
The American Journal of Pathology, Vol. 180, No. 3, March 2012

Copyright © 2012 American Society for Investigative Pathology.

Published by Elsevier Inc. All rights reserved.

DOI: 10.1016/j.ajpath.2011.11.024
Immunopathology and Infectious Diseases

Interspecies Comparison of Human and Murine
Scleroderma Reveals IL-13 and CCL2 as Disease

Subset-Specific Targets
Matthew B. Greenblatt,* Jennifer L. Sargent,†

Giuseppina Farina,‡ Kelly Tsang,*
Robert Lafyatis,‡ Laurie H. Glimcher,*§¶

Michael L. Whitfield,† and Antonios O. Aliprantis*§

From the Department of Immunology and Infectious Diseases,*

Harvard School of Public Health, Boston, Massachusetts; the

Department of Genetics,† Dartmouth Medical School, Hanover,

New Hampshire; the Division of Rheumatology,‡ Department of

Medicine, Boston University School of Medicine, Boston,

Massachusetts; the Division of Rheumatology, Allergy and

Immunology,§ Department of Medicine, Brigham and Women’s

Hospital and Harvard Medical School, Boston, Massachusetts;

and the Ragon Institute,¶ Massachusetts General Hospital,

Harvard University, and Massachusetts Institute of Technology,

Boston, Massachusetts

Development of personalized treatment regimens is
hampered by lack of insight into how individual ani-
mal models reflect subsets of human disease, and
autoimmune and inflammatory conditions have
proven resistant to such efforts. Scleroderma is a le-
thal autoimmune disease characterized by fibrosis,
with no effective therapy. Comparative gene expres-
sion profiling showed that murine sclerodermatous
graft-versus-host disease (sclGVHD) approximates an
inflammatory subset of scleroderma estimated at 17%
to 36% of patients analyzed with diffuse, 28% with
limited, and 100% with localized scleroderma. Both
sclGVHD and the inflammatory subset demonstrated
IL-13 cytokine pathway activation. Host dermal my-
eloid cells and graft T cells were identified as sources
of IL-13 in the model, and genetic deficiency of either
IL-13 or IL-4R�, an IL-13 signal transducer, protected
the host from disease. To identify therapeutic targets,
we explored the intersection of genes coordinately
up-regulated in sclGVHD, the human inflammatory
subset, and IL-13–treated fibroblasts; we identified
chemokine CCL2 as a potential target. Treatment with
anti-CCL2 antibodies prevented sclGVHD. Last, we
showed that IL-13 pathway activation in scleroderma

patients correlated with clinical skin scores, a marker

1080
of disease severity. Thus, an inflammatory subset of
scleroderma is driven by IL-13 and may benefit from
IL-13 or CCL2 blockade. This approach serves as a
model for personalized translational medicine, in
which well-characterized animal models are matched
to molecularly stratified patient subsets. (Am J Pathol

2012, 180:1080–1094; DOI: 10.1016/j.ajpath.2011.11.024)

Scleroderma or systemic sclerosis (SSc) is a clinically
heterogeneous rheumatologic disease characterized by
tissue fibrosis of skin, internal organs, and blood ves-
sels.1 Variants include i) diffuse systemic involvement
(diffuse SSc), ii) limited cutaneous disease with more
severe vascular insults (limited SSc), and iii) localized but
disfiguring skin sclerosis (morphea). Therapeutic options
for this disease are limited to medications that address
only disease symptoms or end-organ manifestations, fall-
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ing well short of the dramatic strides made in the treat-
ment of other rheumatologic conditions. Discovery of new
agents for SSc remains elusive, because the mecha-
nisms underlying fibrosis in this disease are incompletely
understood.1

A major factor hindering progress is lack of consensus
on an animal model that accurately approximates the
human disease. Given the clinical and molecular hetero-
geneity of SSc, however, it is unlikely that any one model
will accurately reflect the entire spectrum of disease.2–4

For decades, murine graft-versus-host disease (GVHD)
has been used as a model of SSc.3 In 2004, Ruzek et al5

described a modification of this model (sclGVHD) using
immunodeficient Rag2�/� hosts. Although this model re-
capitulates the histological and serological features of
SSc, including vasculopathy, it is unclear whether this is
due to intrinsic similarities in disease pathogenesis or a
confluence of tissue damage patterns occurring via dis-
parate mechanisms. Disentangling these two possibilities
is a common challenge facing all investigators using an-
imals to model human disease. With the present study, a
systematic approach to this challenge is implemented via
cross-species expression profiling, followed by validation
and mechanistic studies in the mouse model and in pa-
tient samples.

Expression profiling of SSc skin has documented dis-
tinct intrinsic gene expression signatures (namely, dif-
fuse-proliferation, inflammatory, limited, and normal-like),
identifying subsets of patients who develop fibrosis via
different pathogenic mechanisms.4,6 Pathway analysis of
these signatures can define the activation of specific
signaling pathways in the context of disease.6,7 For ex-
ample, the TGF� pathway is activated in the SSc diffuse-
proliferation subset but not in other groups,6 and data
suggest that this subset may respond to the tyrosine
kinase inhibitor imatinib.8 In contrast, the pathogenic
mechanisms underlying the inflammatory, limited, and
normal-like subsets have not been defined. Genome-
wide expression profiling, which allows for direct com-
parison of molecular mechanisms underlying phenotypes
in human diseases and mouse models, has been applied
predominantly to oncologic disease.9–12 The identifica-
tion of common deregulated pathways between human
diseases and their models may point to therapeutic tar-
gets that can rapidly be evaluated in functional studies in
the animal model and thus lead to clinical trials targeting
specific patient subsets.

Using comparative gene expression profiling, we iden-
tified striking similarities between the sclGVHD model
and the inflammatory subset of SSc patients, which rep-
resents 17% (3/17) and 36% (8/22) of diffuse disease
patients in two published4,13 cohorts, as well as 28% (2/7)
of patients with limited disease and all (3/3) patients
analyzed with localized scleroderma (morphea).4 Both
the inflammatory subset of SSc and murine sclGVHD
display robust activation of IL-13 signaling, whose func-
tional importance is validated using hosts deficient in
either IL-13 or IL-4R�, a required component of IL-13
signaling. We identified graft T cells and host dermal
macrophages characterized by a mixed type I (M1) and

type II (M2) activation profile as the cellular sources of
IL-13. To identify downstream mediators of IL-13, we
examined the overlap of multiple independent data sets
and identified CCL2 as a key IL-13 regulated gene. Ac-
cordingly, therapeutic neutralization of CCL2 completely
blocks sclGVHD. Last, we showed in a cohort of early
SSc patients that IL-13 pathway activation correlates with
modified Rodnan skin score (mRSS) a clinical marker of
disease. Our data indicate that inhibitors targeting IL-13
and CCL2 may be effective treatments for patients exhib-
iting the inflammatory gene signature.

Materials and Methods

Mice

BALB/c, B10.D2, BALB/c Rag2�/�, and BALB/c Il4ra�/�14

mice were obtained from the Jackson Laboratory (Bar Har-
bor, ME). Joan Stein-Streilein (Schepens Eye Research
Institute, Boston, MA) provided BALB/c Il13�/� mice.15

All mice were housed in a pathogen-free animal facility at
the Harvard School of Public Health, and studies were
performed according to institutional and NIH guidelines.
The drinking water of mice deficient for Rag2 was sup-
plemented with co-trimoxazole (Sulfatrim).

sclGVHD Model

The sclGVHD model was established as described pre-
viously.5 Briefly, 20 to 40 million BALB/c (syngeneic) or
B10.D2 (allogeneic) red-blood-cell-free splenocytes
were transferred via tail-vein injection into host mice.
Mice were scored biweekly by a blinded observer
(M.B.G.) as follows: No evidence of disease (score � 0),
fur ruffling or hunched posture (score � 1), alopecia
�25% of body surface area (score � 2), alopecia �25%
of body surface area (score � 3), and death or a veter-
inary order to euthanize (score � 4). One half a point was
added for periorbital swelling. A mouse was deemed
affected by sclGVHD for a score of �2. In the event of a
death, the last observed clinical score was carried for-
ward. An observer experienced in SSc pathology (R.L.)
scored two H&E-stained back skin tissue samples per
mouse for four parameters (fibrosis, inflammation, lipoa-
trophy, and epidermal hyperplasia), using a semiquanti-
tative scale from 0 to 3. Values were averaged for each
parameter and were summed to derive a combined path-
ological score. Centocor-Janssen Biotech (Horsham, PA)
provided blocking antibodies to CCL2 and CCL12 and an
isotype control.16

Microarray Procedures, Data Processing, and
Analysis

Total RNA was isolated using TRIzol reagent (Invitrogen,
Grand Island, NY) and further purified with RNeasy mini
columns (Qiagen, Valencia, CA). One hundred to 300 ng of
sample or reference total RNA [universal mouse reference;
Stratagene (La Jolla, CA)] was amplified and labeled with
Cy3 or Cy5 using Agilent low-input linear amplification pro-

tocols (Agilent Technologies, Santa Clara, CA). Microarrays
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were hybridized to 44K mouse whole-genome DNA mi-
croarrays (Agilent Technologies) in a common reference
design and scanned using a dual-laser GenePix 4000B
scanner (Axon Instruments; Molecular Devices, Union City,
CA). Pixel intensities were quantified using GenePix Pro 5.1
software (Axon Instruments). All microarrays were in-
spected for defects or artifacts, and spots of poor quality
were excluded. Data were uploaded to the UNC Microarray
Database (UMD; University of North Carolina, Chapel Hill,
NC) and downloaded as lowess-normalized log2 Cy5/Cy3
ratios. Only probes that passed a filter of intensity/back-
ground ratio � 1.5 in one or both channels and for which
�80% of the data were of sufficient quality were used. All
data were multiplied by �1 thereby converting the log2

Cy5/Cy3 ratios to log2 Cy3/Cy5 ratios for all analyses. For
interspecies comparisons, mouse genes were matched
to human orthologs using the Mouse Genome Informatics
database maintained by the Jackson Laboratory (avail-
able at http://www.informatics.jax.org).17 All human and
mouse data sets were median centered and clustered
using the Cluster 3.0 algorithm of Eisen et al,18 and heat
maps were generated using TreeView version 1.0.13 ac-
cording to the authors’ recommendations.18 The Signifi-
cance Analysis of Microarrays (SAM) method19 was im-
plemented to identify genes significantly differentially
expressed in both human and sclGVHD data sets. Pear-
son’s correlation coefficients were calculated and plotted
in Microsoft Excel 2007. Pathway analysis was con-
ducted with DAVID20 and Genomica software.21

Microarray Data Access

The 75 microarray human scleroderma data set, previ-
ously described,4 is publicly available at the National
Center for Biotechnology Information GEO site (http://
www.ncbi.nlm.nih.gov/geo; accession GSE9285). All ex-
pression data sets generated for the present study are
likewise available at the NCBI GEO site [human IL-13–
responsive signature (GSE24403), IL-4–responsive sig-
nature (GSE24409), and sclGVHD microarray data sets
(GSE17914)].

Generation of IL-13 and IL-4 Gene Expression
Signatures in Dermal Fibroblasts

Adult dermal fibroblasts (Cambrex BioScience, Walkers-
ville, MD) were cultured for 48 hours, brought to quies-
cence in 0.1% fetal bovine serum, and treated with 50
nmol/L of recombinant human IL-13 or IL-4 (PeproTech,
Rocky Hill, NJ). Total RNA was collected at 0, 2, 4, 8, 12,
and 24-hour time points, amplified, labeled, and hybrid-
ized to whole-genome microarrays in a common refer-
ence design. Eight microarrays were hybridized for each
time course. For each time course, data were normalized
by T0, transforming the data to the average of the triplicate
baseline readings at 0 hours of either IL-13 or IL-4 expo-
sure. Responsive genes for each cytokine were selected

using a threshold cutoff of a �twofold change from T0.
Explant Cultures

At 2 weeks after splenocyte transfer, back skin was har-
vested, shaved, and cultured overnight in RPMI-1640
media supplemented with 10% fetal calf serum and an-
tibiotics. Supernatants were analyzed via enzyme-linked
immunosorbent assay (ELISA).

Cell Isolation and Sorting

At 2 or 3 weeks after cell transfer, back skin was
isolated and digested with collagenase type XI (Sigma-
Aldrich, St. Louis, MO) for 2 hours at 37°C. A single-cell
suspension of liberated cells was stained with the an-
tibodies indicated in the respective figures and sorted
on a FACSAria II flow-activated cell sorter (BD Biosci-
ences, San Jose, CA). All antibodies were from BD
Biosciences, except that anti-Foxp3 and anti-CD115
were from eBioscience (San Diego, CA).

T-Cell Restimulation Assays

CD4� T cells were isolated from subcutaneous lymph
nodes of sclGVHD mice via negative selection for
CD11c� and B220� cells, followed by CD4� selection
using magnetic beads (Miltenyi Biotec, Auburn, CA). Al-
ternatively, CD4� T cells were FACS-sorted from lesional
skin. Cells were plated in 96-well plates precoated with 2
mg/mL anti-CD3. Supernatants were harvested 12 hours
later and analyzed for cytokine secretion by ELISA. Alter-
natively, cells were stained for Foxp3 using a Foxp3 stain-
ing kit (eBioscience).

Collection of Normal Human and SSc Skin
Samples

After informed consent had been given regarding the
nature and possible consequences of the study, two
3-mm punch biopsies were obtained from SSc patients or
normal control subjects. One biopsy was placed in for-
malin for histology and the other in RNAlater stabilization
reagent (Qiagen) for RNA purification. Age, sex, and
disease duration were noted at the time of the biopsy,
and mRSS was obtained.22

Quantitative Real-Time PCR

For mRNA expression studies, cDNA was synthesized
[Stratagene or Applied Biosciences (Foster City, CA)]
and real-time PCR was performed using Brilliant II SYBR
Green master mix (Stratagene) on a Mx3005P quantita-
tive PCR system (Stratagene). CT values for duplicate
samples were averaged, and the amount of mRNA rela-
tive to a housekeeping gene was calculated with the �CT

method. Primer sequences are given in Table 1.23–25

Immunohistochemistry

After heat-based antigen retrieval, sections were

stained with mouse anti-human IL-13 (1:100; R&D Sys-

http://www.informatics.jax.org
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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tems, Minneapolis, MN) or CD68 (1:50; Abcam, Cam-
bridge, MA). Primary antibodies were detected with
donkey anti-mouse IgG-horseradish peroxidase (1:
100; Jackson ImmunoResearch, West Grove, PA), fol-
lowed by tyramide signal amplification (PerkinElmer,
Waltham, MA), streptavidin-horseradish peroxidase (1:
100), and 3,3=-diaminobenzidine. Sections were coun-
terstained with hematoxylin.

Statistical Analyses

Unpaired Student’s t-tests were used for continuous vari-
ables, Mann-Whitney tests for categorical values, and log
rank (Mantel-Cox) tests for Kaplan-Meier survival curves.
Statistical and linear regression analyses were performed
with GraphPad Prism software (GraphPad Software, La
Jolla, CA). Error bars indicate standard deviation, unless
otherwise indicated.

Results

Murine sclGVHD Approximates the
Inflammatory Subset of SSc

A murine sclGVHD-associated gene expression signa-
ture was identified by implementing SAM analysis19 to
select genes differentially expressed in the skin of
Rag2�/� mice that received either allogeneic (Allo
Rag2�/�) or syngeneic (Syn Rag2�/�) splenocyte trans-

Table 1. qRT-PCR Primers Targeting Murine and Human Genes

Primer set Forward primer

Murine
Hprt 5=-GTTAAGCAGTACAGCCCCAAA-3=
Hmbs 5=-ATGAGGGTGATTCGAGTGGG-3=
Il13 5=-CCTGGCTCTTGCTTGCCTT-3=
Cox2 5=-CTCCCTGAAGCCGTACACAT-3=
Sprr2a 5=-GCCTTGTCGTCCTGTCATGT-3=
Nos2 5=-GTTCTCAGCCCAACAATACAAGA-3=
Arg1 5=-ATGGAAGAGACCTTCAGCTAC-3=
Chi3l3 (Ym1) 5=-GGGCATACCTTTATCCTGAG-3=
Ccl2 5=-TTAAAAACCTGGATCGGAACCAA-3=
Infg 5=-GAACTGGCAAAAGGATGGTGA-3=
Il13ra1 5=-ATGCTGGGAAAATTAGGCCATC-3=
Il4Ra 5=-TCTGCATCCCGTTGTTTTGC-3=
Ccl12 5=-GGGAAGCTGTGATCTTCAGG-3=

Human
ADAM8 5=-GAGGGTGAGCTACGTCCTTG-3=
GAPDH 5=-ATGGGGAAGGTGAAGGTCG-3=
HPRT 5=-TGGACAGGACTGAACGTCTTG-3=
IL13RA1 5=-ACTCCTGCTTTACCTAAAAAGGC-3=
IL4RA 5=-TCATGGATGACGTGGTCAGT-3=
CCL2 5=-CAGCCAGATGCAATCAATGCC-3=
CXCL10 5=-GTGGCATTCAAGGAGTACCTC-3=
CCL4 5=-AAGCTCTGCGTGACTGTCCT-3=
TIMP1 5=-CTTCTGCAATTCCGACCTCGT-3=
COX2 5=-CTGGCGCTCAGCCATACAG-3=
ARG1 5=-CGCCAAGTCCAGAACCATAGG-3=

*From the Center for Comparative and Integrative Biology Primer Bank,
387506a3; Il13, 6680403a1; Sprr2a, 31560549a1; Nos2, 6754872a1; Ccl2,
4557253a1; GAPDH, 7669492a1; HPRT, 4504483a2; IL13RA1, 45046
24430028a2; and ARG1, 30582321a1. PrimerBank is available at http://p

†Designed with the online Primer 3 tool (available at http://frodo.wi.mi
fers 2 or 5 weeks earlier. Relative changes in gene ex-
pression between sclGVHD mice (Allo Rag2�/�) and con-
trols (Syn Rag2�/�) were greatest at 2 weeks, whereas
few differences were found between the 2-week and
5-week sclGVHD samples (J.L. Sargent, unpublished
data). The overlap of two independent comparisons of
sclGVHD and control mice 2 weeks after splenocyte
transfer contained 371 probes, representing 291 unique
annotated genes, all of which were up-regulated in dis-
eased mice. These 291 genes were defined as the core
sclGVHD signature (Figure 1A; see also Supplemental
Table S1 at http://ajp.amjpathol.org). Assessment of the
core sclGVHD signature genes using DAVID (Database
for Annotation, Visualization, and Integrated Discovery)20

showed an enrichment for gene GO terms (http://www.
geneontology.org) associated with immune responses,
antigen presentation and protein degradation (see Sup-
plemental Table S2 at http://ajp.amjpathol.org).

To determine whether the changes in gene expression
found in sclGVHD skin reflect those observed in SSc,
expression of the core sclGVHD signature was assessed
in the SSc intrinsic subsets described previously.4 Of the
291 sclGVHD signature genes (Figure 1A), 204 were
matched to human orthologs using the Mouse Genome
Informatics Database.17 Of these, 194 genes were pres-
ent with data of sufficient quality in the human SSc skin
data set. Samples were organized by intrinsic subset
classification,4 and genes were clustered by their expres-
sion in SSc skin biopsies. This analysis revealed that the
sclGVHD expression signature is closely reflected in the
inflammatory subset of SSc (Figure 1B4). Mean Pearson’s

Reverse primer Source

-AGGGCATATCCAACAACAAACTT-3= *
-CAAACTGTATGCCAGGGTACAA-3= *
-GGTCTTGTGTGATGTTGCTCA-3= *
-ATGGTGCTCCAAGCTCTACC-3= Bachar et al24

-GGCATTGCTCATAGCACACTAC-3= *
-GTGGACGGGTCGATGTCAC-3= *
-GCTGTCTTCCCAAGAGTTGGG-3= Brys et al25

-CCACTGAAGTCATCCATGTC-3= Brys et al25

-GCATTAGCTTCAGATTTACGGGT-3= *
-TGTGGGTTGTTGACCTCAAAC-3= *
-ATTCTGGCATTTGTCCTCTTCAA-3= *
-GCACCTGTGCATCCTGAATG-3= *
-GGGAACTTCAGGGGGAAATA-3= †

-CAGCCGTATAGGTCTCTGTGTA-3= *
-GGGGTCATTGATGGCAACAATA-3= *
-CCAGCAGGTCAGCAAAGAATTTA-3= *
-GCACTACAGAGTCGGTTTCCT-3= *
-CAGGTCAGCAGCAGAGTGTC-3= †

-TGGAATCCTGAACCCACTTCT-3= *
-GCCTTCGATTCTGGATTCAGACA-3= *
-GCTTGCTTCTTTTGGTTTGG-3= †

-CCCTAAGGCTTGGAACCCTTT-3= *
-CCGGGTACAATCGCACTTATACT-3= *
-TCTCAATACTGTAGGGCCTTCTT-3= *

Medical School (Wang et al23). PrimerBank IDs: Hprt, 7305155a2; Hmbs,
0a1; Ifng, 33468859a2; Il13ra1, 18204468a1; IL4Ra, 26329959a1; ADAM8,
CCL2, 4506841a1; CXCL10, 4504701a1; TIMP1, 4507509a1; COX2,
.harvard.edu/primerbank.
imer3).
5=
5=
5=
5=
5=
5=
5=
5=
5=
5=
5=
5=
5=

5=
5=
5=
5=
5=
5=
5=
5=
5=
5=
5=

Harvard
675543
47a1;
correlation coefficients with the sclGVHD expression sig-

http://ajp.amjpathol.org
http://www.geneontology.org
http://www.geneontology.org
http://ajp.amjpathol.org
http://pga.mgh.harvard.edu/primerbank
http://frodo.wi.mit.edu/primer3


1084 Greenblatt et al
AJP March 2012, Vol. 180, No. 3
nature were 0.144 � 0.140 for the inflammatory subset,
compared with �0.016 � 0.103 for diffuse-proliferation,
0.022 � 0.080 for limited, and �0.077 � 0.123 for nor-
mal-like subsets.

Because sclGVHD demonstrates a gene expression
pattern similar to the inflammatory SSc subset (Figure
1B), we reasoned that genes coexpressed in the model
and in patient biopsies would be important for disease
pathogenesis. SAM analysis19 was applied to the SSc
data set of Milano et al4 to identify genes in the inflam-
matory subset differentially expressed relative to other
subsets. The resulting 1055 genes obtained with a false
discovery rate of �0.05% (see Supplemental Table S3 at
http://ajp.amjpathol.org)4 were compared with the 194 hu-
man orthologs of the sclGVHD signature to identify genes in
common between the two. Sixty-nine genes were present in
both data sets, thereby defining the shared set of sclGVHD:
inflammatory-SSc genes (Figure 1C; see also Supplemental
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Table S4 at http://ajp.amjpathol.org25). Of these, 67 showed
a coordinate increase in expression in both sclGVHD and in
the inflammatory SSc subset.

Murine sclGVHD and the Inflammatory Subset
of SSc Display IL-13 Pathway Activation

Because the sclGVHD model approximates the inflam-
matory subset of SSc (Figure 1, B and C), we sought to
identify common deregulated pathways. IL-13 is a 10-
kDa cytokine produced by adaptive and innate immune
cells and has been linked to fibroinflammatory dis-
eases.27 Genetic and observational studies have associ-
ated IL-13 with SSc pathogenesis.28–31 To examine the
contribution of this cytokine to gene expression in SSc, an
IL-13–induced gene signature was derived in human der-
mal fibroblasts. Gene expression data for 491 probes
induced or repressed twofold or more from baseline in
fibroblasts treated with IL-13 (see Supplemental Table S5
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skin biopsy microarray data set.4 This analysis showed
that the human IL-13–gene signature is enriched in the
inflammatory subset of SSc but not in the diffuse-prolifer-
ation subset, and only weakly in the limited and normal-
like groups (Figure 2A). The average Pearson’s corre-
lation coefficient for the IL-13–responsive signature in
the inflammatory subset was 0.114 � 0.047, compared
with �0.113 � 0.073 for the diffuse-proliferation group,
0.040 � 0.072 for the limited group, and 0.020 � 0.098
for the normal-like group. Thus, IL-13–activated gene
expression is enriched in a subset of SSc patients that
includes those with diffuse, limited, and localized dis-
ease.4

To assess activation of the IL-13 pathway in sclGVHD
skin, a previously published IL-13–induced gene signa-
ture from a murine model of pulmonary fibrosis was used.
Fulkerson et al26 reported 734 genes with a �twofold
increase in expression in lungs of IL-13 transgenic ani-
mals. These genes were extracted from skin expression
data sets obtained from sclGVHD mice or controls 2 and
5 weeks after splenocyte transfer and were hierarchically
clustered in the gene and array dimensions (Figure 2B).
The murine sclGVHD samples could be clearly distin-
guished from syngeneic controls, based on their ex-
pression of IL-13–responsive genes (Figure 2B). The

greatest Pearson’s correlation coefficients were ob-
served at 2 weeks, with an average of 0.1164 � 0.03333
for the allogeneic mice (versus �0.08259 � 0.02544 for
the syngeneic controls), compared with 0.03451 �
0.06087 for the allogeneic mice at 5 weeks (versus
�0.09984 � 0.06994 for the syngeneic controls).

Last, we confirmed IL-13 protein expression in SSc
patients and in the sclGVHD model. In an independent
set of SSc skin biopsies (see Supplemental Table S6 at
http://ajp.amjpathol.org), a significant increase in IL-13�

cells was observed by IHC, compared with control biop-
sies (Figure 2, C and D). Explant cultures of sclGVHD
skin confirmed active secretion of IL-13 in lesional skin 2
weeks after induction of disease (Figure 2E). These data
indicate that IL-13 is produced at the major site of pa-
thology in both the inflammatory subset of SSc and the
sclGVHD model, initiating changes in gene expression
that likely contribute to disease pathogenesis.

Host-Derived IL-13 Contributes to the
Pathogenesis of sclGVHD

Both innate and adaptive immune cells produce patho-
logically relevant quantities of IL-13.27,32 To test the im-
portance of IL-13 derived from host innate immune cells,

Figure 2. The IL-13 pathway is activated in SSc
and sclGVHD skin. A: Gene expression data for
the 491 IL-13–responsive genes identified in hu-
man dermal fibroblasts were extracted from the
SSc skin data of Milano et al.4 SSc skin biopsy
samples are ordered by intrinsic subset and
genes are organized by hierarchical clustering.
The centroid average of the IL-13–responsive
gene signature at maximal induction (12 and 24
hours) is shown to the left of the heat map.
Pearson’s correlation coefficients between the
centroid and individual patient sample are plot-
ted below each array. B: Expression data for the
734 genes reported by Fulkerson et al26 as IL-
13–inducible genes in mouse lung were ex-
tracted from the sclGVHD microarray data set
obtained 2 weeks and 5 weeks after splenocyte
transfer (n � 4 per group). Genes and arrays
were organized by hierarchical clustering. The
relative expression of IL-13–inducible genes
(centroid) in lungs is shown to the left of the
heat map. C: Representative IL-13 IHC on skin
biopsies obtained from an SSc patient and a
normal control subject. Arrowheads indicate
IL-13� cells. Original magnification, �400. D:
Blinded quantification of the number of IHC
IL-13� cells per high-power field (�600) in skin
biopsies from SSc patients and normal control
subjects. SSc, n � 18; control, n � 6; P � 0.0037.
E: IL-13 ELISA on the tissue culture supernatants
of skin explants from BALB/c Rag2�/� mice that
received either syngeneic BALB/c (n � 3) or
allogeneic B10.D2 (n � 3) splenocytes 2 weeks
earlier (P � 0.002).
Rag2�/�Il13�/� hosts were generated and found to be

http://ajp.amjpathol.org
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partially protected from the clinical and histological evi-
dence of sclGVHD (Figure 3, A and C; see also Supple-
mental Figure S1, A, C, and D, at http://ajp.amjpathol.org).
Although histological evidence of inflammation and epi-
dermal hyperplasia was attenuated in IL-13–deficient
hosts, subcutaneous fat loss appeared to be indepen-
dent of host IL-13 status (Figure 3, A and C; see also
Supplemental Figure S1A at http://ajp.amjpathol.org).
Dermal fibrosis and combined total pathology score
showed a nonsignificant trend toward reduction in
Rag2�/�Il13�/� hosts (see Supplemental Figure S1A at
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http://ajp.amjpathol.org). Taken together, these data indi-
cate that IL-13 derived from host innate immune cells
contributes to the pathogenesis of sclGVHD.

The IL-13/IL-4 Receptor Complex Is Essential
for the Development of sclGVHD

To determine whether the relevant cellular target of IL-13
signaling is host-derived or graft-derived, hosts lacking
IL-4R�, an essential component of the type II IL-13/IL-4
receptor complex, were tested in the sclGVHD model.33
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hosts were completely protected from sclGVHD (Figure
3, B and C; see also Supplemental Figure S1, B, C, and
E, at http://ajp.amjpathol.org). Protection from disease
conferred by either IL-4R� or IL-13 deficiency was not
due to a failure of cell engraftment, because hosts lack-
ing these genes that received allogeneic splenocytes
displayed early signs of disease, including ruffled fur and
decreased activity (equaling a clinical score of 1) (Figure
3, A and B), as well as splenomegaly (see Supplemental
Figure S1F at http://ajp.amjpathol.org). These studies
demonstrate that IL-13 signaling in the host is critical for
the pathogenesis of sclGVHD.

To further define the contribution of IL-13/IL-4R� sig-
naling in sclGVHD, the IL-13 and the sclGVHD gene
expression signatures were assessed in Rag2�/�,
Rag2�/�Il13�/�, and Rag2�/�Il4ra�/� hosts. As ex-
pected, 2 weeks after splenocyte transfer the expression
of murine IL-13–inducible genes was highly expressed in
Rag2�/� hosts and significantly attenuated in
Rag2�/�Il4ra�/� hosts (Figure 3D). Similarly, although
Rag2�/� hosts demonstrated induction of the sclGVHD
signature reported in Figure 1A, this expression profile
was ablated in Rag2�/�Il4ra�/� hosts (Figure 3E). In con-
trast to IL-4R�–deficient hosts, clustering of the arrays
from Rag2�/� Il13�/� sclGVHD mice was dispersed
through samples from both Rag2�/� and Rag2�/�Il4ra�/�

hosts (Figure 3, D and E), likely a reflection of graft-derived
IL-13 in these hosts and their partial protection from dis-
ease. Loss of the IL-13 signature in IL-4R�–deficient hosts
validates this signature and its relevance as a probe for
IL-13 pathway activation.

IL-13 Is Derived from Dermal Macrophages and
T Cells in sclGVHD

To characterize the cellular source of IL-13 in sclGVHD, a
single-cell suspension was prepared from the skin 2
weeks after allogeneic or syngeneic cell transfer and
analyzed by flow cytometry for innate and adaptive im-
mune cells, including macrophages, dendritic cells, mast
cells, and T-lymphocytes (Figure 4A; see also Supple-
mental Figures S2, A–D, and S3, A and B, at http://
ajp.amjpathol.org). IL13 mRNA was dramatically up-regu-
lated in a CD45�CD11b�MHC class II�CD115�CD11c�

macrophage population (Figure 4, A and B; see also
Supplemental Figure S2A at http://ajp.amjpathol.org). Al-
though this population was present in mice that received
either allogeneic or syngeneic transplants, its frequency
was increased in allogeneic recipients (Figure 4A). Sim-
ilarly, mice demonstrating alopecia at 3 weeks displayed
higher levels of these cells, relative to those that failed to
develop clinical disease (see Supplemental Figure S2B
at http://ajp.amjpathol.org). In contrast, despite protection
from sclGVHD, these cells could be identified in the skin
of Rag2�/�Il4ra�/� hosts receiving an allogeneic trans-
plant (see Supplemental Figure S2C at http://ajp.
amjpathol.org). In allogeneic Rag2�/� recipients, this
population expressed markers of IL-13 activation
(Sprr2a),34 both M1 (Nos2, Cox2) and M2 (Arg1, Ym1)

macrophages (Figure 4B),35 and increased levels of Il4ra
expression (see Supplemental Figure S2D at http://ajp.
amjpathol.org). In Rag2�/�Il4ra�/� hosts, this population
had undetectable levels of Il4ra expression, indicating
that this macrophage population is entirely host-derived
(see Supplemental Figure S2D at http://ajp.amjpathol.
org). To determine the cellular source of IL-13 in SSc skin,
we costained serial sections for IL-13 and the macrophage
marker CD68 (Figure 4C). IHC signals for IL-13 and CD68
colocalized to cells with similar morphology within the same
inflammatory infiltrates; however, it was difficult to reliably
distinguish identical cells on serial sections (Figure 4C).
These data suggest that macrophages are a source of IL-13
in SSc skin.

T-cell infiltrates were also present in skin of Rag2�/�

and Rag2�/�Il4ra�/� host mice after transfer of allogeneic
but not syngeneic splenocytes (see Supplemental Figure
S3A at http://ajp.amjpathol.org), suggesting that host IL-
4R� signaling is not required for recruitment of T cells to
the skin. We additionally examined the influence of host
IL-13 or IL-4R� on cytokine production by graft T cells by
restimulating purified dermal or draining lymph node
CD4� T cells ex vivo. Restimulation elicited robust pro-
duction of IL-13 by both dermal and subcutaneous lymph
node CD4� T cells isolated from allogeneic recipients
(Figure 4D). This response was unaltered in CD4� T cells
from hosts deficient in either IL-13 or IL-4R� (Figure 4D).
This finding suggests that the increased protection from
disease in IL-4R�–deficient versus IL-13–deficient hosts
may be due to production of IL-13 from graft-derived
CD4� T cells. Because a previous report suggested that
mast cells drive fibrosis in GVHD,36 CD117� Fc�R� mast
cells were sorted from the skin of sclGVHD mice; however,
these cells were not found to express appreciable levels of
IL13 mRNA, compared with sorted dermal macrophages
(see Supplemental Figure S3B at http://ajp.amjpathol.org).
Taken together, our data indicate that IL-13 in sclGVHD skin
is derived from host macrophages and graft T cells.

Host IL-4R� Suppresses Regulatory
Mechanisms in sclGVHD

Additional analysis of CD4� T cells from draining lymph
nodes demonstrated significant production of IFN-�, IL-2,
and IL-17 in cells isolated from Rag2�/� mice receiving
allogeneic but not syngeneic splenocytes (see Supple-
mental Figure S3C at http://ajp.amjpathol.org). CD4� T
cells from either IL-13–deficient or IL-4R�–deficient
hosts showed unaltered production of IFN-� and IL-17
(see Supplemental Figure S3C at http://ajp.amjpathol-
.org). However, CD4� T cells isolated from IL-4R�–defi-
cient hosts did display a modest decrease in IL-2 produc-
tion (see Supplemental Figure S3C at http://ajp.amjpathol.
org). In contrast, a robust induction of IL-10 was observed in
CD4� T cells from either the skin or lymph nodes of IL-4R�–
deficient hosts (Figure 4E). CD4� T cells from the lymph
nodes of IL-13–deficient hosts displayed an intermediate
phenotype for IL-10 production (Figure 4E). Furthermore,
there was a large increase in regulatory T cells in the sub-
cutaneous lymph nodes of Rag2�/�Il4ra�/�, compared with

Rag2�/� hosts receiving an allogeneic transplant (Figure 4,
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F and G; see also Supplemental Figure S3, D and E, at
http://ajp.amjpathol.org). These data suggest that absence
of IL-4R� signaling in the host suppresses sclGVHD by
activating anti-inflammatory T-cell mechanisms, including
IL-10 production and regulatory T-cell differentiation.

Functional Redundancy of IL-13 and IL-4
Pathways in SSc Patients

Taken together, our results suggest that IL-13 derived
from host and graft sources promotes sclGVHD through
host IL-4R�. However, we cannot exclude the possibility
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that defective IL-4 signaling contributes to the additional
protection observed in IL-4R�–deficient hosts, compared
with those lacking IL-13 (Figure 3, A–E). To test for func-
tional overlap of the IL-4/IL-13 pathways in SSc patients,
we derived an IL-4-induced gene signature in human
dermal fibroblasts as described under Materials and
Methods (see Supplemental Table S7 at http://ajp.
amjpathol.org). When expression of the IL-4–responsive
signature was examined in the SSc patient skin gene
expression data set, this signature was also enriched in
the inflammatory subset (see Supplemental Figure S4A at
http://ajp.amjpathol.org).4 Accordingly, this IL-4–respon-
sive signature had an overlap of 	60% with that of the
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Figure 4. Characterization of the cellular immu-
nology of sclGVHD. A: Flow cytometric analysis
for CD11b and MHC class II on CD45� cells lib-
erated from the back skin of BALB/c Rag2�/�

hosts that received either syngeneic BALB/c or
allogeneic B10.D2 splenocytes 2 weeks earlier. B:
Quantitative PCR analysis for the expression of the
indicated genes from CD45�CD11b� cells sorted
from the skin of control or sclGVHD mice. Each
sample represents a pooled value reflecting all Syn
Rag2�/� and Allo Rag2�/� mice in an individual
experiment. The number of experiments pooled to
generate these data and the P values were as
follows: IL13, n � 5 (Syn) and n � 6 (Allo), P
� 0.0003; Sprr2a, n � 3 (Syn) and n � 4 (Allo),
P � 0.012; Nos2, n � 6 (Syn) and n � 4 (Allo),
P � 0.0042; Cox2, n � 3 (Syn) and n � 3 (Allo),
P � 0.0368; Arg1, n � 5 (Syn) and n � 5
(Allo), P � 0.054; and Ym1, n � 6 (Syn) and
n � 5 (Allo), P � 0.022. C: Representative CD68
and IL-13 IHC on skin biopsies obtained from
an SSc patient and a normal control subject.
Original magnification, �400. ELISA for IL-13
(D) and IL-10 (E) on tissue culture supernatants
of restimulated CD45�CD4� T cells. CD45�CD4�

T cells were isolated from lymph nodes (upper
panels, n � 3 per group) or skin (lower pan-
els) of BALB/c Rag2�/�, BALB/c Rag2�/
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Rag2�/�Il4ra�/� hosts that received either syn-
geneic BALB/c or allogeneic B10.D2 spleno-
cytes 2 weeks earlier. IL13: n � 3 (lymph
nodes) and n � 4 (skin). IL10: n � 3 per group.
The lack of a syngeneic control in the lower
panels reflects the paucity of T cells infiltrating
the skin of syngeneic controls (see Supplemen-
tal Figure S3A at http://ajp.amjpathol.org). Ab-
solute numbers of CD3�CD4�Foxp3� (P �
0.002) (F) and relative percentage of Foxp3 ex-
pression (G) within the CD3�CD4� gate of cells
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at http://ajp.amjpathol.org).21 Genomica21 pathway anal-
ysis demonstrated multiple shared pathways in the IL-13–
and IL-4–responsive gene signatures. Biological pro-
cesses, including inflammatory responses and cytokine ac-
tivity, were coordinately increased, whereas processes as-
sociated with cell proliferation were coordinately decreased
(see Supplemental Figure S4B at http://ajp.amjpathol.org).21

These results suggest that IL-4 and IL-13 can act in a
functionally redundant manner in SSc patients.

CCL2 Is Up-Regulated in IL-13–Stimulated
Human Dermal Fibroblasts and Skin Biopsies of
Both Inflammatory SSc Patients and sclGVHD
Mice

Our finding that IL-4R� is critical for sclGVHD and that an
IL-13 gene expression signature is increased in the in-
flammatory subset of SSc suggests that exploration of
this pathway could yield therapeutic targets. We rea-
soned that genes most central to disease pathogenesis
would be found among the overlap of genes up-regu-
lated within the core sclGVHD:inflammatory signature
(Figure 1C), IL-13–treated human dermal fibroblasts, and
the inflammatory subset of SSc (Figure 2A), as well as the
lungs of IL-13–transgenic animals.26 The chemokine
gene Ccl2 emerged as the sole gene present in all three
of these data sets (Figure 5A). Expression analysis
showed that both CD45�CD11b�MHC class II� macro-
phages and nonhematopoietic CD45� cells from the skin
of sclGVHD mice expressed Ccl2, indicating that this
chemokine is derived from multiple cellular sources (Fig-
ure 5B). Consistent with Ccl2 being an IL-13 target gene,
its expression was statistically reduced in the CD45�

subsets from IL-4R�–deficient hosts, with a similar trend
in the CD45� population (Figure 5B).

Figure 5. The overlap of multiple bioinformatics and experimental approaches
identifies CCL2 as a mediator of sclGVHD downstream of IL-13. A: Schematic of
how transcripts related to the IL-13 pathway in SSc and sclGVHD were identified
from overlapping of the three indicated data sets. Complete lists of genes are
given in Supplemental Tables S4, S5, and S8 (available at http://ajp.amjpathol.
org). B: Expression of Ccl2 by quantitative RT-PCR in CD45�CD11b�MHC
class II� (left panel) and CD45� (right panel) cells sorted from the skin of
BALB/c Rag2�/� or BALB/c Rag2�/�Il4ra�/� hosts that received either
syngeneic BALB/c or allogeneic B10.D2 splenocytes 2 weeks earlier (n � 3
per group). P � 0.001, Allo Rag2�/� versus Allo Rag2�/�Il4ra�/�

(CD45�CD11b�MHC class II�; left panel); P � 0.10, Allo Rag2�/� versus
Allo Rag2�/�Il4ra�/� (CD45�; right panel). C: Clinical scores versus time
(mean � 95% CI) and Kaplan-Meier survival curve (P � 0.02) for BALB/c
Rag2�/� hosts that received allogeneic B10.D2 splenocytes and randomized
on day 0 to biweekly injections of either blocking antibodies to CCL2 (20
mg/kg) and CCL12 (10 mg/kg) (n � 20), or an isotype control antibody (30
mg/kg) (n � 20). D: Representative H&E-stained sections from the back skin
of BALB/c Rag2�/� hosts that received either syngeneic BALB/c or alloge-
neic B10.D2 splenocytes 6 weeks earlier and treated with the indicated
antibodies. Original magnification, �100. E: Pathological scores for BALB/c
Rag2�/� hosts that received allogeneic B10.D2 splenocytes and treatment
with either blocking antibodies to CCL2/CCL12 (n � 19) or an isotype control
antibody (n � 18). P � 0.0003, combined pathological score; P � 0.0007,

lipoatrophy; P � 0.0524, fibrosis; P � 0.0008, inflammation; and P � 0.0021,
epidermal hypertrophy.
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Blockade of CCL2 and CCL12 Prevents sclGVHD

Neutralizing antibodies were used to test the functional
significance of CCL2 in sclGVHD. Because mice have a
functionally redundant CCL2 ortholog, CCL12, we co-
treated mice with blocking antibodies to both chemo-
kines.16 Similar to host mice lacking IL-4R�, sclGVHD
mice treated with blocking antibodies to CCL2/12 devel-
oped early signs of disease, including hair ruffling and
inactivity, but were almost completely protected from
clinical and pathological disease manifestations (Figure
5, C, D, and E; see also Supplemental Figure S5, A and
B, at http://ajp.amjpathol.org). These data indicate that
the CCL2 axis is critical for the development of sclGVHD.

Expression of IL-13 Pathway Genes and CCL2
Correlate with mRSS

Because our data suggest that IL-13 plays a pathogenic

Figure 6. The expression of the IL-13 pathway genes correlates with mRS
indicated genes in skin biopsies from diffuse SSc patients and normal contro
0.05; **P � 0.007. C and D: Correlation of the expression of the indicated ge
R2 � 0.57, IL13RA1; 0.57; R2 � 0.66, IL4RA; R2 � 0.001, GAPDH; R2 � 0.45
role in SSc, we investigated whether the expression of
genes associated with the IL-13 pathway was increased
in skin biopsies from an independent cohort of early SSc
patients with diffuse disease (average disease duration,
24.46 � 10.6 months) versus normal control subjects
(see Supplemental Table S9 at http://ajp.amjpathol.org).
We then investigated whether expression levels of the
genes identified correlated with mRSS. Transcripts en-
coding both IL-13 receptor components, IL-13RA1 and
IL-4RA, were significantly increased in skin of SSc pa-
tients, and expression robustly correlated with mRSS
(Figure 6, A and C). Moreover, expression levels of both
transcripts tightly correlated with one another (see Sup-
plemental Figure S6A at http://ajp.amjpathol.org). As a
control, GAPDH showed neither an increase in expres-
sion in SSc patients nor a correlation with either mRSS or
IL-13RA1 (Figure 6, A and C; see also Supplemental
Figure S6A at http://ajp.amjpathol.org).

To assess whether markers of IL-13 pathway activation
correlate with mRSS, a subset of genes at the intersection

patients. A and B: Quantitative RT-PCR analysis for the expression of the
ts. Data points represent individuals; error bars indicate means � SEM. *P �
mRSS obtained at the time of biopsy in SSc patients. *P � 0.05; **P � 0.007.
R2 � 0.59, CCL4; and R2 � 0.61, CXCL10.
S in SSc
l subjec
of the IL-13–transgenic lung signature26 and the scl-
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GVHD/human SSc overlap (Figure 1C) were evaluated.
These included CCL2, CCL4, CXCL10, TIMP1, and
ADAM8 (Figure 5A). Absolute levels of expression of
CCL2 were higher in SSc patients and correlated signif-
icantly with mRSS and IL13RA1 (Figure 6, B and D; see
also Supplemental Figure S6B at http://ajp.amjpathol.org).
In contrast, although absolute expression levels of CCL4,
CXCL10, TIMP1, and ADAM8 were not statistically higher
in this cohort, those patients with increased levels of
expression of these genes displayed higher mRSS (Fig-
ure 6, B and D; see also Supplemental Figure S6C at
http://ajp.amjpathol.org). Our observation that expression
of these markers correlates with mRSS without a statisti-
cally significant increase in absolute expression may re-
flect heterogeneity in our cohort, which likely contains
patients with the inflammatory and diffuse-proliferation
expression patterns.4 Other markers of immune system
activation (ARG1, COX2) did not correlate with mRSS,
suggesting specificity of our findings (see Supplemental
Figure S6D at http://ajp.amjpathol.org). Taken together,
these data link expression of the IL-13 pathway with both
the presence of SSc and a marker of skin disease sever-
ity. Furthermore, the finding that CCL2 expression corre-
lates with both the diagnosis of SSc and mRSS validates
our combined gene profiling and disease model ap-
proaches to identify therapeutic targets relevant to hu-
man disease.

Discussion

A major goal of modern medicine is the development of
therapeutic regimens personalized to disease processes
in individual patients to improve outcomes, reduce ad-
verse events, and control costs. Although success has
been obtained with more common diseases character-
ized by pathogenic genetic abnormalities, such as breast
cancer and leukemia,37,38 autoimmune conditions have
proven difficult, in large part because of a lack of insight
into patient subsets and the animal models that might
reflect them. This lack of accurate animal models pre-
cludes the identification of mechanism-based therapies
for rare diseases such as SSc, a situation in which limited
resources are best applied in high-yield trials that can be
planned only with proper patient subsetting combined
with strong preclinical data. Here, we address these chal-
lenges through a personalized translational medicine ap-
proach, combining the patient subsetting methods of
personalized medicine with the use of translational ani-
mal models.

In particular, the sclGVHD model resembles a subset
of SSc patients characterized by expression of inflamma-
tory pathways. This subset represents 17% (3/17) and
36% (8/22) of diffuse disease patients in two pub-
lished4,13 cohorts, as well as 28% (2/7) of patient s with
limited disease and all (3/3) patients analyzed with local-
ized scleroderma (morphea).4 In addition to the similari-
ties at a global gene expression level, both sclGVHD
mice and inflammatory SSc patients display IL-13 path-
way activation. Confirming the molecular similarity be-

tween murine sclGVHD and inflammatory SSc patients
validates the model as a platform to develop subset spe-
cific therapeutics. Indeed, our functional data indicate
that the IL-13/IL-4R� pathway is a high-yield target in this
population. The enrichment of the IL-13 and IL-4 signa-
tures in the limited SSc group of Milano et al4 suggests
that blockade of these pathways may also be relevant for
those with limited scleroderma. In contrast, the sclGVHD
model does not appear to be an appropriate model for
patients classified in the diffuse-proliferation or normal-
like subsets. Other mouse models will need to be ana-
lyzed to identify the appropriate ones for these patients.

The data presented here are most relevant for patients
with localized scleroderma (morphea), as well the esti-
mated 28% of those with limited disease and the 17% to
36% of patients with diffuse SSc who map to the inflam-
matory subset. Identifying the inflammatory subset of pa-
tients by molecular methods, such as measuring gene
expression in skin, would identify those patients likely to
respond to therapeutic targeting of this pathway before
clinical trials and thus would overcome a critical barrier to
success.

Although a previous study examined gene expression
changes in the skin of a variant of the sclGVHD model
reported here,39 we present the first direct comparison
with SSc and address how the sclGVHD expression sig-
nature relates to the heterogeneity among patients with
this disease. Analysis of the core genes differentially ex-
pressed between the mouse and human tissues resulted
in identification of 69 sclGVHD:inflammatory-SSc overlap
genes, including robust chemokine and interferon signa-
tures (see Supplemental Table S8 at http://ajp.amjpathol.
org). Chemoattractants for activated T cells, basophils,
neutrophils, and monocytes (CCL2, CCL5, CXCL10,
CCL4) are highly represented in the overlap, suggesting
that similar immune infiltrates contribute to both diseases.
In addition, consistent with activation of IFN signaling,
IFN-induced genes (eg, NMI, IFI30, IFI44, IFIH1, IFIT1), as
well as a gene that transmits IFN signaling (STAT1), are
also highly represented in this gene set. This latter ob-
servation supports previous work showing IFN-induced
gene expression in SSc peripheral blood mononuclear
cells and skin.4,40,41 Of the 69 sclGVHD:inflammatory-
SSc core genes, nearly half (31/69, or approximately
45%) were also induced by IL-13 in the transgenic mouse
lung model26 (see Supplemental Table S8 at http://ajp.
amjpathol.org).26 This constrained list of robustly ex-
pressed core sclGVHD:inflammatory-SSc overlap genes,
of which many are IL-13–regulated, provides candidates
for further therapeutic investigation.

In addition to demonstrating that the sclGVHD model
and the inflammatory SSc subset4 display IL-13 pathway
activation, functional evidence for the importance of this
pathway is provided. Mice deficient in IL-13 or IL-4R�
displayed reduced sclGVHD incidence and severity, and
our data indicate that IL-13 from host and graft-derived
sources signals back to the host to drive disease. IL-13
production in the model was localized to two cell lin-
eages: graft T cells and host macrophages that express
both classical (M1) and alternative (M2) activation mark-
ers. In SSc skin biopsies, we identified an up-regulation

of IL-13–expressing cells and localized expression to
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immune infiltrates containing CD68� macrophages. Last,
we found that expression levels of IL13RA1 and IL4RA, as
well as IL-13 pathway genes such as CCL2 and CCL4,
are increased in skin and correlate with mRSS, a marker
of disease severity.

Previous studies support an important role for IL-13
and CCL2 in SSc. Others have demonstrated increased
levels of IL-13 and IL-13–producing T cells in the blood of
SSc patients.28,31,42 Moreover, polymorphisms in IL-13
are associated with incident SSc.30 Functional analysis of
IL-13 in scleroderma models has been limited to bleomy-
cin-induced fibrosis in skin43 and lung.44,45 However, the
relevance of the bleomycin model to the human molecu-
lar SSc subsets is as of yet undefined. Thus, although
these studies suggest an association between IL-13 and
SSc, both functional evidence for the importance of IL-13
in a validated animal model of the disease and mecha-
nistic insight into the sources and role of IL-13 have been
lacking. Taking together these various considerations,
the present study is the most comprehensive translational
evaluation of the IL-13 pathway in SSc to date.

Although T cells are a well-established source of IL-13
in atopic and parasitic diseases,46 evidence for patho-
logical production of IL-13 from macrophages is less well
described. In a postinfectious model of chronic broncho-
pulmonary disease, IL-13–secreting macrophages were
identified in later stages of disease, and IL-13 blockade
prevented mucous cell metaplasia and airway hyperre-
activity.32 This macrophage population demonstrated
up-regulation of M2 markers. However, M1 markers were
not reported, leaving open the possibility that these cells
may also display a hybrid M1/M2 phenotype, as ob-
served in the present study. An IL-13–secreting
CD11b�IL-4R�� tumor-associated macrophage popula-
tion expressing both M1 and M2 markers has been iden-
tified,47 similar to our population in sclGVHD skin. We
speculate that macrophages programmed to secrete
IL-13 cause tissue fibrosis across a variety of pathologi-
cal conditions.

The finding that IL-4R�–deficient hosts are protected
from sclGVHD is in striking contrast to other disease
models, such as schistosomiasis, in which deletion of
Il4ra results in an exacerbated, lethal inflammatory re-
sponse.48 Protection in the schistosomiasis model was
linked to the ability of IL-4R� to promote the differentiation
of immunosuppressive M2 macrophages. Likewise, ex-
pression of IL-4R� was important for the immunosuppres-
sive capacity of the tumor-induced macrophages.47 In
contrast, we observe that graft T cells isolated from the
skin or draining lymph nodes of hosts deficient in IL-4R�
make more IL-10, a potent immunosuppressive cytokine.
Moreover, a dramatic increase in regulatory T cells was
observed in IL-4R�–deficient hosts. Our studies support
a model whereby the IL-13/IL-4R� axis in the host is
uncoupled from its typically described immunosuppres-
sive role and instead subverts regulatory mechanisms in
graft T cells, promoting inflammation and fibrosis.

We show that inhibition of CCL2 blocked sclGVHD and
that, in SSc patients, expression levels of CCL2 in lesional
skin strongly correlated with mRSS. Elevated levels of

CCL2 have been previously documented in serum, skin,
and fibroblasts from SSc patients, and CCL2 has been
suggested as a disease progression biomarker.49–51 In
lesional SSc skin, CCL2 is produced by numerous cell
types, including endothelial cells, fibroblasts, and mono-
nuclear cells,49,50,52 consistent with our finding of CCL2
up-regulation in both CD45� and CD45� populations in
sclGVHD. In bleomycin models of skin and pulmonary
fibrosis, genetic deficiency or pharmacological inhibition
of CCL2, or its receptor, attenuates disease as
well.16,53,54 The profibrotic activity of CCL2 has been
linked to its ability to recruit monocytes, promote Th2
differentiation, and augment fibroblast responsiveness to
TGF�.54 Our findings complement these studies and es-
tablish a functional role for CCL2 in an animal model of
SSc validated to represent a specific disease subset.

Our data indicate that SSc patients exhibiting an in-
flammatory gene expression signature, one that repre-
sents all patients with localized disease and a subset of
patients with limited and diffuse SSc, can be modeled
using murine sclGVHD and may be effectively treated
with strategies targeting IL-13, IL-4R�, or CCL2. Given
that both biological and small-molecule antagonists tar-
geting IL-1355 and CCL2 have been developed,56,57 we
suggest that these agents be applied in a clinical trial of
SSc patients with the inflammatory gene expression sig-
nature. Because patient stratification by degree of skin
involvement is insufficient to identify the inflammatory
subset, these patients should be identified by molec-
ular means, such as gene expression profiling of skin
biopsies.
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