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Abstract

To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted
disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae.
Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the
gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance
of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation.
Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium
formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath,
indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a
signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-
directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69
without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function.
Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus
Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted
pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare
pathogenic on monocot and dicot plants, respectively.
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Introduction

Rice blast, caused by an ascomycete fungus Magnaporthe oryzae, is

the most severe fungal disease of rice throughout the world [1].

Genetic studies of this pathogen over the last two decades have

made the Magnaporthe-rice pathosystem an excellent model for

investigating fungus-plant interactions.

Plants are equipped to sense evolutionarily conserved micro-

bial molecular signatures, collectively called Pathogen-Associated

Molecular Patterns (PAMPs) or Microbe-Associated Molecular

Patterns (MAMPs), and activate PAMP-Triggered Immunity (PTI)

[2–4]. Pathogens are capable of inhibiting PTI on their host

plants by delivering virulence effector proteins into host cells

[5–9].

In M. oryzae, effector secretion machinery has recently been

elucidated [10–12]. A Golgi-localized P-type ATPase-encoding

gene, MgAPT2 is required for exocytosis during plant infection.

Further analysis suggested that MgAPT2 is involved in secretion of

a range of extracellular enzymes as well as an AVR effector for the

rapid induction of host defense responses in an incompatible

reaction in rice cultivar IR-68 [10]. Another study demonstrated

that M. oryzae mutants with a defect in an ER chaperone-encoding

gene, LHS1, have reduced activities of extracellular enzymes and

secretion of AVR-Pita1 [13,14] blocking Pi-ta R-gene-mediated

hypersensitive response. The contribution of LHS1 to protein

translocation and secretion of proteins, including effectors, re-

vealed the importance of ER chaperones for successful disease

development by rice blast fungus [12]. Live-cell imaging revealed

development of the biotrophic interfacial complex (BIC), a struc-

ture that accumulates fluorescently labeled effectors secreted

by invasive hyphae (IH). The examined BIC-localized secreted

proteins were translocated into rice cytoplasm. By contrast, a
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biotrophy-associated secreted protein BAS4, which uniformly

outlines the IH, was not translocated into the host cytoplasm [11].

These results suggest that BIC represents the site of effector

translocation in rice blast disease [11].

Several effector protein genes have been cloned and charac-

terized from M. oryzae but all of them were avirulence (AVR)

effectors with no virulence function elucidated to date [13–20]

except for a recently identified virulence effector protein, Slp1

[21]. Slp1 accumulates at the interface between the fungal cell

wall and the rice plasma membrane, can bind to chitin, and is

able to suppress chitin-induced plant immune responses, includ-

ing generation of reactive oxygen species and plant defense gene

expression [21]. Several effector candidates were identified by

using interaction transcriptome in the biotrophic invasion of M.

oryzae [22]. In the paper the authors have identified a known

effector PWL2 as well as 58 candidate effectors showing .10-fold

increase in the expression in the biotrophic invasive hyphae

relative to control mycelia using M. oryzae oligoarrays. Four of

these candidates were confirmed to be fungal biotrophy-

associated secreted proteins [22]. However, virulence function

of all the candidates has not been elucidated, and comprehensive

gene disruption analyses of the candidates have not been carried

out. Therefore, in this study we employed a large-scale disruption

analysis of M. oryzae secreted protein genes to search for novel

virulence effectors.

Whole-genome draft sequence of M. oryzae was published for the

isolate 70-15, a laboratory strain [23]. The genome assembly

consists of 37.8 Mb nucleotides encoding 11,109 predicted pro-

tein coding genes. We recently retrieved 1,306 putative secreted

protein genes from the predicted proteome of 70-15 [20]. From

these, a total of 78 genes expressed in the fungus were disrupted

and analyzed. We found that disruptants of the 77 genes did not

show change in pathogenicity as compared to the wild-type strains.

Disruption of only one gene, MC69, showed a severe reduction in

pathogenicity. Further analysis showed that MC69 protein is

involved in the full pathogenicity of M. oryzae after the penetration

stage of infection.

Results

Large-scale disruption analysis of Magnaporthe oryzae
secreted protein genes

To search for effector protein genes of Magnaporthe oryzae, we

carried out a large-scale targeted gene disruption analysis of the 78

putative secreted protein genes that are expressed during infection

(Table 1). Initially we selected 1,306 putative secreted protein

genes as described previously [20]. The 78 genes subjected to

functional study were selected on the basis of their confirmed

expression in the pathogen at the early stages of infection. We

focused on secreted protein genes involved in the two stages of

infection of M. oryzae. One is the appressorium formation stage

and the other is the biotrophic invasion stage. Treatment with

cyclic AMP (cAMP) induces appressorium formation on hydro-

philic surface [24]. By SAGE (Serial Analysis of Gene Expression)

of cAMP-treated conidia on hydrophilic membrane 6 h after the

start of treatment [25], we identified several pathogenicity genes,

e.g. MPG1, MAS1 and MAC1, already characterized [26–28] and

thought to be involved in pathogen-host interaction. Therefore, we

assumed that a part of effector genes should be expressed during

the appressorium formation. To achieve a high efficiency tag-to-

gene annotation, we established SuperSAGE method that extracts

a 26-bp tag from each cDNA [29]. SuperSAGE of the cAMP-

treated M. oryzae strain 70-15 has been done in this study to search

for novel effector candidates (Table S1). Furthermore, we also

used the SuperSAGE data of invasive hyphae for searching new

effectors (Supplemental Data Set 1 in [20]). Indeed, this Super-

SAGE analysis revealed that two AVR effector genes, AVR-Pia

and AVR-Pii were expressed at the stage of invasive hyphae

(Supplemental Data Set 2 in [20]).

To investigate the function of the effector candidate genes, we

generated disruption mutants for each of the selected 78 genes

(Table 1) in M. oryzae by TAG-KO method [30,31]. To assess the

virulence of each mutant, conidial suspension of each mutant was

sprayed onto seedlings of a barley cultivar Nigrate, which is

susceptible to the wild type M. oryzae. Blast phenotypes of barley

infected by KO mutants of all the genes except for MC69 gene

were the same as that infected by wild-type strain Ina72. Similarly

the 77 mutants did not show reduced virulence in a susceptible

rice cultivar Shin No. 2. By contrast, we observed a dramatic

reduction in disease symptoms on barley cotyledons and the

susceptible rice cultivar, Shin No. 2, inoculated with all of the

three independent mc69 mutant lines (Figure 1A). Consequently,

we identified the MC69 gene (MGG_02848.6) as required for

pathogenicity of M. oryzae after a large-scale targeted gene disrup-

tion analysis of the 78 putative secreted protein genes.

In summary, we found that targeted disruption of MC69 af-

fected pathogenicity of M. oryzae and disruption of the other 77

genes had no effect on its pathogenicity.

MC69 is required for appressorial penetration and
pathogenicity of M. oryzae

To investigate the physiological and molecular function of

MC69 in detail, we generated MC69 disruptants in M. oryzae strain

Ina72 by targeted gene disruption as described above. Colony

growth, color and the production of conidia were the same as the

wild-type strain (Figure S2A and B). We observed a remarkable

reduction in disease symptoms on barley and rice inoculated with

the mc69 mutants compared to those inoculated with the wild type

strain 4 and 7 days after inoculation suggesting an important role

of MC69 in fungal pathogenicity (Figure 1A). Subsequently, we

performed a detailed phenotypic analysis of the mc69 mutants.

The mc69 mutants exhibited a defect in appressorium-mediated

Author Summary

Magnaporthe oryzae causes the most devastating fungal
disease in rice. M. oryzae secretes a plethora of effector
proteins, including several avirulence proteins which are
known to be recognized by host resistance proteins
activating innate immunity. However, the effectors that
are required for virulence activity have not been identified
in M. oryzae to date except for an effector protein,
Secreted LysM Protein 1 (Slp1) that was recently identified.
We performed a large-scale disruption analysis of M. oryzae
effector candidates and identified a small protein MC69,
which is secreted by the fungus during infection. When
MC69 is absent, pathogenicity is severely reduced after
penetration into the host cells. Furthermore, deletion of
the MC69 orthologous gene in Colletotrichum orbiculare
reduced its pathogenicity in the host plants cucumber and
Nicotiana benthamiana. Thus, MC69 is conserved in
ascomycete fungi and is crucial for establishing compat-
ibility. This is the first report of a single secreted protein
that is indispensable for pathogenicity in both monocot
and dicot pathogenic fungi. How MC69 contributes to
pathogenicity or virulence is unknown but it could be
required for the fungus to be a pathogen or might be a
classical effector that acts on plant target molecules.

Secreted Pathogenicity Protein of Fungal Pathogens
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penetration in rice leaf sheath cells but neither in conidial

germination nor appressorium formation (Figure 1B and C). We

studied 200 appressoria of each mc69 mutant, 97,99% with failed

penetration (no visible hyphae) and 1,2% with post-penetration

blockage. Therefore, we conclude that MC69 is required for

appressorial penetration and pathogenicity of M. oryzae. Although

most of appressoria formed by the mc69 mutants could neither

penetrate nor produce infectious hyphae in the inoculated rice leaf

sheath cells, we further analyzed invasive growth at 50 appressorial

penetration sites by rating the hyphal growth from the level 1 (low)

to 4 (high; see Materials and Methods, Figure 1D). In Ina72 WT,

84% of penetration sites showed invasive growth levels 3 or 4, by

contrast in the mc69 mutant infectious growth within the inner

epidermal tissue was relatively limited (levels 2 and 3) 32 hours

after inoculation, suggesting that the loss of MC69 also affects

infectious growth to some extent at the post-penetration stage

Table 1. Gene disruption analysis of 78 putative secreted protein genes.

Mutant ID Gene ID cAMPa IHb Mutant ID Gene ID cAMPa IHb

HS9 MGG_04172.6 + 2 MC28 MGG_01609.6 + +

RT11 MGG_08342.6 + 2 MC33 MGG_09378.6 + 2

RT76 MGG_05716.6 + 2 MC45 MGG_00380.6 2 +

HM4 MGG_04757.6 + + MC47 MGG_00269.6 2 +

HM5 MGG_09188.6 + 2 MC48 MGG_05989.6 2 +

HM6 MGG_05798.6 2 + MC52 MGG_10171.6 2 +

HM17 MGG_09920.6 + 2 MC55 MGG_05366.6 + 2

HM18 MGG_05785.6 + + MC56 MGG_05608.6 + 2

HM20 MGG_03356.6 2 + MC57 MGG_10877.5 + 2

HM21 MGG_00505.6 + + MC58 MGG_08275.6 + +

HM22 MGG_07763.6 2 + MC59 MGG_09246.6 + 2

HM24 MGG_02245.6 2 + MC61 MGG_09716.6 + 2

HM27 MGG_10102.6 2 + MC62 MGG_02296.6 + 2

HM30 MGG_05381.6 + 2 MC63 MGG_06069.6 + +

HM36 MGG_09460.6 + 2 MC65 MGG_05912.6 + +

HM57 MGG_00703.6 + + MC69 MGG_02848.6 + 2

HM63 MGG_00659.6 + 2 MC70 MGG_03347.6 + 2

HM65 MGG_03245.6 + + MC71 MGG_12906.6 + 2

HM66 MGG_02420.6 2 + MC72 MGG_13009.6 + 2

HM68 MGG_01532.6 + + MC73 MGG_13275.6 + 2

HM88 MGG_06951.6 + + MC79 MGG_08041.6 + +

HM91 MGG_00314.6 + 2 MC81 MGG_09875.6 2 +

HM93 MGG_01843.6 + + MC82 MGG_07560.6 + +

HM104 MGG_02987.6 + + MC83 MGG_00052.6 + +

HM106 MGG_03130.6 + + MoCel12A MGG_00677.6 2 +

HM108 MGG_07312.6 + 2 KY5 MGG_10799.6 + +

Eco2 MGG_00269.6 2 + KY8 MGG_03844.6 2 +

HMM14 MGG_01872.6 + + KY10 MGG_03870.6 2 +

HMM53 MGG_06216.6 + + KY22 MGG_10291.6 2 +

Taka1 MGG_05232.6 + 2 KY23 MGG_10394.6 2 +

Taka2 MGG_00860.6 + 2 KY45 MGG_02898.6 2 +

MC4 MGG_06840.6 2 + KY51 MGG_01387.6 2 +

MC8 MGG_07877.6 + + KY55 MGG_03338.6 2 +

MC11 MGG_03593.6 + + AI9 MGG_09742.6 + +

MC14 MGG_09465.6 + + AI41 MGG_07704.6 + +

MC16 MGG_00552.6 + + AI43 MGG_05092.6 + +

MC19 MGG_05103.6 2 + AI44 MGG_03316.6 2 +

MC24 MGG_04952.6 2 + AI58 MGG_07645.6 + 2

MC25 MGG_03276.6 2 + AI59 MGG_01064.6 + +

aExpressed gene in the cAMP-treated M. oryzae on dialysis membrane at 6 hpi in the Table S1.
bExpressed gene in the M. oryzae-infected rice leaf sheath at 40 hpi in the Supplemental data set 1 [20].
(+) or (2) indicate the expressed gene or not, respectively in the cAMP-treated or invasive hyphae of M. oryzae.
doi:10.1371/journal.ppat.1002711.t001
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(Figure 1D). To test whether the observed phenotypes of the mc69

mutants were solely caused by disruption of MC69, an intact copy

of MC69 was introduced into the mc69 mutant mc69-87 (Figure

S1B) for complementation. The MC69-reintegrated strain showed

normal appressorial penetration rate and the strain developed

blast disease symptoms on barley and rice leaves with a similar

extent to the wild type (Figure 1E and F). These results demon-

strate that disruption of MC69 gene caused defects in appressorial

penetration and development of blast symptoms by M. oryzae.

MC69 is expressed in conidia and all stages of infection,
secreted but not translocated into rice cells

MC69 was found in the SuperSAGE list of the cAMP-treated

conidia (Table S1). MC69-EST was found in MGOS databases for

mycelium, conidia, germinated conidia and appressoria [32]. RL-

SAGE tags of MC69 were also found in the fungus grown on a

minimum medium for three days [33]. These data suggest that

MC69 is constitutively expressed in M. oryzae.

To investigate the expression pattern of MC69 in detail, we

produced an M. oryzae strain Ina72 harboring a vector contain-

ing the MC69 promoter fused with a reporter protein gene

mCherry (MC69p::mCherry; Figure 2A) generating WT+mCherry. The

mCherry fluorescence was observed in all morphological stages

with enhanced fluorescence in conidia before germination (0 h)

and matured appressoria (12 h after incubation) on glass coverslips

under confocal laser-scanning microscope (Figure 2B). To de-

termine the mode of expression and spatial localization of the

Figure 1. MC69 is involved in appressorial penetration and pathogenicity of M. oryzae. (A) MC69 is required for pathogenicity of M. oryzae
strain Ina72. Conidial suspension of the wild-type strain Ina72 (Ina72 WT) and the mc69 mutants (mc69-9, -12, -87) were inoculated on barley (cv.
Nigrate) and rice (cv. Shin No. 2) leaves, and incubated for 4 and 7 days, respectively. (B) Germination, appressorium formation and appressorial
penetration of Ina72 WT and the mc69 mutants. The ratio of germination was calculated as the mean percentage of conidia germinated after 24 h on
rice (cv. Shin No. 2) leaf sheath cells. The mean percentage of appressorium formation on rice leaf sheath cells among the germinated conidia is
presented. Three replicates of ,50 conidia were counted for each observation. The mean percentage of appressorial penetration by the mc69
mutants 32 h after inoculation is presented. Standard errors are indicated by the vertical bars. (C) Appressorial penetration assays on rice leaf sheath
cells. Conidia from Ina72 WT and mc69-87 germinated and formed melanized appressoria. All appressoria formed by Ina72 WT penetrated and
produced infectious hyphae but no appressoria formed by mc69-87 produced infectious hyphae in most of area. Photographs were taken 32 h after
inoculation. Scale bar = 40 mm. (D) Invasive growth rating of rice leaf sheath cells 32 h after inoculating with Ina72 WT and mc69-87. The levels for
invasive growth rating are given above. For details of the invasive growth levels and rating see Materials and Methods. Scale bar = 20 mm. (E), (F)
Complementation of mc69 mutant with the wild type allele of MC69. (E) Appressorial penetration by Ina72 WT, mc69-87 (mc69) and the MC69 re-
introduced strain (mc69+MC69). Mean percentage of appressorial penetration is recorded 32 h after inoculation in rice leaf sheath cells. Four
replicates of ,50 appressoria were counted for each observation. (F) Blast symptoms caused by Ina72 WT, mc69 and mc69+MC69 on barley (cv.
Nigrate) and on rice (cv. Shin No 2) 3 and 4 days after inoculation, respectively.
doi:10.1371/journal.ppat.1002711.g001
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Figure 2. Microscopic analysis suggests that MC69 promoter is constitutively active and MC69::mCherry fusion protein is secreted.
(A) and (D) Schematic diagrams of mCherry and MC69::mCherry fusion protein expression constructs. (B) and (E) Conidia from WT+mCherry and
mc69+MC69::mCherry were harvested, and appressorium development was observed for 12 h on glass coverslips. Merged DIC and mCherry (red)
images were taken. Scale bars = 10 mm. (C) and (F) Merged DIC and mCherry images of the rice leaf sheath cells infected with mCherry- and
MC69::mCherry-expressing transformants 24 h and 48 h after inoculation. Scale bars = 20 mm. (G) Blast symptoms caused by Ina72 WT, mc69 and
mc69+MC69::Cherrry on rice (cv. Shin No. 2) 7 days after inoculation.
doi:10.1371/journal.ppat.1002711.g002
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MC69 protein, a construct MC69p::MC69::mCherry was prepared

(Figure 2D) and used for transformation of the mc69 mutant

generating mc69+MC69::mCherry, and the mCherry fluorescence

was then observed on glass coverslips (Figure 2E). The trans-

genic M. oryzae mutant mc69 expressing MC69::mCherry restored

pathogenicity (Figure 2G), showing that the fusion protein

MC69::mCherry is functional for infectivity. The mCherry

fluorescence was detected in all the developmental stages like

WT+mCherry, but the intensity of fluorescence in the strain

mc69+MC69::mCherry was weaker than that of the strain WT+
mCherry presumably because of secretion and diffusion of

MC69::mCherry fusion protein (Figure 2B and E). To observe the

fluorescence of WT+mCherry and mc69+MC69::mCherry in the

infected tissues, we inoculated these conidial suspensions to rice

leaf sheath. The mCherry fluorescence was detected in the invaded

hyphae 24 and 48 hours after inoculation with WT+mCherry, but

not detected in that inoculation with mc69+MC69::mCherry

(Figure 2C and F). These results suggest that the MC69 gene is

expressed throughout infection: conidia, infection-related morpho-

genesis and subsequent growth stage. The fluorescence from

MC69::mCherry fusion proteins was not detected in the invaded

hyphae in planta presumably because they have been secreted.

To obtain direct evidence that the MC69 protein is actually

produced in the invasive hyphae, we made mc69 mutant har-

boring a construct MC69p::MC69::HA (mc69+MC69::HA) or a

MC69p::MC69::3xFLAG (mc69+MC69::3xFLAG) to perform immu-

nodetection of MC69::HA or MC69::3xFLAG proteins in planta,

respectively. Both of mc69+MC69::HA and mc69+MC69::3xFLAG

restored appressorial penetration and invasive growth in rice leaf

sheath (Figure S3A and C), showing that the fusion proteins

MC69::HA and MC69::3xFLAG are functional for pathogenicity.

To clarify whether the MC69::HA and MC69::3xFLAG are

expressed or not, mc69+MC69::HA- and mc69+MC69::3xFLAG-

infected rice leaf sheath extracts were analyzed by SDS-PAGE gel

blot analysis. We extracted total protein at 24 and 48 hours after

leaf sheath inoculation. Note that at 24 hours after inoculation,

most conidia develop appressoria but hyphal invasion is still

limited, whereas at 48 hours extensive hyphal growth develops.

Both of HA- and 3xFLAG-tagged MC69 were detected only

faintly 24 hours after inoculation, but these proteins were

abundant 48 hours after inoculation (Figure S3B and D) indicating

that MC69 protein was indeed produced in invasive hyphae.

Furthermore, we tried to express an AVR effector gene, AVR-Pia

[18,20] from the MC69 promoter to see whether AVR-Pia

avirulence function is supported by MC69 promoter in rice plant

harboring Pia R-gene. We hypothesized that only when MC69

promoter allows expression of AVR-Pia in invasive hyphae, a

sufficient amount of AVR-Pia protein would be translocated inside

rice cells to be recognized by Pia, NBS-LRR-type cytoplasmic R-

proteins [34]. We performed transformation of the M. oryzae

isolate Ina86-137 (that lacks AVR-Pia and can infect rice cultivars

possessing Pia R-gene) [20] with a construct MC69p::AVR-Pia. We

used the wild-type stain (Ina86-137 WT) and a transformant

harboring an intact copy of AVR-Pia (+AVR-Piap::AVR-Pia) [20] as

negative and positive controls, respectively. In contrast with the

Ina86-137 WT, +AVR-Piap::AVR-Pia and the transformants

harboring MC69p::AVR-Pia (+MC69p::AVR-Pia-1 and -2) failed to

cause disease in the rice cultivar Sasanishiki possessing Pia (Figure

S4A). Both Ina72-WT and the transformants successfully infected

rice cultivar Shin No. 2 that lacks Pia, suggesting that their

inability in infecting cv Sasanishiki was caused by Pia-AVR-Pia

interactions and that the MC69 promoter is expressed during

invasive growth. Active transcription of the AVR-Pia in the

transformants was confirmed by RT-PCR (Figure S4B) [20].

Khang et al. (2010) reported that secreted fluorescent effectors

preferentially accumulate in biotrophic interfacial complexes

(BICs) at the invasive hyphae-rice cell interface [11]. By fusing

nuclear localization signal (NLS) to the fluorescent effectors to

facilitate visualization of translocation, they also showed that the

two BIC-localized secreted proteins, PWL2 and BAS1 were

translocated into rice cytoplasm [11]. To test translocation of

MC69::mCherry in rice cells, we added a modified small NLS

from simian virus large T-antigen [35] at the C terminus of the

MC69::mCherry fusion downstream of the PWL2 promoter

(PWL2p::MC69::mCherry::NLS) and transformed M. oryzae strain

Sasa2 with the construct. A transformant M. oryzae harboring

PWL2p::PWL2::mCherry::NLS was used as positive control.

PWL2::mCherry::NLS exhibited significant fluorescence in BIC

and in nuclei of invaded host cells at successful infection sites 24,

27 and 32 hours after inoculation (Figure 3A) whereas

MC69::mCherry::NLS did not show fluorescence in nuclei of

the invaded rice cells, but showed weaker fluorescence in BIC than

that of PWL2::mCherry::NLS (Figure 3B). To eliminate the

possibility that the NLS influences BIC localization, a transfor-

mant strain harboring PWL2p::MC69::mCherry was inoculated to

rice leaf sheath. The result showed that MC69::mCherry was also

detected in the BIC (Figure 3C). In addition, we observed

mCherry fluorescence with different pinhole settings to compare

the signals in the BIC among the three strains 27 hours after

inoculation. The result showed that BIC accumulation signals of

MC69::mCherry::NLS and MC69::mCherry were significantly

weaker than that of PWL2::mCherry::NLS (Figure S5). These

results suggest that the MC69 does not translocate into the infected

rice cells, but localizes in BIC, however the accumulation level of

MC69 in BIC is significantly lower than that of PWL2.

Two cysteine residues are essential for MC69 function
MC69 homologs were found in other filamentous fungi

Colletotrichum orbiculare (AB669186), Glomerella graminicola (EFQ

29542), Verticillium albo-atrum (EEY15898), V. dahliae (EGY20943),

Neurospora crassa (XP_965292), N. tetrasperma (EGO52621), Myce-

liophthora thermophila (XP_003659994), Podospora anserina (XP_

00190740), Grosmannia clavigera (EFX05010), Fusarium oxysporum

(EGU75378), Gibberella zeae (XP_388669), Trichoderma atroviride

(EHK44387), T. virens (EHK23962), Metarhizium acridum (EFY

93067), M. anisopliae (EFY97094) and Cordyceps militaris (EGX

95034) (Figure S6 and S7). However, these amino acid sequences

did not contain known domains/motifs that would allow the

prediction of their function. Nevertheless, MC69 homologs

contain two conserved cysteine residues in the mature protein

region C-terminal to the signal peptide (Figure S6). A software

DISULFIND (http://disulfind.dsi.unifi.it/; [36]) predicted that

the two cysteine residues in mature MC69 can form a disulfide

bond (Figure 4A). To test whether these cysteines are necessary for

MC69 function, mutant alleles of MC69 were generated in which

each or both of C36 and C46 were replaced with alanine

(Figure 4B). Mutant alleles with one amino acid replacement

(MC69(C36A); MC69(C46A)) or two replacements (MC69

(C36A,C46A)) were expressed in the mc69 mutant (mc69+
MC69(C36A), mc69+MC69(C46A) or mc69+MC69(C36A,C46A)).

In all cases, appressorial penetration rate and blast symptoms on

barley and rice were slightly restored, but still significantly reduced

as compared to the wild type (Figure 4C and D). In addition, we

further analyzed invasive growth rating of the 50 appressorial

penetration sites. Infectious growth of mc69+MC69(C36A), mc69+
MC69(C46A) and mc69+MC69(C36A,C46A) within the inner

epidermal tissue was slightly restored as compared to the mc69

mutant (Figure S8). These results indicate that C36 and C46,

Secreted Pathogenicity Protein of Fungal Pathogens

PLoS Pathogens | www.plospathogens.org 6 May 2012 | Volume 8 | Issue 5 | e1002711



presumably involved in disulfide bond, are necessary for MC69 to

exert its pathogenicity in M. oryzae.

To see whether C36 and C46 are important for MC69

secretion/localization, spatial localization of the MC69(C36A)

protein was tested by transforming mc69 mutant with a construct

MC69p::MC69(C36A)::mCherry, resulting in mc69+MC69(C36A)::m-

Cherry (Figure 5A). We inoculated conidial suspension of the strain

to rice leaf sheath to observe the mCherry fluorescence in the

infected tissue. The mCherry fluorescence was detected in

appressoria but not in the invaded hyphae 24 and 48 hours

after inoculation (Figure 5B). The result suggests that the

MC69(C36A)::mCherry protein was secreted into the plant and

diffused below the detection limit like MC69::mCherry (Figure 2F

and 5B). To clarify whether the MC69::mCherry and MC69

(C36A)::mCherry are secreted or not, extracellular proteins

secreted by Magnaporthe after liquid culture were analyzed by

SDS-PAGE gel blot analysis. We used the wild-type strain

expressing mCherry under MC69 promoter (WT+mCherry;

Figure 2B and C) as negative control. Western blot analysis

(Figure 5C) revealed the presence of mCherry-tagged MC69 and

mCherry-tagged MC69(C36A) in the culture medium. Faint

signals of cleaved mCherry were observed as well for the

transformants mc69+MC69::mCherry and mc69+MC69(C36A)::m-

Cherry. The molecular weight (MW) of the fusion proteins was

around 30 kDa, in line with the predicted MW of mature

MC69::mCherry. These data strongly suggest that both of MC69

and MC69(C36A) are secreted to the medium, and C36 is not

important for MC69 secretion. It could be possible that mutation

of the Cys residues may impact pathogenicity by reducing the

stability of the protein after secretion in planta.

MC69 is commonly required for pathogenicity in
M. oryzae

To investigate whether pathogenicity function of MC69 is

conserved in M. oryzae, we produced mc69 disruptants in other two

Japanese field isolates of TH68-141 and Hoku1, in addition to the

isolate Ina72. We used the MC69 knockout vector used for Ina72

to generate mc69 disruptants of both TH68-141 and Hoku1

isolates. Generated mc69 disruptants of the two isolates showed a

reduced pathogenicity on barley leaves as compared to the wild

type strains (Figure 6), indicating the importance of MC69 in

virulence of TH68-141 and Hoku1.

The whole genome sequence of 70-15, a well-studied laboratory

strain of M. oryzae, was published [23]. We found that 70-15

showed poor virulence as compared to the Japanese strains in the

previous study. It caused intermediate responses in all of the 13

tested rice cultivars: infection caused reddish lesions of various

sizes, but they did not further develop into typical susceptible

brown spindle-shaped necrotic lesions [20]. To investigate wheth-

er MC69 is required for pathogenicity in 70-15, MC69 gene

disruption analysis was performed in the 70-15 background

(Figure S1). Two independent MC69-KO lines (mc69-119 and

mc69-31) and wild-type 70-15 were sprayed onto barley cotyledons

and rice leaves. The barley and rice infected by mc69 mutants

showed much weaker symptoms as compared to the 70-15-

infected plants (Figure 7A), indicating the importance of MC69 in

pathogenicity of 70-15. Appressorial penetration rates of the

mutants in rice leaf sheath cells were significantly lower than that

of 70-15 but the rates of germination and appressorium formation

were same with the wild type (Figure 7B). In addition, we further

analyzed invasive growth rating of 50 appressorial penetration

Figure 3. MC69::mCherry is not translocated into the rice cytoplasm. Merged DIC and mCherry images of rice leaf sheath cells infected by M.
oryzae Sasa2 strain harboring (A) PWL2p::PWL2::mCherry::NLS, (B) PWL2p::MC69::mCherry::NLS, and (C) PWL2p::MC69::mCherry 24, 27 and 32 h after
inoculation as observed by confocal laser scanning microscopy. Arrows indicate BICs and triangles indicate rice nuclei. Pinhole setting is 240 mm for
all panels. Scale bar = 20 mm.
doi:10.1371/journal.ppat.1002711.g003
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sites. Infectious growth of the mc69 mutants within the inner

epidermal tissue was restricted as compared to the wild type

(Figure S9). However, the colony growth and conidiation of the

mutants on oatmeal agar media were similar to the wild type

(Figure S2C and D). Thus, the mc69 mutants of 70-15 have a

defect in appressorial penetration and development of blast

symptoms, which is similar to the phenotype of the mc69

disruptants of Ina72. These results suggest that MC69 is com-

monly required for appressorial penetration and subsequent

colonization in various M. oryzae strains.

An ortholog of MC69 is required for pathogenicity of
Colletotrichum orbiculare

The importance of MC69 in M. oryzae raised a possibility that

MC69 orthologs are also involved in pathogenicity of other fungal

pathogens. To assess this point, we investigated whether MC69

ortholog is involved in pathogenicity of the cucumber anthracnose

fungus C. orbiculare (Figure S6). A gene homologous to MC69

was isolated from C. orbiculare in this study. The isolated gene,

designated CoMC69, comprises 220 bp interrupted by an intron

and encodes a predicted protein of 54 amino acids (Figure 8A).

Intron/exon organization in MC69 orthologs in filamentous fungi

indicated that most of them have one intron only followed by an

exon (140–156 bp) except for the genes in T. virens and Gibberella

zeae (Figure S10). First exons in all genes encode a common region

containing two conserved cysteine residues in the mature proteins

(Figure S6).

To investigate whether CoMC69 is involved in the pathogenicity

of C. orbiculare, we produced CoMC69 disruption mutants. The

plasmid pCBGDMC69 was designed to replace the CoMC69 gene

in the wild-type strain 104-T through double crossover homolo-

gous recombination (Figure S11A and B).

The colony morphology and conidiogenesis of Comc69 mu-

tants grown on PDA medium were similar to that of 104-T

(Figure S11C and data not shown). We next investigated their

pathogenicity on host cucumber leaves. Conidial suspensions

from the Comc69 mutants were spotted on detached cucumber

leaves and incubated for 7 days. The Comc69 mutants exhibited

clear reduction in lesion development in comparison with the

wild-type strain 104-T (Figure 8B). C. orbiculare 104-T is able to

infect Nicotiana benthamiana, which is not closely related to

cucumber [37]. The Comc69 mutants also exhibited reduced

pathogenicity on N. benthamiana (Figure 8C). These results indicate

that CoMC69 is required for pathogenicity of C. orbiculare,

suggesting conserved roles of the MC69 proteins in pathogen-

icity of both M. oryzae and C. orbiculare. To investigate the gene

expression of CoMC69 in plant infection of C. orbiculare, we

generated C. orbiculare strains carrying a reporter plasmid

Figure 4. Two cysteine residues are important for MC69 virulence activity. (A) DISULFIND (http://disulfind.dsi.unifi.it/) output of the mature
form of MC69 protein. (B) Amino acid sequences of disulfide mutants of MC69. The predicted signal peptide is indicated in blue. (C) Appressorial
penetration by M. oryzae wild-type strain Ina72 (WT) and transformants with various versions of MC69. Mean percentage of invasion in rice (cv. Shin
No. 2) leaf sheath cells 30 h after inoculation is presented. Four replicates of ,50 appressoria were counted for each observation. (D) Blast symptoms
caused by WT, the mc69 mutant (mc69), the MC69-, MC69(C36A)-, MC69(C46A)- and the MC69(C36A,C46A)-re-introduced strains [mc69+MC69,
mc69+MC69(C36A), mc69+MC69(C46A) and mc69+MC69(C36A,C46A)] on barley (cv. Nigrate) and on rice (cv. Shin No. 2) 4 and 7 days after inoculation,
respectively.
doi:10.1371/journal.ppat.1002711.g004
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containing the 1.4 kb 59 upstream region of CoMC69 fused with

mCherry. As a result, we found the mCherry fluorescence in

appressoria and primary intracellular hyphae of the transgenic C.

orbiculare, indicating the expression of CoMC69 in the plant

infection stage of C. orbiculare (Figure 8D).

Discussion

In this study, we show that MC69, a novel secreted protein of

Magnaporthe oryzae, is essential for successful appressorial penetra-

tion and blast symptom development in rice and barley cultivars.

The MC69 gene (MGG_02848.6) resides on chromosome VII of

the M. oryzae genome. The MC69 protein comprises 54 amino

acids and is predicted to harbor a putative N-terminal secretion

signal peptide (Figure 4B). MC69 seems to be a solitary gene

without any paralogs in the genome. It lacks known sequence

motifs associated with enzymatic function. Although MC69

homologs were found in other filamentous fungi (Figure S6), their

functions are also not known. Expression of MC69 was observed in

mycelia, conidia and all stages of infection (Figure 2). The mc69

disruptants were unable to invade plant cells to establish com-

patible interaction with the host plant (Figure 1, 6 and 7). However

in mc69 mutants, other phases of infection-related development

such as conidial germination and appressorium formation were

unaffected (Figure 1B and 7B).

MC69 of M. oryzae, which is predicted to comprise 38 amino

acids after cleavage of the signal peptide, contained no known

functional domains. Therefore it is unlikely that MC69 has an

enzymatic function. The two cysteine residues (C36 and C46)

conserved among the MC69 homologs may be involved in

disulfide bridge formation and were shown to be important for

pathogenicity function of MC69 (Figure 4 and S6). Pep1 is a novel

effector protein from the corn smut fungus Ustilago maydis that is

essential during penetration. Disruption mutants of pep1 are not

affected in saprophytic growth and develop normal infection

structures, but are arrested during the penetration of epidermal

cells of maize leaves. In addition, two of the four cysteine residues in

Pep1 were shown to be essential for the virulence function [38]. The

authors consider that the importance of two of the four cysteine

residues for secretion of Pep1 to make a compact structure with

disulfide bridge structure of Pep1 [38]. To address this possibility we

observed localization of MC69::mCherry and MC69(C36A)::m-

Cherry in M. oryzae. We were unable to detect red fluorescence in

infectious hyphae and the fusion proteins were detected in the

culture filtrate of both strains (Figure 2 and 5). These results

indicated that the substitution of cysteine residues of MC69 did not

affect secretion, but affected pathogenicity of M. oryzae.

On the other hand, disruption of a total of 77 secreted protein

genes in M. oryzae did not affect its pathogenicity within our

experimental condition. Since there is no systematic bias in our

selection of secreted protein genes for disruption, we extrapolate

that 77/78 = 99% of secreted protein genes do not show clear

reduction in pathogenicity even after knockout. Several secreted

avirulence (AVR) effector genes have been isolated from M. oryzae,

including PWL effectors [16,19], AVR-Pita [13,14], AVR1-CO39

[15], AVR-Piz-t [17], AVR-Pia, AVR-Pii and AVR-Pik/km/kp

[18,20], but the virulence functions of the genes are still unknown.

In fact, the AVR-Pita effector is dispensable for virulence on rice

[14,39]. According to our results and available information on M.

oryzae AVR effectors, we hypothesize two mutually non-exclusive

Figure 5. Secretion of MC69(C36A)::mCherry and MC69::
mCherry fusion proteins. (A) Schematic diagram of MC69(36A)::m-
Cherry fusion protein expression construct. (B) Merged DIC and
mCherry images of rice leaf sheath cells infected by the MC69(C36A)::m-
Cherry-expressing transformants 24 h and 48 h after inoculation. Scale
bar = 20 mm. (C) Western blot probed with an anti-DsRed antibody.
Samples were loaded as follows: lane 1, culture filtrate from mCherry-
expressing strain; lane 2, culture filtrate from MC69::mCherry-expressing
strain; lane 3, culture filtrate from MC69(C36A)::mCherry-expressing
strain.
doi:10.1371/journal.ppat.1002711.g005

Figure 6. MC69 is required for pathogenicity of other two
different Japanese field isolates TH68-141 and Hoku1. Conidial
suspension of wild-type strain TH68-141 (TH68-141 WT), the three
independent mc69 mutants (mc69-49, mc69-55 and mc69-66), wild-type
strain Hoku1 (Hoku1 WT) and the two independent mc69 mutants
(mc69-75 and mc69-82) were inoculated on barley (cv. Nigrate) leaves
and incubated for 5 days.
doi:10.1371/journal.ppat.1002711.g006
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possibilities: (1) virulence contribution of most of effectors is too

small to be detected by conventional assays; (2) effectors have

redundant activities and more than one effector participate in the

same virulence pathway.

A recent report of M. oryzae indicates that the fungus overcomes

the first line of defense (PAMP-Triggered Immunity) by secreting

an effector protein, Slp1 during invasion of new rice cells [21].

There are several reports for secreted effectors of other fungal

pathogens. Pep1 of U. maydis was described above. Several hy-

drophobins or repellent genes that encode secreted proteins of U.

maydis were examined for their roles in virulence. Single knock-

outs of these genes did not affect virulence, but a double knockout

of the repellent-encoding gene Rsp1 and Hum3 (a gene encoding a

protein containing both, a hydrophobin domain and a repellent

region) were arrested at an early stage of penetration. This in-

dicates that Rsp1 and Hum3 are effectors with a partly redundant

virulence function during the early stages of infection [40]. We

speculate a similar situation may occur in M. oryzae. It would be

a good way to focus on effector candidates exhibiting higher

similarities and knockout or silence multiple genes simultaneously,

to identify the multiple effectors that act redundantly.

We showed that MC69 was required for pathogenicity of the

additional three strains of M. oryzae in addition to the strain Ina72,

indicating conserved roles of MC69 in M. oryzae. To investigate

whether the pathogenicity function of the MC69 ortholog in

the well-studied dicot fungal pathogen, we isolated an ortholog,

CoMC69 from the cucumber anthracnose fungus, Colletotrichum

orbiculare. Notably, in C. orbiculare the deletion of CoMC69 reduced

pathogenicity on the hosts cucumber and Nicotiana benthamiana

leaves (Figure 8).

Phylogenetic analyses were performed with M. oryzae MC69

(MoMC69), with 16 homologs from other phytopahogenic (C.

orbiculare, Glomerella graminicola, Verticillium albo-atrum, V. dahliae,

Grossmannia clavigera, Fusarium oxysporum and Gibberella zeae), en-

tomopathogenic (Metarhizium acridum and M. anisopliae), caterpillar

killer (Cordyceps militaris), fungal parasite (Trichoderma atroviride and T.

virens) or saprophytic (Neurospora crassa, N. tetrasperma, Myceliophthora

thermophila and Podospora anserina) fungi (Figure S7). MoMC69 and

CoMC69 are closely related to the Verticillium wilt pathogens V.

albo-atrum, V. dahliae and the cereal plants anthracnose fungus

Glomerella graminicola. A conserved motif containing the two

cysteine residues showed high homology among all MC69

homologs (Figure S6). Thus, it will be interesting to determine

whether genes orthologous to MoMC69 also contribute to the

pathogenicity of various plant, fungus, entomo or caterpillar

pathogenic fungi. However, MC69 orthologs also occur in sap-

rophytes suggesting that a possibility that the primary function of

the protein is in relation to the structure or function of the fungus

itself, and that the function must be intact for the fungus to succeed

as a pathogen.

We generated transgenic rice overexpressing MC69 to examine

susceptibility to M. oryzae wild-type strain or the mc69 mutant

infection. However, overexpression of MC69 in rice neither

enhanced the pathogenicity of M. oryzae wild-type strain nor

complemented the pathogenicity deficiency of the mc69 mutant

(data not shown). We hypothesize three possibilities why over-

expression of MC69 did not affect M. oryzae wild-type strain and

the mc69 mutant infection. One possibility is that the localization

of MC69 in the infection sites of M. oryzae in rice cells is impor-

tant. We produced M. oryzae transformant harboring PWL2p::

MC69::mCherry. After inoculation of the strain to the rice leaf

sheath, mCherry fluorescence was detected in biotrophic interfa-

cial complex (BIC) (Figure 3C). However, MC69::mCherry fusion

protein expressed by MC69 promoter was not detected in BIC

(Figure 2F). It might be because MC69 promoter activity was

weaker than PWL2 promoter activity or PWL2 promoter leads

MC69::mCherry to BIC accumulation but MC69 promoter did

not. To test these possibilities, mc69 mutant expressing MC69::

EGFP fusion protein downstream of MC69 promoter has been

produced because EGFP fluorescence was relatively stronger than

mCherry fluorescence. When the transformant was inoculated to

the rice leaf sheath, MC69::EGFP was shown to be accumulated

to the BIC (data not shown). These results indicate that BIC

localization of MC69 is important for virulence of M. oryzae.

Therefore, ectopic overexpression of MC69 in rice neither en-

hanced pathogenicity of wild-type strain nor complemented

deficiency of mc69 mutant of M. oryzae in trans because of the

MC69 protein would not be localized in BIC. The second

possibility is that post translational modification of MC69 protein

in M. oryzae might be different from that in planta even though the

secreted MC69::mChrerry protein shows an expected molecular

size (Figure 5C). The third possibility is that MC69 affects the

physiology of the fungus but does not directly affect the physiology

of the plant so that expression of MC69 in rice did not

complement the defect in mc69 mutant of M. oryzae.

Figure 7. MC69 is necessary for appressorial penetration and
pathogenicity of a laboratory strain 70-15. (A) MC69 is required
for pathogenicity of M. oryzae strain 70-15. Conidial suspension of the
wild-type strain 70-15 (70-15 WT) and the mc69 mutants (mc69-119, -31)
were inoculated on barley (cv. Nigrate) and rice (cv. Shin No. 2) leaves,
and incubated for 7 days. (B) Germination, appressorium formation and
appressorial penetration of 70-15 WT and the mc69 mutants. The ratio
of germination was calculated as the mean percentage of conidia
germinated after 32 h on rice (cv. Shin No. 2) leaf sheath cells. The
mean percentage of appressorium formation on rice leaf sheath cells
among the germinated conidia is presented. Three replicates of ,50
conidia were counted for each observation. The mean percentage of
appressorial penetration by the mc69 mutants is presented 32 h after
inoculation. Standard errors are indicated by the vertical bars.
doi:10.1371/journal.ppat.1002711.g007
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Khang et al. (2010) demonstrated that BIC-localized secreted

proteins PWL2 and BAS1 were translocated into the rice cy-

toplasm but a secreted protein BAS4, which uniformly outlines the

invasive hyphae, was not [11]. Interestingly, when M. oryzae

transformants secreted fluorescent MC69 fusion protein during

epidermal cell invasion, the fluorescent protein was observed in

BICs (Figure 3). To investigate whether this feature is specific

to MC69 or not, we generated M. oryzae strains expressing

fluorescence-labeled version of four putative secreted proteins

(HMM14, MC55, GAS1 or GAS2) with NLS. HMM14 and

MC55 are the secreted protein genes studied here (Table 1) and

GAS1 and GAS2 are secreted protein genes involved in virulence

of M. oryzae [28]. The generated strains were inoculated to rice leaf

sheaths, and localization of each protein was investigated. The

result showed that all four proteins were localized to the BICs, and

both GAS1 and GAS2 were then translocated into the rice

cytoplasm, which is similar to PWL2. By contrast, HMM14 and

MC55 were not translocated into the rice cytoplasm like MC69

(data not shown). However, fluorescent signals of BIC accumu-

lations of MC69::mCherry::NLS, MC69::mCherry, HMM14::

mCherry::NLS and MC55::mCherry::NLS were significantly

weaker than that of PWL2::mCherry::NLS, GAS1::mCherry::

NLS and GAS2::mCherry::NLS (Figure 3, S5 and data not

shown). These finding indicate that BIC accumulation level of

secreted proteins might be important for translocation to the

infected rice cells.

A virulence effector Slp1 sequesters chitin oligosaccharides to

prevent PAMP-triggered immunity in rice, thereby facilitating

rapid spread of the fungus within host tissue [21]. Slp1 contains

two putative LysM domains, which have previously been shown to

bind carbohydrates [41]. An effector known as Ecp6 that also

contains LysM domains was identified from a fungal pathogen

Cladosporium fulvum that causes leaf mold of tomato [42]. Another

effector AVR4 of C. fuluvum binds to chitin present in fungal cell

walls and that, through this binding AVR4 can protect these cell

walls against hydrolysis by plant chitinases [43]. Growth of the

Dpep1 mutants of U. maydis are arrested during penetration of the

epidermal cell and elicit a strong plant defense response such

as formation of large papillae, induction of strong cell wall

autofluorescence, H2O2 accumulation and defense related gene

Figure 8. CoMC69 is involved in fungal pathogenicity of C. orbiculare. (A) Sequence alignment of MC69 between M. oryzae (Mo) and C.
orbiculare (Co). Amino acid sequences were aligned using Clustal W program [52]. Identical amino acids are indicated as white letters on a black
background. Similar residues are shown by gray background. Gaps introduced for alignment are indicated by hyphens. (B) Pathogenicity test of the
Comc69 mutants on cucumber. Conidial suspensions were inoculated on detached cotyledons of cucumber (Cucumis sativa). On the left half of the
cotyledons, the wild-type strain 104-T was inoculated as positive control. On the right half, the Comc69 strains (DMC1 and DMC2) were inoculated.
Inoculated cotyledons were incubated for 7 days. (C) Pathogenicity test of the Comc69 mutants on N. benthamiana. On the left half of the detached
leaves of N. benthamiana, the strain 104-T was inoculated as positive control. On the right half, the Comc69 strains (DMC1 and DMC2) were
inoculated. Inoculated leaves were incubated for 7 days. (D) mCherry-based reporter assay for expression of the CoMC69 gene. Conidia from the C.
orbiculare strain carrying the CoMC69 promoter-mCherry fusion gene (CoMC69p::mCherry) was inoculated onto the lower surfaces of cucumber
cotyledons, and the inoculated plant was incubated for 4 days. a, appressorium; ih, intracellular hypha. Scale bars = 10 mm.
doi:10.1371/journal.ppat.1002711.g008
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expression [38]. We tried to elucidate the roles of MC69 by

addressing differences in H2O2 accumulation and expression of

defense related genes in rice infected by mc69 mutant and wild

type M. oryzae. However, results showed no difference between

mc69 and wild type so that we have no evidence that MC69

suppresses plant defense responses at the moment (data not

shown). Taken together, we demonstrated that MC69 has a

pathogenicity function (required for the fungus to be a pathogen),

but its function has yet to be elucidated.

Materials and Methods

Fungal strains, medium and transformation
All isolates of M. oryzae used in this study are stored at the Iwate

Biotechnology Research Center. Fungal strains used were the

wild-type strains 70-15, Ina72, TH68-141, Hoku1, Sasa2 and

Ina86-137 [20]. To obtain protoplasts, hyphae of M. oryzae strains

were incubated for 3 days in 200 mL of YG medium (0.5% yeast

extract and 2% of glucose, w/v). Protoplast preparation and

transformation were performed as described previously [44].

Hygromycin- or bialaphos-resistant transformants were selected

on plates with 300 mg ml21 of hygromycin B (Wako Pure

Chemicals, Osaka, Japan) or 250 mg ml21 of bialaphos (Wako

Pure Chemicals). C. orbiculare (Berk. & Mont.) Arx (syn. C.

lagenarium [Pass.] Ellis & Halst.) strain 104-T (MAFF240422) was

used as the wild-type strain. All C. orbiculare strains were

maintained on 3.9% (w/v) PDA (Difco Laboratories, Detroit,

MI) at 24uC. Preparation of protoplasts and transformation of C.

orbiculare were performed according to a method described

previously [45].

SuperSAGE of cAMP-treated M. oryzae strain 70-15
Mycelia of M. oryzae were grown on oatmeal agar medium

(30 g l21 oatmeal, 5 g l21 sucrose and 16 g l21 agar). To enhance

conidia formation, the fungus was first grown on oatmeal agar

medium for 9 days at 25uC, and then exposed to Black Light Blue

light (Toshiba FS20S/BLB 20W; Toshiba, Tokyo, Japan) for 4

days at 22uC, after aerial hyphae of the colonies had been washed

away with sterilized distilled water. Conidia of M. oryzae were

suspended in 50 mM cAMP to a final density of 16106 conidia

ml21. This suspension was then poured onto dialysis membranes

(2.5 ml of suspension/25 cm2 membrane surface; Spectra/Por,

cutoff 1,000 Da; Spectrum Medical Industries, Terminal Annez,

LA) and incubated at 25uC in dark [25]. Total RNA was extracted

from germinating conidia incubated for 6 h on dialysis mem-

branes, as described below. 32 sheets of membranes containing the

germinating conidia were crushed and homogenized in liquid

nitrogen with mortar and pestle. The homogenate was transferred

to a centrifuge tube containing 40 ml of TRI Reagent (SIGMA-

ALDRICH, St. Louis, MO), homogenized by vigorous shaking

and incubated at room temperature for 5 min. Then 8 ml of

chloroform was added, homogenized by vigorous shaking for

15 sec and incubated at room temperature for 3 min. After

centrifugation at 10006 g for 15 min at 4uC, the upper aqueous

phase was transferred to a new centrifuge tube, and the total RNA

was precipitated by the addition of 20 ml of isopropanol after

incubation at room temperature for 10 min. The pellet was rinsed

with 70% ethanol. SuperSAGE library was made from total RNA

as described [46,47]. Di-tag fragments were sequenced by the 454

FLX sequencer (454 Life Sciences). Each 26-bp tag sequence was

used for BLASTN search against M. oryzae 70-15 genome

sequence. A total of 23,491 tags to comprising 26-bp sequence

were recovered. Number of tags for each of putative secreted

protein genes of M. oryzae is given in Table S1.

Plasmid construction
To construct the gene-disruption vector pGPSMC69-44, a 8.7-

kb fragment containing the MC69 gene amplified with the prim-

ers MC69S1 (59- TTATGACGGGAGCACAGGCACAGCA-

CAC-39) and MC69AS1 (59- TGGCCGACGTTGTGCTCTTT-

CAGTTCCT-39) was cloned into pCR-XL-TOPO to generate

pXLMC69 using the TOPO XL PCR Cloning Kit (Invitrogen,

Carlsbad, CA). MC69 was mutated using an adaptation of

the TAG-KO method using pGPS-HYG-CAM [30,31]. The

pXLMC69 containing MC69 was used as the target. An insertion

was formed within the coding region of MC69 (at 11 amino acids)

in pXLMC69, which resulted in pGPSMC69-44 (Figure S1).

For complementation assay of an mc69 mutant with MC69, a

5.7-kb fragment containing MC69 was amplified with the primers

NMU1 (59-ATAAGAATGCGGCCGCTGATTCTCAATGCC-

CTCTGTCCTTT-39; the NotI site is underlined) and MC69AS1.

The PCR product was digested with NotI and XbaI (exists in the

middle of the PCR product after 1.1-kb far from the poly A signal

recognition site of MC69) to generate 3.1-kb fragment containing

MC69, and ligated to the same restriction sites of which carries the

bialaphos-resistant (bar) gene [48], creating pCB1531-MC69.

To substitute a cysteine residue at 36 amino acids in MC69

by alanine, single point mutation was introduced in plasmid

pCB1531-MC69 using a primer BMC36AU4 (59- CAGGTCAC-

CAGACGACGCCTTCTTTGG -39; mutation site is underlined

and the BstEII site is indicated in italics). A 1.7-kb fragment

containing a half 39-terminal part of the MC69 ORF and

terminator was amplified with the primers BMC36AU4 and

M13F (59- CGCCAGGGTTTTCCCAGTCACGA-39). The

PCR product was digested with BstEII and XbaI, and exchanged

to the BstEII/XbaI fragment of pCB1531-MC69, generating

pCB1531-MC69(C36A) (Figure 4B). To substitute a cysteine

residue at 46 amino acids in MC69 by alanine, single point

mutation was introduced in plasmid pCB1531-MC69 using a

primer MC46AU5 (59-CGTCACGCCGCAAGGCGCCGGG-

TATGTTCTGGG-39; mutation site is underlined). A 1.7-kb

fragment was amplified with the primers MC46AU5 and M13F,

and the PCR product was used as a template for another PCR

with the primers BMC46AU4 (59- CAGGTCACCAGACGACT-

GCTTCTTTGGTGTCGTCACGCCGCAAGGCGCCGG-39;

mutation site is underlined and the BstEII site is indicated in

italics) and M13F. The PCR product was digested with BstEII and

XbaI, and exchanged to the BstEII/XbaI fragment of pCB1531-

MC69, generating pCB1531-MC69(C46A) (Figure 4B). To

substitute two cysteine residues at 36 and 46 amino acids in

MC69 by alanine, double point mutations were introduced in

plasmid pCB1531-MC69 using a primer BMC36&46AU4 (59-

CAGGTCACCAGACGACGCCTTCTTTGGTGTCGTCACG-

CCGCAAGGCGCCGG-39; mutation sites are underlined and

the BstEII site is indicated in italics). A 1.7-kb fragment was

amplified with the primers MC46AU5 and M13F, and the PCR

product was used as a template for another PCR with the primers

BMC36&46AU4 andM13F. The PCR product was digested with

BstEII and XbaI, and exchanged to the BstEII/XbaI fragment

of pCB1531-MC69, generating pCB1531-MC69(C36A,C46A)

(Figure 4B).

For construction of the MC69-EGFP gene fusion vector pCB-

1531-MC69-EGFP, a 1.7-kb fragment containing MC69 gene

was amplified with the primers NMU1 and XMG5L1 (59-

GCTCTAGACCACCACCACCACCTTTGGCAGGTCCGCG-

AAGAGGG-39; XbaI site is indicated in italics) which was

designed with five glycine codons (underlined) as a spacer peptide

between MC69 and EGFP. The PCR product encoding MC69-

Gly5 was digested with NotI and XbaI, and exchanged to the
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NotI/XbaI fragment of the Tef promoter in pBAGFP [49],

generating pCB1531-MC69-EGFP. For construction of the

MC69-mCherry gene fusion vector pCB1531-MC69-mCherry, a

0.7-kb mCherry cDNA fragment was amplified with the primers

XmU1 (59- GCTCTAGACATGGTGAGCAAGGGCGAGG-39;

XbaI site is underlined) and BmL1 (59- CGGGATCCTACTTG-

TACAGCTCGTCCAT-39; BamHI site is underlined) using

pmCherry (Clontech, Mountain View, CA) as a template. The

PCR product was digested with XbaI and BamHI, and exchanged

to the XbaI/BamHI fragment of EGFP cDNA in pCB1531-

MC69-EGFP, generating pCB1531-MC69-mCherry (Figure 2D),

a 1.6-kb fragment of MC69 promoter (MC69p) and MC69(C36A)

ORF was amplified with the primers NMU1 and XMG5L1. The

PCR product was digested with NotI and XbaI, and exchanged

to the NotI/XbaI fragment of MC69p-MC69 in pCB1531-

MC69-mCherry, generating pCB1531-MC69(C36A)-mCherry

(Figure 5A). A 1.4-kb fragment of MC69p was amplified with the

primers NMU1 and XMpL2 (59- GCTCAGACCTTCGTA-

GGCCTGGAACGAGACGCTTCC-39; XbaI site is underlined).

The PCR product was digested with NotI and XbaI, and

exchanged to the NotI/XbaI fragment of MC69p-MC69 in pCB-

1531-MC69-mCherry, generating pCB1531-MC69p-mCherry

(Figure 2A).

A 0.6-kb fragment of PWL2 promoter was amplified the primers

Ppwl2-59 (59-GAGGAGAAGCGGCCGCGTTAACAACGCGG-

TGTAAAGATTC-39; NotI site is underlined) and Ppwl2-39 (59-

GAGAGGAGAAGGATCCACTAGTTCTAGATTTGAAAGT-

TTTTAATTTTAAAAAGAGATTTTCCGAG-39; BamHI-SpeI-

XbaI sites are underlined). The PCR product was digested with

NotI and BamHI, and exchanged to the NotI/BamHI fragment of

Tefp-EGFP in pBAGFP [49], generating pCB-Ppwl2. mCherry

cDNA fragment was amplified with primers mCherry-N (59-

GAGAGGAGAAGGATCCAGATCTCTCGAGACCATGGTG-

AGCAAGGGCGAGGAG-39; BamHI-BglII-XhoI sites are un-

derlined) and mCherry-C (59-GAGAGGAGAAGAATTCGC-

TAGCGTCGACCTTGTACAGCTCGTCCATG-39; EcoRI-

NheI-SalI sites are underlined). The PCR product was digested

with BamHI and EcoRI, and introduced into pCB-Ppwl2, to

produce pCB-Ppwl2-mCherry. pCB-Ppwl2-mCherry was digested

with SalI, fill in with Klenow fragment and performed self-ligation,

generating pCB-Ppwl2-mCherry-stop. A modified SV40 NLS-

coding double stranded fragment [35] was produced annealing

with the oligos mSV40NLS (59-TCGACGGTCCAGGTG-

GAGCTGGACCAGGTAGAAAGAGGCCACCAAAGAAAAA-

GAGAAAGGTAGATTATGGAGCTTAAG-39; SalI protruding

end is underlined) and c-mSV40NLS (59-AATTCTTAAGC-

TCCATAATCTACCTTTCTCTTTTTCTTTGGTGGCCTC-

TTTCTACCTGGTCCAGCTCCACCTGGACCG-39; EcoRI

protruding end is underlined). The annealed product was in-

troduced into pCB-Ppwl2-mCherry, to produce pCB-Ppwl2-

mCherry-NLS. From 1 mg of total RNA of cAMP-treated M. oryzae

strain 70-15, single-stranded cDNA was synthesized by using

oligo(dT) primer and ReverTra Ace reverse transcriptase (Toyobo,

Osaka, Japan). A 0.4-kb PWL2 cDNA fragment was amplified from

the total cDNA as a template with the primers PWL2-N

(59-GAGAGGAGAATCTAGAAAAATGAAATGCAACAACAT-

CATCCTC-39; XbaI site is underlined) and PWL2-C (59-

GAGAGGAGAAGGATCCCATAATATTGCAGCCCTCTTC-

TC-39; BamHI site is underlined). The PCR product was digested

with XbaI and BamHI, and introduced into pCB-Ppwl2-mCherry-

NLS, generating pCB-Ppwl2-PWL2-mCherry-NLS (Figure 3A). A

0.2-kb MC69 cDNA fragment was amplified from the total cDNA

with the primers XMU2 (59-GCTCTAGAAAATAAAAATGA-

AGGCCGCT-39; XbaI site is underlined) and XML1 (59-C-

CGCTCGAGTTTGGCAGGTCCGCGAAGAGGGCCGC-39,

XhoI site is underlined). The PCR prodct was digested with

XbaI and XhoI, and introduced into pCB-Ppwl2-mCherry-NLS

and pCB-Ppwl2-mCherry-stop, to produce pCB-Ppwl2-MC69-

mCherry-NLS and pCB-Ppwl2-MC69-mCherry, respectively

(Figure 3B and C).

To make the MC69-HA gene fusion vector pCB1531-MC69-

HA, HA-tagged full cDNA of MC69 (MC69HA) was amplified

from the total cDNA with the primers XMU2 and BMHAL1 (59-

CGggatccTCAAGCATAATCTGGAACATCGTATGGATAACCAC-

CTTTGGCAGGTCCGCGAAGAGGGCCGC-39; BamHI site

and HA tag sequence are indicated in lower cases and italics,

respectively) which was designed with two glycine codons (under-

lined) as a spacer peptide between MC69 and HA tag. The PCR

product was digested with XbaI and BamHI, and exchanged

mCherry gene at the same sites of pCB1531-MC69p-mCherry,

generating pCB1531-MC69-HA (Figure S3). MC69-3xFLAG gene

fusion construct pUC57-MC69-3xFLAG was custum-synthesized

(GenScript, Piscataway, NJ). MC69-3xFLAG was amplified from

pUC57-MC69-3xFLAG with the primers SMU2 (59-GACTA-

GTGAAAATAAAAATGAAGGCCGCTTTCGTTCTCGC-39;

SpeI site is underlined) and BFL1 (59- CGGGATCCTCACC-

CATCATGATCCTTGTAATCG-39; BamHI site is underlined).

The PCR product was digested with SpeI and BamHI, and

exchanged mCherry gene at XbaI and BamH sites of pCB1531-

MC69p-mCherry, generating pCB1531-MC69-3xFLAG (Figure S3).

For construction of the MC69p::AVR-Pia epression vector pCB-

1531-MC69p-AVR-Pia, a 0.3-kb fragment containing AVR-Pia

gene was amplified from pCB1004-pex22 [20] with the primers

XP22U2 (59-GCTCTAGACAAAATGCATTTTTCGACAAT-

TTTC-39; XbaI site is underlined) and BP22L2 (59-CGGGA-

TCCTAGTAAGGCTCGGCAGCAAGCC-39; BamHI site is

underlined). The PCR product was digested with XbaI and BamHI,

and exchanged mCherry gene at the same sites of pCB1531-MC69p-

mCherry, generating pCB1531-MC69p-AVR-Pia (Figure S4).

CoMC69 was isolated from genome of C. orbiculare 104-T by

PCR using degenerate primers designed in amino acid sequences

of MC69 homologs in fungal pathogens including C. graminicola. To

construct the gene replacement vector pGDCOMC69, the 3.0-kb

fragment containing the 59 flanking region of CoMC69 was

amplified by PCR with the primers COMC5S (59-ATAAG-

AATGCGGCCGCCCAGTGCTTTGTCATGTTGC-39; NotI

site is underlined) and COMC5AS (59-CCCAAGCTTCG-

CTGGTTGCGAAGAATGCG-39; HindIII site is underlined).

The amplified fragment was digested with NotI and HindIII, and

introduced into pCB1636 [48], which contained the hph gene, to

produce plasmid pCB5MC69. The 3-kb fragment that contained

the 39 flanking region of CoMC69 was amplified by PCR with the

primers COMC3S (59-GAAGGGCCCCCGGTCACCACGCA-

TGTGTGATACG-39; ApaI site is underlined) and COMC3AS

(59-GGGGTACCACGTGTGCACTCTTAAGGAG-39; KpnI

site is underlined). The amplified fragment was digested with

ApaI and KpnI, and introduced into pCB5MC69 to produce

pGDCOMC69 (Figure S11A). To generate the reporter construct

pBATCoMC69pro-mCherry, the 1.4 kb 59 upstream region of

CoMC69 and mCherry were amplified using PCR with the two

primer sets, (i) CoMC69pro-NotI-f (59-ATAAGAATGCGG-

CCGCGTCTTTCGTCTTTTCGGTCT-39; NotI site is under-

lined) and CoMC69pro-BamHI-r(c) (59-CGGGATCCCGTG-

TCGATGTATTTGTTGTG-39; BamHI site is underlined), and

(ii) mCherry-BamHI-f (59-GCGGATCCATGGTGAGCAAG-

GGCGAGGAGGATAAC-39; BamHI site is underlined) and

mCherry-EcoRI-r(c) (59-CCGGAATTCTTACTTGTACAGC-

TCGTCCATGCC-39; EcoRI site is underlined), respectively.
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The amplified fragments were introduced into each corresponding

site of pBAT [49], resulting in pBAT-CoMC69pro-mCherry.

Pathogenicity assays
Barley leaf and rice leaf inoculation were performed as follows:

conidial suspension (16105 conidia ml21) containing Tween 20

(0.01% in final concentration) was sprayed onto susceptible barley

cotyledons (cv. Nigrate) and rice seedlings (cv. Shin No. 2 or cv.

Sasanishiki) of the fourth leaf stage. Inoculated plants were placed

in a dew chamber at 27uC for 24 h in the dark, and then

transferred to the growth chamber with a photoperiod of 16 h. A

rice leaf sheath inoculation test was performed according to the

method described previously [50]. To investigate the function of

appressorium-mediated penetration of the inner epidermal tis-

sue of rice leaf sheath, penetration hyphae were stained with

lactophenol-trypan blue and destained in saturated chloral hydrate

as described previously [51]. Invasive growth rating of the 50

appressorial penetration sites in rice leaf sheath cells were scored

32 h after inoculation. Invasive growth were classified into 4 levels:

Level 1, invasive hypha length is shorter than 10 mm with no

branch; Level 2, invasive hyphae length is 10–20 mm with 0–2

branches; Level 3, invasive hyphae length is longer than 20 mm

and/or with more than 2 branches within one cell; Level 4,

invasive hyphae are spread more than one cell (Figure 1D). To test

fungal pathogenicity of C. orbiculare, conidial suspensions of tested

C. orbiculare strains (approximately 56105 conidia/ml) were spotted

onto detached leaves of cucumber or N. benthamiana.

Confocal laser-scanning microscopy
Germinated conidia and appressoria were observed on glass

coverslips, and invaded hyphae were observed in epidermal cells of

rice leaf sheath. mCherry fluorescence was observed using an

Olympus FluoView FV1000-D confocal laser-scanning micro-

scope (Olympus, Tokyo, Japan) equipped with a Multi argon laser,

a HeNe G laser, a 406UPlanSApo (0.9 numerical aperture) and a

606UPlanFLN (0.9 numerical aperture) objective lens. To assess

fluorescent signal in the reporter strains of C. orbiculare, conidia of

the reporter strain were inoculated on the lower surfaces of

cucumber cotyledons. Detection of mCherry fluorescence was

performed using an Olympus FluoView FV500 confocal laser-

scanning microscope (Olympus) with a Nikon 606 PlanApo (1.4

numerical aperture) oil-immersion objective (Nikon, Tokyo,

Japan). Samples were mounted in water under cover slips and

excited with the He/Ne laser. We used diachronic mirror

DM488/543/633, SDM630 beam splitter, and emission filter

BA560-600.

Preparation of M. oryzae-infected rice leaf sheath extract
and Western blot analysis

Conidial suspension (16105 conidia ml21) was injected into rice

(cv. Shin No. 2) leaf sheath and placed in a dew chamber at 25uC
for 32 h in the dark. The infected leaf sheaths were ground in

liquid nitrogen, thawed in X ml of extraction buffer (250 mM Tris-

HCl pH 7.5, 2.5 mM EDTA, 0.1% ascorbic acid (w/v), 1 mM

PMSF, 0.01% PI cocktail (v/v) (SIGMA-ALDRICH), 0.1%

Triton X-100 (v/v)) for X mg sample, vortex for 10 min at 4uC,

and centrifuged at 15,0006 g for 20 min at 4uC in a micro-

centrifuge. The crude extracts (15 ml per lane) were separated on

a 10–20% precast e-PAGEL (ATTO, Tokyo, Japan) and the

proteins were transferred on to Immobilon Transfer Membranes

(Millipore, Billerica, MA). The blots were blocked in 2% ECL

Advance Blocking Agent (GE Healthcare, Buckinghamhire, UK)

in TTBS (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 0.1% Tween

20 (v/v)) for 1 h at room temperature with gentle agitation. For

immunodetection, blots were probed with anti-HA (3F10)-HRP

(Roche, Mannheim, Germany) or anti-FLAG M2-HRP (SIGMA-

ALDRICH) in a 1:10,000 dillution in TTBS for 2 h. After

washing the membrane for 10 min three times, the reactions were

detected using an ECL Advance Western blotting detection

reagents (GE Healthcare) and a Luminescent Image Analyzer

LAS-4000 (Fujifilm, Tokyo, Japan).

Preparation of culture filtrate and Western blot analysis
M. oryzae strains were cultured in 20 ml YG medium at 25uC at

120 rpm for 48 h. The culture was filtrated with Miracloth

(Merck, Darmstadt, Germany), concentrated and desalted by

ultrafiltration with Amicon Ultra-15 (10K) (Millipore). The culture

filtrates (20 mg of protein per lane) were separated on a 12.5%

SDS-PAGE gel and the proteins were transferred on to

Immobilon Transfer Membranes (Millipore). The blots were

blocked in 5% nonfat dry milk in TTBS for 1 h at room

temperature with gentle agitation. For immunodetection, blots

were probed with Living Colors DsRed Polyclonal Antibody

(Clontech) in a 1:1,000 dilution in TTBS for 2 h. After washing

the membrane with TTBS for 10 min three times, Anti-Rabbit IgG

HRP conjugate (Promega W401B) (Promega, Madison, WI) in a

1:10,000 dilution in TTBS was used as secondary antibody and

incubated for 1 h at room temperature with gentle agitation. After

washing the membrane for 10 min three times, the reactions were

detected using an ECL Western blotting detection reagents (GE

Healthcare) and a Luminescent Image Analyzer LAS-4000 (Fujifilm).

Accession numbers
Sequence data of MC69 and the homologs from this article can

be found in the GenBank/EMBL data libraries accession num-

ber MGG_02848.6 (Mo), AB669186 (Co), EFQ29542 (Gg),

EEY15898 (Va), EGY20943 (Vd), XP_965292 (Nc), EGO52621

(Nt), XP_003659994 (Mt), XP_00190740 (Pa), EFX05010 (Gc),

EGU75378 (Fo), XP_388669 (Gz), EHK44387 (Ta), EHK23962

(Tv), EFY93067 (Mac), EFY97094 (Man), and EGX95034 (Cm).

Supporting Information

Figure S1 Targeted gene disruption of MC69. (A) MC69 locus

and the disruption vector pGPSMC69-44. pGPSMC69-44

contains the GPS-HYG-CAM cassette (the hygromicin resistant

gene HYG and the chloramphenicol resistant gene CAM) flanked

by border sequences from MC69. (B) Genomic PCR analysis of

wild-type Ina72 (lane 1, 10 and 19), three independent mc69

mutants (lane 2,4, 11,13 and 20,22), two independent MC69

re-introduced strains (lane 5, 6, 14, 15, 23 and 24), wild-type 70-15

(lane 7, 16 and 25), two independent mc69 mutants (lane 8, 9, 17,

18, 26 and 27). The transformants were analyzed by PCR with

primers indicated in A (MC69F/MC69R, lane 1,9), with HYG-

specific primers (lane 10,18) or with bialaphos-resistant gene

specific primers (lane 19,27).

(TIF)

Figure S2 Colony growth and conidiation of the mc69 mutants.

(A,C) Colony color and arial hyphae production of mc69 mutants

were normal. Photos were taken 7 days after incubation of wild

type (Ina72), mc69 mutants (mc69-9, mc69-12 and mc69-87), wild

type (70-15) and mc69 mutants (mc69-119 and mc69-31) on oatmeal

agar. (B,D) Growth and conidiation of Ina72 (bar 1), mc69-9 (bar

2), mc69-12 (bar 3), mc69-87 (bar 4), 70-15 (bar 5), mc69-119 (bar 6)

and mc69-31 (bar 7). Mean values of colony diameter (cm) were

measured 7 days of growth on oatmeal agar. Mean values are

calculated from 3 replicates. Conidiogenesis was assessed in 3

Secreted Pathogenicity Protein of Fungal Pathogens

PLoS Pathogens | www.plospathogens.org 14 May 2012 | Volume 8 | Issue 5 | e1002711



replicate experiments. Means are expressed as numbers of conidia

6104 of conidial suspension/cm2 of culture.

(TIF)

Figure S3 MC69 protein is produced in the invasive hyphae. (A,C)

In planta growth of MC69::HA- and MC69::3xFLAG-expressing

transformants (mc69+MC69::HA and mc69+MC69::3xFLAG) at the

post-invasion stage. Invasive mycelia inside the rice (cv. Shin No. 2)

leaf sheath cells were photographed 48 h after incubation. Scale

bar = 20 mm. (B,D) Western blots probed with an anti-HA and an

anti-FLAG antibodies. Protein extracts of rice leaf sheaths 24 h and

48 h after inoculation with Ina72 wild type (WT), mc69+MC69::HA

and mc69+MC69::3xFLAG were loaded.

(TIF)

Figure S4 AVR-Pia avirulence function is retained under the

MC69 promoter. (A) The isolate Ina86-137 does not have AVR-

Pia function and thus can cause disease on Sasanishiki harboring

the R gene Pia. Ina86-137 strains transformed with AVR-

Piap::AVR-Pia (+AVR-Piap::AVR-Pia) [20] or MC69p::AVR-Pia

(+MC69p::AVR-Pia-1, -2) became imcompatible with Sasanishiki.

Both Ina86-137 wild type, Ina86-137 containing AVR-Piap::AVR-

Pia, or MC69p::AVR-Pia were able to cause disease on a rice

cultivar Shin No. 2 lacking Pia, suggesting that the effect of

transformation with AVR-Piap::AVR-Pia and MC69p::AVR-Pia is Pia

dependent. (B) Confirmation of active AVR-Pia transgene by RT-

PCR in M. oryzae transformants during infection. RT-PCR

analysis of Ina86-137 WT (lane 1), +AVR-Piap::AVR-Pia (lane 2),

+MC69p::AVR-Pia-1 and -2 (lane 3 and 4) with AVR-Pia- or Mg-

Actin-specific primers [20].

(TIF)

Figure S5 MC69::mCherry confers BIC localization with

weaker fluorescence than that of PWL2::mCherry. Merged DIC

and mCherry images of rice leaf sheath cells infected by M. oryzae

Sasa2 strain harboring (A) PWL2p::PWL2::mCherry::NLS, (B)

PWL2p::MC69::mCherry::NLS, and (C) PWL2p::MC69::mCherry

27 h after inoculation as observed by confocal laser scanning

microscopy. Arrows indicate BICs and triangles indicate rice

nuclei. Pinhole settings are 80 mm for left panels and 240 mm for

right panels. Scale bar = 20 mm.

(TIF)

Figure S6 Predicted amino acid sequence alignment of MC69

with homologs from other filamentous fungi. Amino acid

sequences of MC69 (Mo), MC69 homologs of Colletotrichum

orbiculare (Co), Glomerella graminicola (Gg), Verticillium albo-atrum

(Va), V. dahliae (Vd), Neurospora crassa (Nc), N. tetrasperma (Nt),

Myceliophthora thermophila (Mt), Podospora anserina (Pa), Grosmannia

clavigera (Gc), Fusarium oxysporum (Fo), Gibberella zeae (Gz), Trichoderma

atroviride (Ta), T. virens (Tv), Metarhizium acridum (Mac), M. anisopliae

(Man) and Cordyceps militaris (Cm) were aligned using the Clustal W

program [52]. Identical amino acids are indicated as white letters

on a black background. Similar residues are shown on gray

backgrounds. Gaps introduced for alignment are indicated by

dashes. The predicted signal peptide and two conserved cysteine

residues (C36 and C46) are indicated on top.

(TIF)

Figure S7 Phylogenetic tree of M. oryzae MC69 protein sequence

and 16 homologs from other fungi. Phylogenetic analyses were

performed with M. oryzae MC69 (Mo), with 16 homologs are

shown in Figure S6 legend.

(TIF)

Figure S8 Invasive growth rating of rice leaf sheath cells 32 h after

inoculating with Ina72 WT, mc69, mc69+MC69, mc69+MC69(C36A),

mc69+MC69(C46A) and mc69+MC69(C36A,C46A). For details of the

invasive growth levels and rating see Materials and Methods.

(TIF)

Figure S9 Invasive growth rating of rice leaf sheath cells 32 h

after inoculating with 70-15 WT and mc69-31. For details of the

invasive growth levels and rating see Materials and Methods.

(TIF)

Figure S10 Intron/exon organization in M. oryzae MC69 gene

and 16 orthologous genes from other fungi. Abbreviations of

fungus names are shown in Figure S6 legend.

(TIF)

Figure S11 Gene disruption of CoMC69 in C. orbiculare. (A)

CoMC69 locus and the gene disruption vector pGDCOMC69. By

homologous recombination through double crossing over, the

CoMC69 gene was replaced by a hygromycin resistance gene

cassette (HYG). (B) Genomic PCR analysis of the Comc69 mutants

of C. orbiculare. Genomic DNAs were isolated from the wild-type

strain 104-T and the comc69 strains (DMC1 and DMC2). The

0.3 kb product containing the entire CoMC69 gene was amplified

from the genome DNA of 104-T with the two primers, indicated

by arrows, COMC69F (59-CGAAAGCAAGGCAGCTATTC-39)

and COMC69R (59-CTCAGAGGACTACAGACATG-39). In

contrast, the 1.6 kb product was amplified from the genome

DNA of both comc69 strains, which is consistent with gene

replacement shown in (A). Lane 1, l Hind III marker; lane 2, 104-

T; lane 3, DMC1; lane 4, DMC2. (C) Colony phenotype of the C.

orbiculare mc69 mutants. The wild-type strain 104-T and Comc69

mutants (DMC1 and DMC2) were grown on PDA for 12 days.

(TIF)

Table S1 SuperSAGE result of cAMP-treated Magnaporthe oryzae

strain 70-15.

(XLS)
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