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Abstract
Liver failure due to chronic hepatitis C virus infection is a major cause for liver transplantation
worldwide. Recurrent infection of the graft is universal in HCV patients following transplant and
results in rapid progression to severe fibrosis and end-stage liver disease in one-third of all
patients. No single clinical variable, or combination thereof, has so far proven accurate in
identifying patients at risk of hepatic decompensation in the transplant setting. A combination of
longitudinal, dimensionality reduction, and categorical analysis of the transcriptome from 111
liver biopsy specimens taken from 57 HCV-infected patients over time identified a molecular
signature of gene expression of patients at risk of developing severe fibrosis. Significantly,
alterations in gene expression occur prior to histologic evidence of liver disease progression,
suggesting that events which occur during the acute phase of infection influence patient outcome.
Additionally, a common precursor state for different severe clinical outcomes was identified.
Hence, based on this patient cohort, incidence of severe liver disease is a process initiated early
during HCV infection of the donor organ. The probable cellular network at the basis of the initial
transition to severe liver disease was identified and characterized.
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Liver failure due to chronic hepatitis C virus infection is the leading cause for orthotopic
liver transplantation (OLT) in North America. Recurrent infection of the graft is universal in
HCV patients following transplant, and in a subset of patients, the time of progression to
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severe fibrosis, eventual cirrhosis, and end-stage liver disease is greatly accelerated (1).
Currently the only available recourse to patients with decompensated cirrhosis is
retransplantation, which is both difficult for the patient and further depletes the limited
supply of available donor organs. HCV patients undergoing retransplantation due to
decompensated cirrhosis also have a lower graft survival rate than patients undergoing
retransplantation for other indications (2).

The present standard for monitoring HCV recurrence and fibrosis progression relies on
histopathological examination of core needle liver biopsies. This procedure is associated
with significant morbidity, and frequently results in misdiagnoses of fibrosis progression
due to the small size of the biopsy relative to the liver and the subjective nature of
interpretation. Attempts to develop less invasive means of diagnosing hepatic fibrosis have
not proved reliably accurate thus far, although such a method is highly desirable.

Previous studies demonstrated that distinct patterns of host gene expression are associated
with different clinical outcomes in HCV transplant patients (3–5). However, these studies
examined differential gene expression using standard analysis methodology. We applied
mathematical modeling techniques to assess transcriptional dynamics contributing to severe
liver disease temporally during HCV recurrence. We utilized a combination of longitudinal
topographic profiling and singular value decomposition-initiated multidimensional scaling
(SVD-MDS) to identify genes involved in progression to advanced hepatic fibrosis.

Results
Clinical data and sample grouping

We identified 57 chronic HCV patients undergoing orthotopic liver transplantation (OLT) at
the University of Washington Medical Center, and obtained core needle biopsies from
various time points post-OLT (Fig. 1). We grouped patients by post-OLT clinical outcome.
Of 57 patients, 14 (25%) developed an adverse clinical outcome post-OLT (Table 1). After
classifying our control, uninfected normal pool (UNP) of liver tissue as group 1 (G1), we
designated 43 HCV patients with no adverse clinical outcome as group 2 (G2). Three
adverse clinical outcomes were defined for patient grouping. We first determined the
patients’ most recent Batts-Ludwig stage of hepatic fibrosis by having one pathologist stage
the most recent biopsy prior to June 1, 2009, when we stopped collecting clinical
information on the cohort for this study. We identified four patients with most recent
biopsies at stage 3–4 and designated them as group 3 (G3). We also determined whether
patients presented clinical symptoms of cirrhosis (portal hypertension, encephalopathy,
ascites, and bleeding esophageal varices) and identified three patients, designated group 4
(G4). Finally, we identified seven HCV patients who died or underwent retransplantation
due to graft failure, designated group 5 (G5). All patients in G4 and G5 also developed stage
3–4 fibrosis prior to clinical cirrhosis or death/retransplantation. We confirmed that no
patients demonstrated evidence of stage 3–4 fibrosis or symptoms of cirrhosis at the time the
samples were collected. Therefore, gene expression changes determined by our analysis to
be significantly associated with severe liver injury were identified from samples taken
before clinical or histological evidence of disease progression. We also divided the 111 liver
biopsy specimens based on time post-OLT sampling (Figure 1A).

Decomposition of transcriptome dynamics into functional stages
The relative heterogeneity of both timing of post-transplant biopsies from patients of this
cohort and pathological phenotypes displayed by the different patients in the cohort (Figure
1A) required particular attention during data analysis. Clinical annotation defined disease
categories (G2–G5), and samples were further subdivided into time categories (early,
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intermediate, late). These intervals were based on HCV reinfection kinetics and spreading in
the donor organ and homogeneity of sample distribution. Non-progressors (G2) also
encompassed samples beyond the two-year follow up period of the severe liver disease
groups (Figure 1B).

We devised three analysis protocols for the transcriptomic data using different
methodologies. First, we compared combined patient groups G3–G5 versus the entire G2
dataset for the early, intermediate, and late time categories separately and combined using
the recently developed SVD-MDS method (6) to assess the prognostic value of the gene
signatures generated with the two strategies and decompose these signatures into individual
gene contributions. We also performed this comparison using time-matched G2 samples.
Second, we performed longitudinal topographic profiling using a previously employed (7)
self-organizing maps-based classifier to investigate transcriptional dynamics within each of
the three severe disease patient groups G3–G5 and to also establish averaged gene
expression profiles for the combined G3–G5 patient groups (Figure 1B). Finally, we used
modified k-means clustering to identify a common precursor molecular signature
distinguishing progression to severe fibrosis, and this transition occurred at early to
intermediate timepoints post-OLT.

Early transcriptome dynamics determine severe liver disease following transplantation in
HCV infected patients

Single linkage hierarchical clustering based on Euclidean distances averaged over the entire
microarray data set did not reveal an apparent structure of the entire set of samples (Figure
2A). Despite the variety of clinical phenotypes from asymptomatic to death, the overall
profiles were not indicative of outcome. Time-specific profiling of the combined G345
patient groups using the early time category (G345e) as compared to the entire G2 dataset,
however, identified almost 400 statistically significant differentially expressed genes (DEG;
p<0.01, Figure 2C, Table S1). The vast majority of these genes were down-regulated
compared to G2 expression.

Using Ingenuity Pathway Analysis (IPA), we performed functional analysis of these early
DEG associated with progression to severe fibrosis. We found that 130 of these genes were
associated with inflammatory disorders and infectious disease, including numerous human
leukocyte antigen (HLA) genes (HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-
DRA, HLA-DRB5, HLA-E, and HLA-G). Repression of antigen presentation is expected in
a post-OLT cohort, as this is the goal of the immunosuppression regimens intended to
prevent graft rejection. However, these were more repressed in G345 patients compared to
G2 patients, as were other key immune and inflammatory genes such as immunoglobulins,
Fc receptors, complement components, key signal transducers and transcriptional regulators,
interferon stimulated genes (ISGs), protein modifiers such as ubiquitin, small ubiquitin-like
modifier 2 (SUMO2), and interferon stimulated gene 15 (ISG15), proteasomal subunits,
chemokines, cathepsins, and serine proteases.

Additionally, we observed 126 molecules functionally associated with cancer were strongly
repressed in G345 patient samples compared to G2, including mediators of cell cycle arrest
and DNA damage checkpoint control and apoptosis, indicating repressed cell cycle control
and inhibition of apoptosis. This is consistent with studies indicating that cell cycle arrest
occurs to facilitate viral replication in infected hepatocytes, and that apoptotic processes are
disrupted by HCV infection (8, 9). Finally, we observed 70 molecules associated with
metabolic functions, including lipid, vitamin and mineral, and cholesterol metabolism.
Genes involved in multiple lipid biosynthetic processes, as well as those functioning in
synthesis and transport of membrane phospholipids and cholesterol and fatty acid
biosynthesis were also repressed in G345e biopsies. Together, these data suggest that during
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the first three months of HCV recurrence post-OLT, patients who eventually develop
progressive HCV-induced liver disease experience more profound hepatic
immunosuppression than G2 patients, while undergoing dramatic reprogramming of mitotic
and metabolic functions characterized by repression of checkpoint regulators, cell cycle
progression, and lipid biosynthesis and transport.

This initial repression was followed by general activation of gene expression during the
intermediate stages post-transplantation as revealed by the G345m versus G2 comparison
(Figure 2D), including many DEG related to cell cycle, cell death, and cancer. This contrasts
with the G345l versus G2 comparison which revealed an increasingly restricted pattern of
gene regulation (<200 DEG, Figure 2E), again primarily composed of reduced expression.
As these different effects partially cancel themselves out, in the combined G345eml vs. G2
profile a limited set of DEG equally distributed between induced and repressed phenotypes
was observed (Figure 2F). These further revealed distinct phases of transcriptome dynamics
in severe liver disease patients compared to patients without evidence of progressive disease.
Early down-regulation of a many genes related to inflammation, cell cycle regulation, and
lipid metabolism was followed by an intermediate activation of another subset, and finally
down-modulation of the overall transcriptional response but increased expression of
fibrogenic genes such as type 1 collagens (COL1A1, COL1A2) and markers of hepatic
stellate cell (HSC) activation such as secreted phosphoprotein 1/osteopontin (SPP1) and
galectin 3 (LGALS3). Activated HSCs are the primary cellular mediators of collagen and
extracellular matrix (ECM) deposition in HCV-induced fibrogenesis (10, 11). The temporal
decrease in the number of DEG indicates increasing heterogeneity of gene expression
patterns, leading to fewer statistically significant changes in gene expression. Heterogeneity
in the molecular profiles is consistent with the increased heterogeneity of the phenotypes in
the individual patients.

In order to assess the prognostic value of the different DEG identified here, we employed
SVD-MDS, a method of non-linear dimensionality reduction for visualizing large datasets
with many features such as microarray data. SVD-MDS reduces data to a matrix of
Euclidean distances between features and generates a lower-dimensional representation,
while maximally preserving inter-feature distances. Generally, non-linear dimensionality
reduction methods such as SVD-MDS depict an additional 3–4 dimensions in a
visualization. Therefore, while the hierarchical clustering shown in Fig. 2A only shows the
first dimension of the biological condition space, representations 2B and 2G–2J visually
represent approximately the first 5 dimensions, more faithfully addressing the structure of
the data. This method allows data comparison between patients with different outcomes, as
well as defining amongst statistically significant DEG those contributing most to
distinguishing G345 progressors from G2 non-progressors. Generally, the more distant the
groups and the closer the patient samples are within each group, the better the prognostic
value of any given signature.

Hierarchical clustering of the entire set of genes did not clearly separate the samples into
patient groups (Figures 2A, 2B). However, the DEG G345e vs. G2 (Figure 2G), G345m vs.
G2 (Figure 2H), and G345l vs. G2 (Figure 2I) improved separation of the liver transplant
patients from the UNP G1 control group and concomitantly provide fewer distinctions
between G2 and G345. This behavior is concordant with the time-specific analysis discussed
above and echoed by the G345eml vs. G2 DEG (Figure 2J). Therefore, DEG associated with
severe disease were harder to detect over time, indicating that early events play a decisive
role in the development of severe liver disease, and lead to a variety of observable
phenotypes at later stages. Importantly, the SVD-MDS analysis also revealed that both G2
and G345 patient groups increasingly differentiated from the G1 UNP controls, which
represent pooled normal liver gene expression profiles. This indicates a slow evolution to
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more heterogeneous gene expression regardless of clinical outcome. While the nature of this
evolution is somewhat unclear, this poses important questions regarding the stochasticity of
liver disease progression kinetics and suggests that decisive early transcriptional repression
of select inflammatory mediators, cell cycle regulators, and genes involved in both lipid
biogenesis and catabolism predict disease progression.

We also directly compared time-matched G2 and G345 samples. Consistent with the first
analysis, clustering analysis showed that gene expression alone was insufficient to segregate
patients according to clinical outcome (Figure S1). These DEG were similarly repressed and
functionally consistent with significant DEG identified in the first analysis. These results
thus confirm that early events post-OLT are detrimental to liver physiology. Note that we
refrained from providing direct G2 versus G3 or G4 or G5 comparisons, as the amount of
available biopsies in this cohort is too small to provide for robust insights. Such direct
comparisons will become feasible in the analysis of a larger independent cohort, or in meta-
analysis across different cohorts.

Gene expression profiles associated with liver disease progression over time
To better understand how early events lead to severe liver disease and compare differences
in gene expression patterns over time within each individual disease group, we performed a
longitudinal kinetic analysis. We used a recently utilized classifier (7) derived from the
analysis of many different longitudinal publicly available and in-house datasets using a
Kohonen Maps approach, which fits gene expression to topographic maps representing
distinct regulatory patterns. Our classifier comprised relevant topographic groups: g1– 6 for
initial positive regulation, a neutral g0 group for genes expressed but unchanged, and the
mirror g-1 to g-6 groups for negative regulation (Figure 3A). The classifier tests for
statistical significance (fold change-based Z test) of association with individual topographic
groups by testing the statistical significance of the logarithmic fold change difference in
expression of every individual gene at every time point against its estimated baseline, with
absolute expression change rescaled to unity. Thus, gene expression was analyzed for its
characteristic, statistically significant “shape” over time, rather than magnitude of change.
We further sub-divided the time categories to generate a fourth category (Figure 1B). As we
were mainly interested in identifying genes involved in severe liver disease development, we
focused on genes which permanently change expression over time (Figure 3B; Table S2).

Using IPA, we categorized 48 genes related to inflammatory responses and immune cell
trafficking, particularly phagocyte and lymphocyte recruitment and chemotaxis, including
many C-X-C and C-C chemokines and chemokine receptors. Also we observed molecules
bridging innate and adaptive immune functions, including signal transduction and activation
of immune and inflammatory transcriptional responses, proinflammatory cytokines, Fc
receptors, complement components, ISGs, HLA alleles, and lymphocyte activation. We also
identified increases in genes associated with HSC activation and collagen deposition,
including TIMP metalloproteinase inhibitor (TIMP1), LGALS3, and multiple collagen
transcripts. Finally, 59 genes associated with cancer also gradually increased, including
many associated with metastasis, cell proliferation, and cell death, indicating that
dysregulation of normal cell division and apoptotic mechanisms underlie hepatic
inflammation and collagen deposition.

We also evaluated the functional significance of DEG downregulated over time following
OLT. We identified 12 genes associated with lipid, drug, vitamin and mineral, and
carbohydrate metabolism. These are involved in lipid biosynthesis, fatty acid oxidation, and
amino acid and glucose metabolism. G345 patients therefore demonstrated reduced hepatic
metabolic function, consistent with reductions in metabolic activity previously observed at
late timepoints in HCV-infected hepatic cells in vitro (12). Additionally, we identified 11
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genes associated with cancer, specifically those involved in cell cycle control such as
retinoblastoma-like 2 (RBL2) and cyclin-dependent kinase inhibitor 3 (CDKN3), and
regulators of cellular differentiation. As cancer-related genes associated with cellular
proliferation steadily increased, those associated with cell cycle checkpoint control and cell
type specification were downregulated. This indicates that patients with progressive liver
disease experience a loss of differentiation and checkpoint cell cycle arrest, consistent with
the concordant gradual increase in proliferative capacity. This also suggests a mechanism by
which chronic HCV infection contributes to tumorigenesis of hepatocellular carcinoma

Gene signature characterizing a precursor state for severe liver disease
The SVD-MDS method used in the analysis presented in figures 2G–J and figure S1G–J
allows the computation of two additional parameters aside from the Kruskal stress
(information-loss during dimensionality reduction): external isolation (the arithmetic
average inter-group distance) and internal cohesiveness (the intra-group distance). Both
parameters determined for the analyses peak 3–6 months post-OLT (Figure 4A), indicating
that the signatures derived from these time-categories generate the relative maximal
resolution. Hence, the early stages of HCV reinfection best characterize overall clinical
outcome. We then used the time-specific analysis to define a gene expression pattern-based
distance measure between any of the individual groups and with combined G2345 and
G345, as well as G45 longitudinal analysis. To investigate severe liver disease progression
according to time and patient outcome, these measures were then subjected to k-means
clustering (13) using inter-group distances as additional constraints. This analysis indicates
the existence of a common precursor state G345 for all progressor groups (Figure 4B, red),
from which all three adverse outcomes split individually. This precursor state is comprised
of 35 DEG (Table 2), which distinguish the transformation to a progressive disease outcome
long before histological or clinical evidence of severe disease.

In the absence of time-resolved samples from healthy, non-HCV patients, we were not able
to determine whether a common G2345 (Figure 4B, black) state exists or how this
hypothetical intermediate state would relate to G2 and G345. More importantly, the
predicted common G345 precursor state confirmed our observation that eventual severe liver
disease is programmed early post-OLT, and in combination with the time-specific analyses
described above, identified DEG distinguishing progressors and non-progressors within 6
months of transplantation.

Using IPA, we generated a network of directly interacting molecules based on the network
analysis of the transitional signature and the G345e time-specific gene sets (Figure 4C,
Figure S2). We confirmed that repression of genes involved in cell cycle regulation and
stress responses (cyclin D1, CCND1, and X-box binding protein, XBP1), innate immunity
(signal transducer and activator of transcription 1, STAT1), and antigen presentation (HLA-
A, HLA-G, and HLA-E) characterize transition to a progressive phenotype. Additionally,
collagen upregulation was detected within several months of transplantation, months or
years before fibrosis is histologically detectable. Coupled with our finding that the
statistically significant upregulation of collagen expression correlates with disease
progression over time, this indicates that collagen transcription is both critical to the
mechanism of fibrogenesis and potentially useful as a predictive marker to identify patients
at risk of HCV-induced liver disease prior to extensive collagen deposition and associated
liver damage.

Discussion
Investigating the influence of transcriptional profiles on clinical outcome in patients
following transplantation could lead to more refined prognostic models. This study
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represents the first in which SVD-MDS analysis has been used to identify contributions of
significant DEG associated with HCV-induced liver disease progression. The SVD-MDS
method reduced dimensionality by removing dimensions with little information (high
biological noise) and emphasizing the main contributing dimensions. This is a significant
advantage over clustering techniques, which here failed to provide meaningful biological
insight. In this context, SVD-MDS demonstrates that pertinent information contained in the
entire set of measured transcript abundances is enriched during the statistical analysis. The
unique molecular profiles that distinguish patients who develop severe liver disease provide
insight into the biological mechanism of disease progression, both prior to the advent of
disease and over time. Furthermore, they provide a basis for larger validation studies or
meta-analysis across additional different cohorts of HCV patients in future efforts to
establish definite molecular correlates.

Our transitional signature suggests that the key regulators of a precursor state leading to
progression play the most critical role at early to intermediate time points post-OLT.
Patients who eventually develop the most severe liver disease may be most clearly
distinguished by DEG within three months post-OLT compared to patients who do not
progress. Specifically we observed a broad repression of genes related to antigen
presentation, immune responses, and cell cycle regulation in patients who progress. This
suggests that long-term clinical outcome is determined by early reprogramming of the donor
liver during recurrence, and specifically by blunting responses that prevent unchecked
inflammation and cell division. These processes are directly connected to hallmarks of
HCV-induced hepatic disease such as chronic inflammatory hepatitis, cirrhosis, and
hepatocellular carcinoma.

While downregulation of immune transcripts is expected in patients taking
immunosuppressant drugs to prevent allograft rejection, in patients who developed severe
disease we observed profound repression of genes related to antiviral responses. This
distinguishes this signature with regard to long-term outcome compared to the clinical
situation early post-OLT. Acute cellular rejection (ACR) is difficult to distinguish from
HCV recurrence based on analysis of patient liver biopsies, due to common histological
features. Previous studies comparing HCV patients with and without ACR demonstrate that
many of the repressed genes are significantly upregulated during ACR in HCV patients (3,
14). Additionally, repression of innate and inflammatory genes was characteristic of HCV
recurrence rather than ACR in HCV transplant patients (15). This indicates that while short-
term clinical factors such as ACR may confound long-term efforts to develop molecular
signatures of liver disease pathogenesis, repression of these innate immune genes is more
widespread and of greater magnitude.

Immune repression early in infection may contribute to increased hepatocyte infection
during HCV recurrence, and thus create a more favorable environment for progression to
severe disease. Although antigen presentation has been associated with HCV pathogenesis
(16–18), these pathways are normally suppressed by allograft rejection drugs, causing
impaired T cell responses in HCV transplant patients. However, it is difficult to determine
the effect of specific immunosuppressive regimens as patients are routinely treated with
different drugs and dosing regimens. Generally, the immunosuppressive regimens used are
less likely to repress innate immune responses that could attenuate the severity of HCV
recurrence. Innate immune antagonism by HCV infection may result in the virus eliciting a
transcriptional program that eventually results in fibrosis and disease progression, which is
partially reflected by the increase in inflammatory genes over time caused by infiltrating
leukocytes.
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HCV facilitates its replication by antagonizing induction of antiviral interferons, ISGs, and
antiviral cytokines through the action of the viral NS3/4 protease and NS5A non-structural
protein (19–22). Clinicians have not routinely treated HCV patients with post-OLT ribavirin
and PEG-interferon, primarily because the high expense and harsh side effects of this
treatment regimen do not justify its use in patients recovering from organ transplantation.
However, a recent study demonstrated that post-OLT treatment resulted in stable or
improved fibrosis scores, even in some patients who did not demonstrate sustained virologic
response (SVR) (23). Our data indicating that repressed antiviral gene expression early in
infection determines transition to severe disease and suggests that patients may benefit from
early therapeutic intervention during HCV recurrence to boost innate immune genes not
impacted by immunosuppressant drugs during the first 3 months post-OLT.

Early repression of cell division mediators in patients who progress also indicates that these
transcriptional profiles are altered. These genes are largely involved in controlling cell cycle
progression and transcriptional activation of related pathways, and their repression suggests
induction of cell cycle arrest. In vitro, HCV infection induces cell cycle arrest early in
infection to facilitate viral replication (8, 24, 25). The repression of genes promoting cell
cycle progression may represent a greater number of infected hepatocytes, suggesting that
more severe cases of recurrence facilitate a hepatic environment which augments further cell
cycle dysregulation. As our kinetic analysis indicates, cell cycle regulators decrease over
time in patients who progress, while genes promoting cell division, such as growth factors,
continue to increase. One of these genes, CDKN3, regulates specific cell cycle networks
related to HCV-induced cirrhosis and hepatocellular carcinoma (26), supporting the notion
that early cell cycle arrest occurring in infected hepatocytes can result in the loss of key
regulatory functions over time and promote eventual tumorigenesis. Additional repression of
genes such as BRCA1, which are critical mediators of DNA damage repair, may result in
genetic lesions that also contribute to cell death and eventual oncogenesis, as is the case for
the BRCA1-interacting gene BRE, which promotes HCC growth (27). Increasingly altered
cell cycle regulation contributes to the altered mitotic state created by initial repression of
cell cycle regulators early in infection, and ultimately leads to cell death, aberrant
proliferation, and potentially cancer.

Our analysis demonstrates the dynamic transcriptional response elicited by HCV in the post-
transplant setting. Early repression of innate immunity and cell cycle progression may
establish a state in the donor organ facilitating viral replication and establishment of more
widespread chronic infection. Also contributing to this is the increasing presence of
collagens and other fibrogenic transcripts. After three months post-OLT, this hepatic
reprogramming mediates transition to progressive disease characterized by gradual increases
in DEG associated with inflammation, HSC activation, collagen deposition, cell
proliferation, and cell death, and decreases in genes related to cell cycle control. Our study
identifies a signature early during recurrence consistent with early cellular responses to
HCV infection distinguishing progressors in the post-transplant setting. This yields insight
into the earliest host responses to HCV recurrence and raises the exciting possibility of
identifying and treating patients based on transcriptional profiling long before disease
progression or significant damage to the donor organ.

Experimental Procedures
Additional detail regarding methods can be found in supplementary material.

Human Liver Tissue Samples. Core needle liver biopsies were obtained from liver transplant
patients at the University of Washington Medical Center (UWMC). All patients provided
informed consent according to protocols approved by the Human Subject Review
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Committee at the University of Washington. No donor organs were obtained from executed
prisoners or other institutionalized persons.

Data processing and normalization for SVD-MDS analysis. Microarray raw data were
extracted using the Bioconductor limma package (28), and median normalized. For inter-
assay comparisons and longitudinal analysis the NeONORM method was used for
normalization (29).

Identification of statistically significantly differentially expressed genes. Differentially
expressed genes have been identified using a fold-change based z-test statistic (with a fold-
change parameter of 1.2; p<0.01).

SVD-MDS dimensionality reduction and derived representations. SVD-MDS dimensionality
reduction and subsequent 2D representations have been obtained using the SVD-MDS
method (6). Kruskal Stress represents information loss due to dimensionality reduction/
representation as a fraction of total information. The geometric objects (transcriptomic data
for individual genes in different samples at different times) are non-linearly deformed
(MDS), rotated into the principal non-linear dimensions (SVD), and then projected onto the
plane. Therefore, the 2D representation captures features of the geometric objects which
would otherwise only be visible in a space of higher dimension. As the non-linearity is not
uniform, this space of higher dimension is not exactly defined but typically corresponds to a
space of 2–4 dimensions higher than that of the visual representation. SVD-MDS performs
better than hierarchical clustering in this setting because it accounts for several of the
principal dimensions of the data.

Longitudinal time-series analysis. Longitudinal analysis was achieved using the same
methodology as employed in (7). Briefly, a Kohonen Maps-based classifier tests association
of any given gene with 13 topographic profiles. The profiles correspond to increasing
regulatory complexity and subsequent profiles are modeled using increasing numbers of
events.

Data accessibility. Data were warehoused in a Labkey system (Labkey, Inc., Seattle, WA).
Primary data are available in accordance with proposed Minimum Information About a
Microarray Experiment (MIAME) standards (http://viromics.washington.edu). Also, data are
available from the MACE database (http://mace.ihes.fr) using accession number:
2491581318.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors thank James Perkins and Renuka Bhattacharya for clinical support.

Financial support: This work was funded by the National Institute on Drug Abuse grant 1P30DA01562501.

Abbreviations

ACR acute cellular rejection

BRCA1 breast cancer 1, early onset

BRE brain and reproductive organ-expressed
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CCND1 cyclin D1

CDKN3 cyclin-dependent kinase inhibitor 3

COL collagen

DEG differentially expressed genes

ECM extracellular matrix

HCC hepatocellular carcinoma

HCV hepatitis C virus

HLA human leukocyte antigen

HSC hepatic stellate cell

IPA Ingenuity Pathways Analysis

ISG interferon-stimulated gene

ISG15 interferon stimulated gene 15

LGALS3 galectin 3

MELD model for end-stage liver disease

MDS multidimensional scaling

OLT orthotopic liver transplant

RBL2 retinoblastoma-like 2

SPP1 secreted phosphoprotein 1 (osteopontin)

STAT1 signal transducer and activator of transcription 1

SUMO2 small ubiquitin-like modifier 2

SVD singular value decomposition

SVR sustained virologic response

TIMP1 TIMP metalloproteinase inhibitor 1

UNP universal normal pool

XBP1 X-box binding protein 1
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Figure 1. Schematic representation of the transcriptome analysis strategy
(A). Time-line illustrating sample distribution in the different groups (G2: HCV-infected
patient biopsies with no adverse clinical outcome; G3: HCV-infected patient biopsies with
advanced fibrosis; G4: HCV-infected patient biopsies with advanced fibrosis and clinical
cirrhosis; G5: HCV-infected patient biopsies with advanced fibrosis, clinical cirrhosis, and
death or retransplant). (B). Grouping of samples into time categories for the time-specific
and the longitudinal analysis.
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Figure 2. Categorical time-specific profiling of genes differentially expressed when comparing
severe forms of liver disease with all asymptomatic patient biopsies
(A). Hierarchical clustering of the overall dataset (127 samples) computed over the entire set
of genes. (B). SVD-MDS representation of the overall dataset computed over the entire set
of genes. Inlet shows the centers of gravity (average weighted-averages) for the different
groups. Coloring: see legend in (A). The E-value is the remaining Kruskal stress after
dimensionality reduction and is directly proportional to the amount of lost information. (C).
Visual representation of logarithmic fold change of the statistically significantly
differentially expressed genes when comparing "early" post-transplant samples of the severe
liver disease patients (G3–G5) to the entire set of recordings of the asymptomatic patients
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(G2). (D). Idem as (C) for "intermediate" post-transplant samples of the severe liver disease
patients (G3–G5). (E). Idem as (C) for "late" post-transplant samples. (F). Idem as (C) for
the combined "early", "intermediate", and "late" post-transplant samples. (G). Idem as (C)
for the G345e vs. G2 statistically significantly differentially expressed genes (DEG). (H).
Idem as (B) for the G345m vs. G2 DEG (without sample G5-M012-P038). (I). Idem as (B)
for the G345l vs. G2 DEG. (J). Idem as (B) for the G345eml vs. G2 DEG (without sample
G5-M012-P038). The distances in (B) and (J–G) signify the average correspondence value
of any two data points. They are by convention scaled to unity as absolute normalization
between datasets is not possible. Furthermore, the center of gravity of the geometric object
(all data points together) is placed at the origin. This the same for the main and the inlet
plots, which are intended to help the reader faster identify where different groups are located
in the more detailed main plots.
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Figure 3. Longitudinal analysis of the transcriptome dynamics over time in the different patient
groups
(A). Heatmaps in form of the topographic profiles of the longitudinal analysis of combined
patient groups G3–G5. A schematic representation of the topographic profiles is given to the
left. Time categories as defined in Figure 1. Red coloring indicates upregulation, blue,
downregulation. Time-line is in months (M) post-transplantation. (B). Gene-level kinetics
for genes according to the topographic profiles g+1 and g-1 for the combined G3–G5 patient
groups. Note that all statistically significant changes from the base-line estimate were scaled
to unity and splines were estimated for the graphical representation
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Figure 4. The cellular network of HCV-induced progression to severe liver disease
(A) The two parameters characterizing the predictive performance of the different gene
expression signatures plotted against time. The External Isolation (blue) parameter is
derived from the analyses presented in Figure 2, the Internal Cohesiveness (red) is computed
from the analyses in Figure 3. Both parameters are expressed as fractions of their values
over the entire transcrioptomes for which they were arbitrary set to unity. The peak-values
with respect to performance are highlighted by the green circle. (B) A common precursor
state to clinical outcomes G3–G5 can be identified by distance-based k-means clustering
under constraint using the joint longitudinal profiles G2345 and G345 but not G45 as seeds.
Distance between biologic conditions is used as additional constraint in the distance to seed
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based clustering. In absence of non-infected liver biopsies over time (provisionally: "G0"),
the order between G2 and G2345 cannot be established. (C) The cellular network
differentially expressed between joint G2345 and joint G345 responsible for the G2345 to
G345 transition (orange edge), merged with the G345e time-specific analysis gene sets, and
built based on direct interactions between molecules. Data overlaid is the averaged G345e/
G2 log 2 ratio expression data. Upregulated genes are shaded in yellow, and downregulated
genes are shaded in blue.
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Table 1

Clinical characterization of patient cohort used in this study

Stage 0–2
G2 (n=43)

Stage 3–4
G345 (n=14)

Patient age (range) 59 (45–78) 62 (54–75)

% male patients 86.1% 64.3%

Donor age (range) 31 (10–59) 41 (13–60)

% male donors 78.1% 64.3%

Months post-OLT since 6/1/2009 79.6 ± 25.1 54.9 ± 18

MELD score at time of transplant 16.9 ± 8.2 14.6 ± 4.1

% history of ethanol abuse 72.1% 21.4%

Incidence of acute cellular rejection 18.6% 57.1%
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Table 2

Differentially expressed genes associated with transition to progressive disease

Accession
Number

Symbol Entrez Gene Name Location Molecule Type

NM_018849 ABCB4 ATP-binding cassette, sub-family B (MDR/TAP), member 4 PM   transporter

NM_005891 ACAT2 acetyl-CoA acetyltransferase 2 Cytoplasm   enzyme

ACTR2 ARP2 actin-related protein 2 homolog (yeast) PM   other

NM_001005386

NM_000045 ARG1 arginase, liver Cytoplasm   enzyme

NM_018840 C20orf24 chromosome 20 open reading frame 24 Cytoplasm   other

NM_020199 C5orf15 chromosome 5 open reading frame 15 unknown   other

NM_173060 CAST calpastatin Cytoplasm   peptidase

NM_053056 CCND1 cyclin D1 Nucleus   other

NM_021101 CLDN1 claudin 1 PM   other

NM_001554 CYR61 cysteine-rich, angiogenic inducer, 61 ECS   other

NM_001946 DUSP6 dual specificity phosphatase 6 Cytoplasm   phosphatase

NM_001994 F13B coagulation factor XIII, B polypeptide Cytoplasm   enzyme

NM_013402 FADS1 fatty acid desaturase 1 PM   enzyme

NM_014923 FNDC3A fibronectin type III domain containing 3A Cytoplasm   other

NM_002116 HLA-A major histocompatibility complex, class I, A PM TM receptor

U88244 HLA-G major histocompatibility complex, class I, G PM TM receptor

NM_000412 HRG histidine-rich glycoprotein ECS   other

NM_015525 IBTK inhibitor of Bruton agammaglobulinemia tyrosine kinase Cytoplasm   other

NM_004221 IL32 interleukin 32 ECS   other

NM_002216 ITIH2 inter-alpha (globulin) inhibitor H2 ECS   other

AB067508 KLHL29 kelch-like 29 (Drosophila) unknown   other

NM_002294 LAMP2 lysosomal-associated membrane protein 2 PM   enzyme

NM_002404 MFAP4 microfibrillar-associated protein 4 ECS   other

NM_002408 MGAT2 mannosyl (alpha-1,6-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase Cytoplasm   enzyme

NM_000277 PAH phenylalanine hydroxylase Cytoplasm   enzyme

NM_021129 PPA1 pyrophosphatase (inorganic) 1 Cytoplasm   enzyme

NM_015216 PPIP5K2 diphosphoinositol pentakisphosphate kinase 2 Cytoplasm   other

NM_020532 RTN4 reticulon 4 Cytoplasm   other

NM_014624 S100A6 S100 calcium binding protein A6 Cytoplasm   transporter

NM_006918 SC5DL sterol-C5-desaturase (ERG3 delta-5-desaturase homolog, S. cerevisiae)-like Cytoplasm   enzyme

NM_019844 SLCO1B3 solute carrier organic anion transporter family, member 1B3 PM   transporter

NM_001060 TBXA2R thromboxane A2 receptor PM   GPCR

NM_004617 TM4SF4 transmembrane 4 L six family member 4 PM   other

NM_006074 TRIM22 tripartite motif containing 22 Cytoplasm   transcription regulator

NM_006357 UBE2E3 ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast) Nucleus   enzyme
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