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Abstract
Infection and injury are two seemingly unrelated processes that often converge on common innate
inflammatory responses mediated by pathogen- or damage-associated molecular patterns (PAMPs
or DAMPs). If dysregulated, an excessive inflammation manifested by the overproduction and
release of proinflammatory mediators (e.g., TNF, IFN-γ, and HMGB1) may adversely lead to
many pathogenic consequences. As a counter-regulatory mechanism, the liver strategically re-
prioritizes the synthesis and systemic release of acute phase proteins (APP) including the fetuin-A
(also termed alpha-2-HS-glycoprotein for the human homologue). Fetuin-A is divergently
regulated by different proinflammatory mediators, and functions as a positive or negative APP in
injury and infection. It not only facilitates anti-inflammatory actions of cationic polyamines (e.g.,
spermine), but also directly inhibits PAMP-induced HMGB1 release by innate immune cells.
Peripheral administration of fetuin-A promotes a short-term reduction of cerebral ischemic injury,
but confers a long-lasting protection against lethal endotoxemia. Furthermore, delayed
administration of fetuin-A rescues mice from lethal sepsis even when the first dose is given 24
hours post the onset of disease. Collectively, these findings have reinforced an essential role for
fetuin-A in counter-regulating injury- or infection-elicited inflammatory responses.
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Infection and injury, seemingly unrelated conditions, converge on a common process -
inflammation, which is mediated partly by innate immune cells including macrophages and
monocytes. These innate immune cells are equipped with pattern recognition receptors (such
as TLR2, TLR4, and TLR9) [1–3] that can recognize both pathogen- and damage-associated
molecular patterns (PAMPs, such as endotoxin, and DAMPs, such as HMGB1) [4–7]. In
response to various PAMPs or DAMPs, innate immune cells release proinflammatory
cytokines (such as TNF, IL-1, IFN-γ or HMGB1) to mount inflammatory responses. If
dysregulated, an uncontrolled inflammation may adversely lead to detrimental
consequences. In this review, we summarize emerging evidence to support fetuin-A as an
acute phase protein capable of attenuating infection- and injury-elicited inflammatory
responses.
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1. PATHOGENIC ROLES OF DYSREGULATED INFLAMMATION IN
INFECTION AND INJURY
1.1 Bacterial Infection

As a syndrome of dysregulated systemic inflammation to a microbial infection, sepsis is
partly attributable to the excessive production of various proinflammatory mediators. In
animal models of endotoxemia and bacteremia, overexpression of early proinflammatory
cytokines, including TNF [8], interleukin (IL)-1 [9], interferon (IFN)-γ [10], individually or
in combination, contribute to the pathogenesis of lethal systemic inflammation (Figure 1).
However, the therapeutic windows for these early mediators are relatively narrow,
prompting the search for other “late” pro-inflammatory mediators that may offer better
therapeutic opportunities. A decade ago, we made the seminal finding that high mobility
group box-1 (HMGB1) was released from macrophages or monocytes in response to
exogenous PAMPs (e.g., endotoxin or CpG-DNA) [7,11] or endogenous cytokines (e.g.,
TNF or IFN-γ) [7,12]. In addition, HMGB1 can be passively leaked by necrotic cells
[13,14], thereby functioning as a damage-associated molecular pattern (DAMP). Upon
binding to the receptor for advanced glycation end products (RAGE), TLR2 or TLR4 [15–
17], HMGB1 induces the expression of various cytokines, chemokines, and adhesion
molecules [15,16,18–24]. Consequently, extracellular HMGB1 functions as an alarmin
signal to alert, recruit and activate innate immune cells [4,25–28], thereby sustaining
rigorous and potentially injurious lethal systemic inflammation.

In animal models of endotoxemia and sepsis (induced by cecal ligation and puncture, CLP),
circulating HMGB1 increased to plateau levels between 24–36 h [7,29]. This late
appearance precedes the onset of animal lethality, and distinguishes HMGB1 from TNF and
other early cytokines [30]. The pathogenic role of HMGB1 was inferred from the
observations that HMGB1-neutralizing antibodies [7,29,31] and inhibitors (e.g.,
tanshinones, ethyl pyruvate, nicotine, stearoyl lysophosphatidylcholine, epigallocatechin-3-
gallate, nicotine, choline, GTS-21, and spermine) [7,32–40] confer protection against lethal
endotoxemia and sepsis, even when the first dose of these antidotes was given 24 h after
CLP - a time point when mice had developed clear signs of sepsis. Conversely,
administration of exogenous HMGB1 to mice recapitulated clinical manifestations of sepsis,
including fever [41], derangement of intestinal barrier function [42] and tissue injury [43–
46]. Collectively, these data establish HMGB1 as a critical “late” mediator of sepsis with a
wider therapeutic window (Figure 1) [30,47–49].

1.2 Cerebral Ischemic Injury
Cerebral ischemic injury (stroke) consists of two stages: i) primary tissue damage in the
ischemic core that is mediated by tissue ion (Ca2+ and Na+) overload [50] and excitotoxicity
[51]; and ii) secondary tissue injury in the surrounding penumbra that is mediated by
proinflammatory cytokines (Figure 2) [52]. Within seconds to minutes after cerebral
ischemia, decreased ATP production leads to failure of the Na+/K+-ATPase pump,
disruption of membrane potentials, influx of sodium and calcium, and subsequent release of
excitatory amino acids (such as glutamate). Engagement of glutamate with the ionotropic N-
methyl-D-aspartate receptor (NMDA) leads to Ca2+ influx and activation of damaging
proteases (e.g., phospholipase A2, nitric oxide synthase, endonucleases, and calpain) that
compromise the functional and structural integrity of neuronal cells within 20–60 minutes.
Early-stage therapeutics that block ion (Na+ and Ca2+) channels [50] and glutamate
receptors [53] have failed in clinical trials, partly because of the impracticalities of
administering such drugs in a timely fashion. These failures have prompted the search for
other downstream targets that also contribute to the pathogenesis of ischemic injury.
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Outside of the ischemic core where cells are destined to die are penumbral zones where
brain cell death continues slowly for hours and even days after the onset of ischemia. This
progressive expansion of cell death in the penumbra (i.e., secondary injury) is mediated by
ischemia-elicited inflammatory responses that are orchestrated by both centrally- and
peripherally-derived immune cells (Figure 2). For instance, microglia and neurons become
activated to produce TNF and other cytokines within a few hours [54,55]. Subsequently,
polymorphonuclear cells infiltrate into the ischemic brain tissue within 12–48 hours [56],
followed by an influx of monocytes and macrophages over a period of one to several days.
Many pro-inflammatory cytokines (e.g., TNF and IL-1) contribute to cerebral ischemic
injury [57,58], because inhibition of their production [59,60] or activity [59,61,62] confers
protection against cerebral ischemic injury. In addition, HMGB1, can be passively released
from the ischemic core, and spilled into the surrounding periphery [63]. In the penumbra, it
may amplify a potentially injurious inflammatory response by inducing various cytokines,
chemokines, tissue factor and adhesion molecules (Figure 2) [4,22,23]. Indeed, HMGB1-
specific neutralizing antibodies and antagonists (e.g., the A box) have been proven
protective [64–66], supporting a pathogenic role for HMGB1 in ischemic injury.

2. ENDOGENOUS ANTI-INFLAMMATORY MECHANISMS
Mammals have evolved multiple anti-inflammatory mechanisms to counter-regulate
potentially injurious inflammatory responses. For instance, the central nervous system can
directly and rapidly attenuate bacterial endotoxin-induced release of TNF through efferent
vagus nerve signals to tissue-resident T cells [67] and macrophages [68]. This effect is
mediated by acetylcholine, the principle neurotransmitter of the vagus nerve, via nicotinic
cholinergic receptors (such as the alpha-7 nAChR) [36,68,69]. Physical (electrical or
mechanical) stimulation of the vagus nerve [36,70] reduced serum HMGB1 levels, and
consequently improved survival in animal models of sepsis [70]. Similarly, a number of
cholinergic chemical agonists (including nicotine, choline, GTS-21, and PHA568487) also
conferred protection against lethal endotoxemia, bacteremia, and sepsis partly by attenuating
HMGB1 release [36,38,39,71]. Taken together, these findings have suggested an important
role of the central nervous system in the counter-regulation of peripheral inflammatory
response.

At the sites of infection, various PAMPs also induce the production of many anti-
inflammatory cytokines (e.g. IL-10, IL-4 and TGF-β), which participate in the down-
regulation of the local inflammatory response [72–74]. As another local counter-regulatory
mechanism, a ubiquitous biogenic molecule, spermine, can be passively released by injured
cells [75], and thus accumulates at the sites of infection or injury. It effectively attenuates
the synthesis and release of various pro-inflammatory cytokines (e.g. TNF, IL-1, MIP-1)
from activated macrophages and monocytes [76–79]. Furthemore, the anti-inflammatory
effects of spermine are dependent upon the availability of a ubiquitous protein, fetuin-A.
That is, spermine fails to inactivate macrophage/monocytes if these cells are deprived of
fetuin-A by serum-starvation, or addition of specific fetuin-A-neutralizing antibodies [80].
In contrast, co-addition of highly purified fetuin-A significantly enhances the anti-
inflammatory activity of spermine [80], supporting an important role of fetuin-A in the
regulation of the innate immune responses [76,79,81].

3. FETUIN-A AS AN ACUTE PHASE PROTEIN (APP)
In response to infection and injury, the liver strategically re-prioritizes the synthesis and
systemic release of a group of proteins collectively termed “acute phase proteins” (APPs),
whose plasma concentrations are increased (“positive APPs”) or decreased (“negative
APPs”) during inflammation. For instance, fetuin-A, also known as the alpha-2-HS-
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glycoprotein for the human homologue [82], was first characterized as a major plasma
protein in the fetus [83]. During fetal development, it is expressed in many organs such as
the liver, kidney, gastrointestinal tract, skin and brain [84–87]. In adults however, fetuin-A
is produced primarily by the liver, and its synthesis is divergently regulated in response to
injury or infection, classifying it as a negative or positive APP.

3.1 Fetuin-A as a Negative APP in Infection
The hepatic expression of fetuin-A is negatively regulated by several proinflammatory
cytokines such as TNF, IL-1, IL-6 and IFN-γ (Figure 1) [88,89]. For instance, at
concentrations as low as 10–50 ng/ml, IFN-γ reduced fetuin-A expression levels by > 50–
70% in human hepatoma HepG2 cells [89]. In contrast, HMGB1 (1 μg/ml) elevated hepatic
fetuin-A expression levels by 2–3 folds, suggesting that different cytokines divergently
regulate hepatic fetuin-A expression (Figure 1). In animal models of endotoxemia and sepsis
(induced by cecal ligation and puncture, CLP), circulating fetuin-A levels were decreased in
a time-dependent fashion, starting between 2–6 h, reaching a nadir (with maximal reduction
by 50–60%) around 24–48 h. Afterwards, fetuin-A levels started to increase, returning
towards basal levels approximately 72 h post endotoxemia or sepsis, supporting fetuin-A as
a negative APP in animal models of lethal endotoxemia and sepsis [89]. In agreement with
the capacities of early proinflammatory cytokines (TNF, IL-6, and IFN-γ) in inhibiting
fetuin-A expression [88,89], we found that the genetic disruption of IFN-γ expression led to
an impairment of endotoxin-mediated down-regulation of fetuin-A expression [89]. It is thus
possible that early cytokines (such as TNF and IFN-γ) negatively reduce circulating fetuin-
A levels during an early stage of endotoxemia or sepsis; whereas late-acting mediators (e.g.,
HMGB1) serve as a positive regulator to restore circulating fetuin-A levels at a late stage of
these inflammatory diseases.

In patients with other inflammatory diseases such as pancreatitis [90], chronic kidney
diseases [91], and rheumatoid arthritis [92], serum fetuin A levels were also decreased by
20–30%. In these patients, circulating fetuin-A levels negatively correlated with levels of
cytokines (such as IL-6) [90], and associated with increased mortality rates [91].
Collectively, these observations classify fetuin-A as a negative APP during infection or
other inflammatory illness.

3.2. Fetuin-A as a Positive APP in Injury
Clinically, plasma fetuin-A levels were paradoxically elevated in patients with cerebral
ischemic injury (stroke) [93,94]. The magnitude of fetuin-A elevation positively correlated
with an increase in LDL-cholesterol levels and risk of cardiovascular disorders [93].
Following traumatic injury, serum fetuin-A levels were increased up to 10-folds in cattle
[95], suggesting fetuin-A as a positive APP in response to injury. In light of the findings that
HMGB1 can be passively leaked from injured cells [96] and function as an early mediator of
traumatic injury [97–101], it is plausible that HMGB1 may contribute to the up-regulation of
hepatic fetuin-A expression during injury.

In an animal model of focal cerebral ischemia (i.e., permanent middle cerebral artery
occlusion, MCAo), fetuin-A levels in the ischemic brain tissue were elevated in a time-
dependent manner, starting between 2–6 h, peaking around 24–48 h, and returning towards
baseline at 72 h post MCAo [102]. This dynamic increase in cerebral fetuin-A levels
parallels with the transient elevation of the blood-brain barrier (BBB) permeability [103],
suggesting that circulating fetuin-A can gain entry across the BBB into the ischemic brain
tissue (Figure 2). This possibility was supported by the observation that peripherally
(intravenously) administered FITC-labeled fetuin-A destined to the ischemic brain region at
24 h after MCAo [102].

Wang and Sama Page 4

Curr Mol Med. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. FETUIN-A AS AN ANTI-INFLAMMATORY PROTEIN
Despite its abundance, the functions of fetuin-A remain poorly understood. A wide range of
biological functions have been proposed for fetuin-A based on its structural similarities to
other proteins or physical interactions with biogenic molecules. For instance, fetuin-A shares
amino acid sequence homology to type II TGF-β receptors [104], and has been proposed as
an inhibitor of the TGF-β signaling pathway. Similarly, fetuin-A exhibits amino acid
sequence similarity to insulin receptor tyrosine kinases [105,106], and can bind to the insulin
receptor, thereby inactivating (rather than activating, as in the case for insulin) the receptor
tyrosine kinase [107]. This may partly explain why higher fetuin-A levels were associated
with insulin resistance in some patients with type 2 diabetes [108]. As a glycoprotein, fetuin-
A carries two N-linked and three O-linked oligosaccharide chains that terminate with sialic
acid residues, enabling the binding of cationic Ca2+ ions. Accordingly, fetuin-A has been
proposed as an endogenous inhibitor of pathological mineralization or calcification in soft
tissues [109–111]. Specifically, fetuin-A forms protein-mineral colloids with calcium and
phosphate [112–114], thereby preventing uncontrolled mineralization that may otherwise
occur under pathological conditions [115].

As aforementioned, fetuin-A also functions as an opsonin for cationic spermine, and its
availability to immune cells may be critical for regulating the innate immune response [81].
Indeed, levels of fetuin-A in macrophage cultures was decreased by 40% after stimulation
with LPS (100 ng/ml, 2 h). Supplementation of LPS-stimulated macrophages with fetuin-A
(100 μg/ml) conversely elevated cellular fetuin-A levels by 30–50% [116], confirming the
notion that macrophages can ‘adopt” fetuin-A from the environment [81]. Intriguingly,
exogenously administered fetuin-A was predominantly localized in LC3-containing
cytoplasmic vesicles - possibly autophagosomes or amphisomes - in LPS-stimulated
macrophages [116]. At higher concentrations (e.g., 3.5 mg/ml), even crude fetuin-A (> 98%)
can almost completely abrogated endotoxin-induced release of IL-1 and nitric oxide in
macrophage cultures [117]. Following gel filtration and ion-exchange chromatography, the
highly purified fetuin-A almost completely abrogated IFN-γ- or LPS-induced HMGB1
release even when given at relative lower doses (e.g., 100 μg/ml) [89], suggesting fetuin-A
as an effective anti-inflammatory APP.

5. THERAPEUTIC POTENTIAL OF ANTI-INFLAMMATORY AGENTS
Given the anti-inflammatory properties of spermine and fetuin-A, we have evaluated their
therapeutic potential in several animal models of local and systemic inflammation.

5.1 Carrageenan-induced Paw Edema
Local administration of spermine directly into the carrageenan-injected paw dose-
dependently inhibited the development of edema, with a maximally reduction of footpad
swelling by ~50% [76]. Similarly, intraperitoneal administration of fetuin-A (5 to 500 mg/
kg) dose-dependently attenuated the development of paw edema [118]. When the sialic acid
residues were removed by neuraminidase, the resultant asialofetuin-A failed to potentiate the
anti-inflammatory activities of spermine [80], and similarly failed to attenuate carrageenan-
induced TNF production in vivo [118], suggesting the requirement of sialic acid moieties for
its anti-inflammatory activities. In contrast, administration of fetuin-A-neutralizing
antibodies abolished fetuin-A-mediated inhibition of paw edema, indicating an essential role
of fetuin-A in counter-regulating inflammatory responses.

5.2 Cerebral Ischemic Injury
During cerebral ischemic injury, spermine may be protective by inhibiting the expression of
proinflammatory cytokines [28,76,77,79,119,120] and scavenging cytotoxic free radicals
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(Figure 3) [121,122]. At higher (millimolar) concentrations, spermine is also neuroprotective
by directly binding and blocking the NMDA receptor [123,124]. On the other hand,
spermine can be enzymatically converted by polyamine oxidases into cytotoxic metabolites
(e.g., 3-aminopropanal) [125], which readily spreads and mediates direct cytotoxicities
[125]. Furthermore, at low (micromolar) concentrations, spermine activates the NMDA
receptor [124,126], thereby augmenting glutamate-mediated neurotoxicity by overactivating
Ca2+ fluxes and disturbances of the calcium homeostasis (Figure 3). During cerebral
ischemia, brain spermine levels are decreased [127], owing largely to an accompanying
increase in the enzymatic activity of brain polyamine oxidase [125]. The loss of spermine
consequently tilts the balance towards neurotoxicity through activating the NMDA receptor,
and increasing susceptibility to oxidative stress as well as excessive inflammatory response.

As mentioned earlier, cerebral ischemia induces a transient (5–24 h) elevation of the BBB
permeability [103], which allows temporal entry of circulating fetuin-A across the BBB into
the ischemic brain tissue. Consistently, peripheral administration of fetuin-A promoted a
short-term protection against cerebral ischemic injury [102]. Given the aforementioned
pathogenic roles of Ca2+ and spermine in cerebral ischemia, as well as the capacity of
fetuin-A in binding Ca2+ and spermine [80,112], it is also possible that fetuin-A confers
protection by caging these toxic cationic molecules [51,125], thereby depriving them from
damaging enzymes (such as Ca2+-dependent proteases and polyamine oxidase).
Furthermore, the fetuin-A-mediated protection is associated with a reduction of ischemia-
elicited HMGB1 leakage from the ischemic core, and an inhibition of expression of
proinflammatory cytokines (e.g., TNF) in the penumbra (Figure 2) [102], suggesting that
fetuin-A confers protection partly by attenuating early inflammatory responses. The fetuin-
A-mediated neuroprotection was not long-lasting, and gradually diminished at a later stage
(e.g., 7 days post MCAo). It is possible that the restore of BBB function at a late stage (3
days after MCAo) limits subsequent fetuin-A extravasation, thereby diminishing fetuin-A-
mediated long-lasting protective effects.

5.3 Endotoxemia and Sepsis
Despite the anti-inflammatory activities of spermine in vitro [76,128], spermine did not
confer protection against lethal endotoxemia. However, it promoted a dose-dependent
protection against lethal sepsis when given at relative lower doses (1 – 10 mg/kg). This
protection was associated with a significant attenuation of systemic accumulation of
HMGB1 and other cytokines (e.g., IL-6, KC, MCP-1, MIP-2, TIMP-1, sTNFRI and
sTNFRII) [128]. At a higher dose (100 mg/kg), however, spermine decreased animal
survival rates from 58% to 38% at 48 h post CLP, and further decreasing it to 0% at 72 h
post CLP. It is not yet known whether spermine is enzymatically converted by polyamine
oxidases into cytotoxic metabolites (e.g., 3-aminopropanal), thereby exerting these
potentially toxic effects.

In contrast to the limited efficacy of spermine, fetuin-A exhibits a greater therapeutic
potential in animal models of lethal systemic inflammatory diseases. Administration of
fetuin-A (20–100 mg/kg) provided a dose-dependent protection against lethal endotoxemia.
Furthermore, delayed administration of fetuin-A (20 – 100 mg/kg), beginning 24 h after the
onset of sepsis and followed by an additional dose at 48 h post CLP, significantly increased
long-term animal survival rates from 45% to 90% [89]. The integral role of fetuin-A in host
defense against lethal systemic inflammation was supported by the observations that fetuin-
A-deficient C57BL/6J mice were more susceptible to lethal endotoxemic or septic insult
than sex- and body-matched (male, 27–29 g) wild-type C57BL/6J mice [102].

It now appears that fetuin-A serves as a negative regulator of HMGB1 release during lethal
endotoxemia or sepsis (Figure 1). On one hand, the time-dependent decrease of circulating
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fetuin-A levels was paralleled by the contrast increase of serum HMGB1 levels in animal
models of endotoxemia [7] or sepsis [29]. On the other hand, disruption of fetuin-A
expression led to greater elevation of serum HMGB1 levels [89]; whereas supplementation
of fetuin-A resulted in significant protection by reducing circulating HMGB1 levels [89].
The mechanisms underlying fetuin-A-mediated suppression of HMGB1 release remains
poorly understood. At the concentrations (100 μg/ml) that fetuin-A attenuated LPS-induced
HMGB1 release, fetuin-A stimulated autophagy and impaired LPS-induced elevation of
cytoplasmic and nuclear HMGB1 levels [89]. It is not yet known whether fetuin-A, like
other HMGB1 inhibitors (such as Green tea epigallocatechin gallate, EGCG) [129], reduces
cytoplasmic HMGB1 levels by stimulating its degradation in an autophagy-dependent
fashion. In addition, fetuin-A may confer these protective effects through other alternative
mechanisms. For instance, fetuin-A may be capable of binding bacteria [130,131], thereby
affecting macrophage-mediated pathogen elimination. Furthermore, fetuin-A may facilitate
macrophage-mediated ingestion and elimination of apoptotic neutrophils [132,133], thereby
preventing secondary necrosis and passive leakage of injurious molecules (e.g., proteases,
reactive oxygen species, and HMGB1) [134].

6. CONCLUSIONS
The hepatic fetuin-A expression may be divergently regulated by different proinflammatory
mediators – inhibited by TNF and IFN-γ, but stimulated by HMGB1. As a positive or
negative APP, fetuin-A counter-regulates both injury- and infection-elicited inflammatory
responses. Consistent with the transient changes of the blood-brain barrier permeability,
fetuin-A gains temporal entry into the ischemic brain tissue, and confers a short-term
neuroprotective effects. In contrast, administration of fetuin-A confers a dose-dependent and
long-lasting protection against lethal systemic inflammatory diseases. It is thus important to
further explore its therapeutic potential for the clinical management of sepsis and other
inflammatory diseases.
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Figure 1. Protective roles of fetuin-A in endotoxemia and sepsis
In response to lethal endotoxemia or sepsis, innate immune cells (such as macrophages)
sequentially release early (e.g., TNF and IFN-γ) and late (e.g., HMGB1) proinflammatory
mediators. Early proinflammatory cytokines participate in the down-regulation of hepatic
fetuin-A expression, allowing propagation of a rigorous inflammatory response manifested
by excess accumulation of late proinflammatory mediators (such as HMGB1). On the other
hand, HMGB1 stimulates hepatic fetuin-A expression, thereby restoring circulating fetuin-A
levels during a late stage of lethal endotoxemia and sepsis. Fetuin-A functions as a negative
regulator of the innate immune response by inhibiting LPS- or IFN-γ-induced HMGB1
release in macrophages. Adapted from doi:10.1371/journal.pone.0016945.g006 with granted
permission from the publisher.

Wang and Sama Page 16

Curr Mol Med. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Protective roles of fetuin-A in cerebral ischemic injury
Cerebral ischemia causes rapid primary injury in the ischemic core, leading to HMGB1
release/leakage. Extracellular HMGB1 then diffuses into the periphery region, where it
orchestrates a rigorous inflammatory response driven both by the centrally- and
peripherally-derived cells. In parallel, cerebral ischemia induces transient increase in blood-
brain barrier permeability, allowing entry of circulating proteins (e.g., fetuin-A) and
peripheral immune cells (such as macrophage/monocytes). Peripheral administration of
fetuin-A attenuates ischemia-elicited HMGB1 release and subsequent cytokine expression,
thereby conferring a temporal protection against cerebral ischemic injury.
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Figure 3. Divergent roles of spermine in cerebral ischemic injury

Wang and Sama Page 18

Curr Mol Med. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


