that wild-type CSN interacts with both

neddylated and unneddylated Cul4. These findings suggest that

the CSN can interact with CRLs independent of the prior ned-

dylation of cullins. In plants, genetic results also suggest that

during early embryo development and germination, neddylation/

deneddylation cycling is not absolutely required, although it

becomes more important during seedling establishment and later

in development [21], suggesting that the CSN has distinct bio-

chemical functions that orchestrate development in the appropri-

ate spatial and temporal setting.

Figure 7. CAND1 is not required for regulation of the circadian rhythm. (A–C) Normal conidiation rhythms of cand1 mutants in dark–dark
(A), light–dark (B), and temperature cycles (C) measured by race tube assays. At least four replicates were tested under each condition. Black lines
indicate the growth fronts every 24 h.
doi:10.1371/journal.pgen.1002712.g007

Figure 8. CAND1 is not required for regulation of the SCFFWD-1 ubiquitin ligase. Western blot analyses showing degradation of FRQ (A) and
FWD-1 (C) in wild-type and cand1KO strains after addition of cycloheximide (10 mg/mL). Densitometric analyses from four independent experiments
showing the degradation of FRQ (B) and FWD-1 (D). Arrows point out FWD-1 protein bands. Asterisks indicate nonspecific bands detected by FRQ
antibody (A) or FWD-1 antibody (C).
doi:10.1371/journal.pgen.1002712.g008
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Protection of substrate receptors by the CSN has been described

for the CRLs in vivo [24,25,26,27,28]. We found that CSN with

mutated CSN-5 had a contribution to the stabilities of five re-

ceptor proteins of CRLs in vivo. These results provide evidence for

the idea that the abundance of adaptor modules (rather than cycles

of neddylation/deneddylation and CAND1 binding) drives CRL

network organization [51]. This possibility is supported by our

genetic observations that the csn-5H127A, csn-5H129A, and csn-5D140N

strains exhibited normal growth and conidiation phenotypes. The

integrity of CSN was maintained in these JAMM mutation com-

plementation strains, thus it can serve as a platform to recruit other

proteins for regulating the activities of CRLs, such as the recruit-

ment of UBP12 in yeast, as well as USP15 in human [14,53]. In

addition, a non-catalytic CSN itself may stabilize the substrate

receptors of CRLs. A very recent study has shown that the

protective effect of the CSN on DDB2 and CSA autoubiquitina-

tion is independent of CSN-5 mediated deneddylation in vitro [29].

These results suggest that the partial rescue of stability of substrate

receptors by the catalytically dead CSN is mainly dependent on its

protective effect. Therefore, the stability of cullins and some sub-

strate receptors of CRLs are dependent on both deneddylation

activity and integrity of the CSN in N. crassa.

Maintaining stability of the SCFFWD-1 complex is the key
process in circadian rhythm regulation

The csn-5KO strain exhibits abnormal conidiation rhythms in

DD, which cannot be entrained by either LD or temperature

cycles, indicating that light and temperature regulation of the

conidiation process is impaired in this mutant [16]. We found that

degradation of the clock protein FRQ is impaired in the csn-5KO

strain, especially when protein synthesis is completely blocked. To

further characterize the molecular mechanism of how the CSN

regulates the conidiation rhythm, we focused on the SCFFWD-1

ubiquitin ligase, which controls the N. crassa circadian rhythm by

ubiquitinating FRQ [36]. Our results demonstrated that defective

FRQ degradation in the csn-5KO strain is due to the drastically

reduced stability and levels of FWD-1 and Cul1 proteins in the

SCFFWD-1 complex. Ectopic expression of mutant CSN-5 without

deneddylation activity restored the defects of growth and coni-

diation in the csn-5KO strain, and almost restored the defects of the

circadian conidiation rhythm in DD and FRQ degradation in the

csn-5KO strain. Our data further showed that the low levels of

FWD-1 in the csn-5KO strain were dramatically increased after

expression of each of the CSN-5 proteins with point mutations in

the JAMM metal-binding site, however, the increased stability and

levels of the components in the SCFFWD-1 ubiquitin ligase are not

enough to fully restore the degradation of FRQ to wild-type level,

indicating that regulation of FRQ degradation plays a key role in

maintaining the precise period length of conidiation rhythm in N.

crassa. This is further supported by the finding that accelerated

degradation of c-Jun in HeLa cells in which CSN-5 is down-

regulated can be rescued equally by over-expression of the

deneddylation mutant CSN-5D151N or wild-type CSN-5; how-

ever, accelerated c-Jun degradation is not rescued in CSN-1– or

CSN-3–downregulated cells by over-expression of wild-type CSN-

5 [20]. Furthermore, the degradation of EB1 (microtubule-end-

binding protein 1) is accelerated by over-expression of wild-type

CSN-5 or CSN-5D151N in HeLa cells [20]. These results suggest

that the integrity of CSN might contribute more to regulating the

stability of some substrates of CRLs. Current models suggest that

the CRL complex is controlled by cycles of CRL deneddylation

and CAND1 binding [7]. Our experiments further suggested that

CAND1, a putative regulator of CRLs, is not required for

maintenance of SCFFWD-1 ubiquitin ligase activity and circadian

rhythm in N. crassa. These data provide additional evidence that

the CSN is an important regulator of the circadian clock in N.

crassa through maintenance of SCFFWD-1 ubiquitin ligase stability.

In conclusion, the results of our experiments indicate that even

without deneddylation activity, the N. crassa CSN can still regulate

hyphal growth, conidial development, and circadian function by

regulating the activities of E3 ubiquitin ligases. Because the func-

tion of the CSN in the regulation of CRL activities is conserved in

higher eukaryotes, we propose that the CSN may have a similar

role in plants and animals.

Materials and Methods

Strains and culture conditions
The N. crassa strain 87-3 (bd, a) was used as the wild-type strain

in this study. The bd ku70RIP strain, which was generated pre-

viously [54], was used as the host strain for creating the cand1

knockout mutants. We also used csn-5KO, csn-2KO and csn-5KO, his-3

strains that were generated previously [16]. The 301-6 (bd, his-3, A)

strain and the csn-5KO, his-3 strain were used as the host strains for

the his-3 targeting construct transformation [24]. Liquid culture

conditions were the same as described previously [34]. For QA-

induced protein expression, 0.01 M QA (pH 5.8) was added to

liquid medium containing 16Vogel’s medium, 0.1% glucose, and

0.17% arginine. The medium for the race tube assay contained 16
Vogel’s, 0.1% glucose, 0.17% arginine, 50 ng/mL biotin, and

1.5% agar [55]. For race tubes containing QA (1023 M), glucose

was excluded from the medium.

Plasmids
All three JAMM point mutations of CSN-5 were generated

using the Quikchange Site-Directed Mutagenesis Kit (Stratagene).

pUC19-CSN-5 was used as the template for mutagenesis. After-

wards, the mutated CSN-5 DNA fragments were subcloned into

either the pqa-5Myc-6His or pqa-3Flag vectors. The triple point

mutant CSN-5 (H127A, H129A and D140N) generated from

pUC19-CSN-5 was subcloned into the endogenous csn-5 promot-

er-driven vector pcsn-5-Myc-His-CSN-5, resulting in pcsn-5-Myc-

His-CSN-5tri. The previously constructed plasmids pqa-Myc-

Cul1, pqa-Myc-His-Cul3, pqa-Myc-His-Cul4, pqa-Myc-His-CSN-

6, pqa-Myc-His-SCON-2, pqa-Myc-His-FBP94, pqa-Myc-His-

BTB1, and pqa-Myc-His-DCAF11 were also used for his-3 tar-

geting transformation in the csn-5KO, his-3 and 301-6 (bd, his-3, A)

strains [16] and cotransformation in the csn-5H127A, csn-5H129A, and

csn-5D140N strains.

Generation of antiserum against Cul4
GST-Cul4 (containing Cul4 amino acids 1–113) fusion protein

was expressed in RIL cells and the recombinant protein was

purified and used as the antigen to generate rabbit polyclonal

antiserum, as described previously [56].

Purification of Myc-His-CSN-5 and mutant Myc-His-CSN-5
proteins from N. crassa

The csn-5KO, Myc-His-CSN-5H127A, csn-5KO, Myc-His-CSN-

5H129A, or csn-5KO, Myc-His-CSN-5D140N strain, wild-type

strain (negative control), and csn-5KO, Myc-His-CSN-5 strain (po-

sitive control) were cultured for approximately 24 h in constant

light (LL) in liquid medium containing QA (0.01 M QA, 16
Vogel’s medium, 0.1% glucose, and 0.17% arginine). Approxi-

mately 10 g of tissue from each strain grown in LL was harvested.

The purification procedure was the same as described previously

[16]. Fractions containing purified Myc-tagged CSN proteins were

immunoprecipitated by adding 25 mL of c-Myc monoclonal
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antibody-coupled agarose beads (9E10AC, Santa Cruz Biotech-

nology). The precipitates of each sample were analyzed by SDS-

PAGE (4%–20% acrylamide), which was subsequently silver

stained following the manufacturer’s instructions (ProteoSilver

Plus, Sigma). Specific bands in the Myc-His-CSN-5 purified

products or in the Myc-His-CSN-5H127A purified products were

excised and subjected to tryptic digestion and LC-MS/MS.

Gel filtration chromatography of Myc-His-CSN-5 or
mutant CSN-5s in csn-5 mutant

The protocol of gel filtration chromatography was the same as

described previously [16,21]. Briefly, purified proteins (400 mg)

were loaded onto a SuperdexTM 200 (GE) gel filtration column

that was equilibrated with 25 mL (150 mM NaCl, 20 mM Tris Cl

pH 7.4). The proteins were eluted in the same buffer at a flow rate

of 0.3 mL/min. Fractions of 0.4 mL were collected starting from

the onset of the column void volume (8.0 mL) and finishing at

18 mL (25 fractions). 20 mL of each fraction were prepared in

20 mL of 26SDS loading buffer, separated by 7.5% SDS-PAGE,

and then examined by Western blot analysis using c-Myc antibody

(9E10, Santa Cruz Biotechnology).

Protein analyses
Protein extraction, quantification, western blot analysis, protein

degradation assays, and immunoprecipitation assays were per-

formed as described previously [24,56]. Western blot analyses

using a monoclonal c-Myc antibody (9E10, Santa Cruz Biotech-

nology) or Flag antibody (F3165-5MG, Sigma) were performed to

identify the positive transformants. Immunoprecipitates or equal

amounts of total protein (40 mg) were loaded into each protein lane

for SDS-PAGE. After electrophoresis, proteins were transferred

onto a PVDF membrane, and western blot analysis was performed

using c-Myc antibody, Flag antibody, FWD-1 antiserum, FRQ

antiserum, or Cul4 antiserum.

Supporting Information

Figure S1 Expression of Myc-Cul1 in the first generation of csn-

1KO, csn-5KO, and csn-6KO transformants. The positive transfor-

mants showing the expression profile of Myc-Cul1 in the csn-1KO,

csn-5KO, and csn-6KO strains. Western blot analysis was performed

using c-Myc antibody. Note that the total protein loaded into each

lane was not quantified for identifying positive transformants.
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