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Abstract
Glioblastomas are characterized by an aggressive local 
growth pattern, a marked degree of invasiveness and 
poor prognosis. Tumor invasiveness is facilitated by 
the increased activity of proteolytic enzymes which are 
involved in destruction of the extracellular matrix of 
the surrounding healthy brain tissue. Elevated levels of 
matrix metalloproteinases (MMPs) were found in glio-
blastoma (GBM) cell-lines, as well as in GBM biopsies 
as compared with low-grade astrocytoma (LGA) and 
normal brain samples, indicating a role in malignant 
progression. A careful review of the available literature 
revealed that both the expression and role of several 
of the 23 human MMP proteins is controversely dis-
cussed and for some there are no data available at 
all. We therefore screened a panel of 15 LGA and 15 
GBM biopsy samples for those MMPs for which there 
is either no, very limited or even contradictory data 

available. Hence, this is the first complete compila-
tion of the expression pattern of all 23 human MMPs 
in astrocytic tumors. This study will support a better 
understanding of the specific expression patterns and 
interaction of proteolytic enzymes in malignant human 
glioma and may provide additional starting points for 
targeted patient therapy.
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INTRODUCTION
Glioblastomas (GBM) are the most common malignant 
brain tumors in adults[1]. High grade glioblastoma (WHO 
grade Ⅳ) may develop from low grade astrocytoma 
(LGA) (WHO grade Ⅱ), anaplastic astrocytoma (WHO 
grade Ⅲ) or they may manifest de novo without low grade 
precursor lesions[1,2]. Whereas the prognosis of  patients 
with anaplastic astrocytomas or GBM remains poor, 
patients with LGA have a better prognosis[3]. Patients 
with anaplastic astrocytomas or GBM are on average 
older (median age at diagnosis is 40 years and 53 years, 
respectively), compared to those with LGA (mean age at 
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diagnosis 35 years)[3]. Despite multidisciplinary treatment 
which includes surgery, temozolomide chemotherapy 
and γ-irradiation, the overall median survival time for 
patients with malignant glioblastoma is as low as 14.6 
mo[4] and there are only a few reports of  patients who 
have survived more than 5 years[5]. 

This limited prognosis of  GBM patients is the result 
of  an aggressive local growth pattern and the marked 
degree of  invasiveness displayed by these tumors[6,7]. 
Glioma cell invasion requires an intricate series of  both, 
host and tumor related steps, involving tumor cell mi-
gration and tumor matrix disintegration. Disruption 
of  the extracellular matrix (ECM) is a prerequisite for 
tumor cell invasion, because it delivers the tracks for 
the migrating cells[8]. A number of  different proteolytic 
enzymes such as matrix metalloproteinases (MMP) are 
overexpressed during tumor development[9,10]. Their role 
is to break down the structural barriers to migration and 
invasion by dissolving and destroying the matrix proteins 
of  the surrounding normal brain tissue[11,12].

Interference with MMP-9 and one of  its upstream 
regulators by RNA interference led to a reduction in 
tumor growth and invasion in a mouse model[13]. Under-
standably, reducing MMP activity has been probed as a 
new therapeutic measure to stop or at least delay tumor 
invasion and to ultimately prolong patient survival. How-
ever, the inhibition of  MMPs with broad-band synthetic 
and natural inhibitors has, as yet, been of  little clinical 
success due to the development of  severe side effects 
during treatment[14,15]. MMP-9, MMP-2 and its activa-
tor MMP-14 are involved in migration and invasion of  
human GBM cells[16-19] and the first clinical trials using 
the MMP inhibitor, marimastat, in combination with 
chemotherapy have recently been performed in GBM 
patients[20,21]. It stands to reason that a more specific in-
hibition of  individual or combined MMPs may be effec-
tive in the treatment of  gliomas and have fewer unwant-
ed side-effects. In order to generate these future therapy 
concepts a thorough knowledge of  MMPs expression 
patterns and their interaction is required. This review 
summarizes currently available data on the expression of  
MMPs in human glioblastomas. We also present our own 
data on those MMPs, not yet published in literature.

MATRIX METALLOPROTEINASES
Matrix metalloproteinases are a family of  zinc-dependent 
endopeptidases. A total of  23 family members have been 
identified in humans so far. These are numbered in the 
sequence of  their discovery[12] (Table 1). MMPs mediate 
the degradation of  protein components of  the ECM 
and of  basement membranes. Both are essential for the 
interaction of  individual cells with their surrounding and 
for the development and function of  multicellular or-
ganisms[11]. Thus, MMPs play a central role in a number 
of  physiological processes, including embryonic growth 
and development, implantation, morphogenesis, bone 
remodelling, wound healing, angiogenesis, apoptosis, 

and nerve growth[24], during which they are produced by 
e.g., trophoblasts, keratinocytes, (pre)osteoclastic cells 
and fibroblasts[25]. However, increased expression and 
activation of  MMPs also contributes to a number of  
pathological processes such as rheumatoid arthritis, car-
diovascular diseases or cancer progression[26-28].

To date, numerous substrates of  MMPs have been 
identified by in vitro and in vivo studies, including colla-
gens, non-collageneous glycoproteins and proteoglycans, 
which underline their participation in the degradation of  
ECM proteins. Other ECM components like tenascin, 
fibronectin and laminin, which often show tumor spe-
cific expression are also substrates[29]. So are precursor 
forms of  many growth factors, including tumor growth 
factor-α (TGF-α). For a more complete overview of  
specific substrates of  MMPs refer to Table 1. 

Originally, MMPs were classified according to their 
respective substrate specificity. However, because of  a 
considerable overlap in substrate preference they are 
now divided into eight structural subgroups, five of  
which are secreted and three of  which are transmem-
brane MMPs[12] (Table 1 and Figure 1). Members of  
each group contain a group-specific prodomain, which 
is lost during enzyme activation. A zinc-interacting thiol 
group, and a catalytic domain with a highly conserved 
zinc-binding site are common to all MMPs, and only 
MMP-23 lacks an amino-terminal signalling peptide. 
Connected to the catalytic domain by a hinge linker, a 
hemopexin-like carboxy-terminal domain is found in all 
MMPs, except MMP-7, MMP-26 and MMP-23. MMP-2 
and MMP-9 contain an additional gelatin-binding do-
main, which is inserted between the catalytic and the he-
mopexin domain. All membrane-type (MT)-MMPs have 
a transmembrane domain added to their C-terminus[30] 
and contain a furin-like cleavage site, which is important 
during enzyme activation (Table 1 and Figure 1). This 
latter site is also found in the furin-activated and secreted 
MMPs e.g., MMP-11[31].

Regulation of MMP activity
As MMPs are involved into the breakdown of  the ECM 
in normal tissue, their secretion and activity has to be 
tightly controlled in order to prevent pathological tissue 
disruption. Complex regulatory mechanisms of  their dif-
ferential activity involve transcriptional regulation, activa-
tion of  pro-enzymes and inhibition of  active enzymes by 
specific endogenous inhibitors. Comprehensive reviews 
are available which specifically focus on this complex 
process[32-38]. We therefore, concentrate on presenting 
only a short overview.

Most MMPs are not constitutively expressed in 
the cell. Their transcription is induced by a variety of  
growth factors, such as epidermal growth factor (EGF), 
transforming growth factor-β (TGF-β), platelet-derived 
growth factor (PDGF) and various inflammatory cy-
tokines including TNF-α and interleukin-1β (IL-1β)[39]. 
Physical stress, various chemical agents (e.g., phorbol 
esters), oncogene products, as well as cell-cell and cell-
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  MMP Alternative names Group Substrates
  MMP-1 Collagenase-1, interstitial col-

lagenase, fibroblast collage-
nase, tissue collagenase

Collagenases Aggrecan, collagen Ⅰ,Ⅱ, Ⅲ, Ⅶ, Ⅷ, Ⅹ, XI, entactin/nidogen, fibronectin, gelatin I, IGFBPs, lam-
inin, link protein, myelin basic, tenascin, vitronectin, α 1-AC, α 2-M, α1-PI, casein, C1q, fibrin, 
fibrinogen, IL1β, proTNFα, serpins

  MMP-2 Gelatinase A, 72-kDa gelati-
nase, 72-kDa type IV collage-
nase, neutrophil gelatinase

Gelatinases Aggrecan, collagen Ⅰ, Ⅲ, Ⅳ, Ⅴ, Ⅶ, Ⅹ, XI, decorin, elastin, entactin/nidogen, fibrillin, fibronec-
tin, fibulins, gelatin Ⅰ, IGFBPs, laminin, link protein, myelin basic, osteonectin, tenascin, vitro-
nectin, α1-AC, α 1-PI, C1q, fibrin, fibrinogen, IL1β, monocyte chemoattractant protein 3, proTGF β, 
proTNF α, plasminogen, substance P, T kininogen

  MMP-3 Stromelysin-1, transin-1, pro-
teoglycanase, procollagenase 
activating protein

Stromelysins Aggrecan, collagen Ⅲ, Ⅳ, Ⅴ, Ⅶ, Ⅸ, Ⅹ, XI, decorin, elastin, entactin/nidogen, fibrillin, fibro-
nectin, gelatin I, IGFBPs, laminin, link protein, myelin basic, osteonectin, tenascin, vitronectin, 
α1-AC, α 2-M, α 1-PI, casein, C1q, E-cadherin, fibrin, fibrinogen, IL1β, osteopontin, proTNF α, 
plasminogen, substance P

  MMP-7 Matrilysin, matrin, PUMP1, 
small uterine metalloprotein-
ase

Matrilysins Aggrecan, collagen Ⅰ, Ⅳ, decorin, elastin, entactin/nidogen, fibronectin, fibulins, gelatin I, 
laminin, link protein, myelin basic, osteonectin, tenascin, vitronectin, α 1-PI, casein, E-cadherin,  
fibrinogen,  proTNF α,  plasminogen, versican

  MMP-8 Collagenase-2, neutrophil col-
lagenase, PMN collagenase, 
granulocyte collagenase

Collagenases Aggrecan, collagen Ⅰ,Ⅱ, Ⅲ, Ⅸ, Ⅹ, α 2-M, α 1-PI, C1q, E-cadherin, fibrinogen, laminin, serpins, 
substance P

  MMP-9 Gelatinase B, 92-kDa gelatin-
ase, 92-kDa type IV collage-
nase

Gelatinases Aggrecan, collagen Ⅳ, Ⅴ, Ⅶ, Ⅹ, XI, XIV, decorin, elastin, fibrillin, gelatin I, laminin, link protein, 
myelin basic, osteonectin, vitronectin, α 2-M, α 1-PI, casein, C1q, fibrin, fibrinogen, IL1β, proTGF 
β, proTNF α, plasminogen, substance P

  MMP-10 Stromelysin-2, transin-2 Stromelysins Aggrecan, collagen Ⅲ, Ⅳ, Ⅴ, elastin, fibronectin, gelatin I, link protein, casein,  fibrinogen, osteo-
pontin

  MMP-11 Stromelysin-3 Other MMPs IGFBPs, α 2-M, α 1-PI,  serpins
  MMP-12 Metalloelastase, macrophage 

elastase, macrophage metal-
loelastase

Stromelysins Aggrecan, collagen Ⅰ, Ⅳ, elastin, entactin/nidogen, fibrillin, fibronectin, gelatin Ⅰ, laminin, 
myelin basic, vitronectin, apolipoprotein A, α 2-M, α 1-PI, factor XII, fibrinogen, proTNF α, plas-
minogen

  MMP-13 Collagenase-3 Collagenases Aggrecan, collagen Ⅰ,Ⅱ, Ⅲ, Ⅵ, Ⅸ, Ⅹ, XIV, fibrillin, fibrin, fibronectin, gelatin Ⅰ, laminin, os-
teonectin, α 2-M, casein, C1q, factor XII, fibrinogen,  perlecan, pro-MMP2, serpins

  MMP-14 MT1-MMP, MT-MMP1 Membrane-
type MMPs

Aggrecan, collagen Ⅰ,Ⅱ, Ⅲ, entactin/nidogen, fibrillin, fibronectin, gelatin I, laminin, vitronec-
tin, α 2-M, α 1-PI, factor XII, fibrin, fibrinogen, proMMP2, proTNF α

  MMP-15 MT2-MMP, MT-MMP2 Membrane-
type MMPs

Aggrecan, fibronectin, laminin, nidogen, perlecan, tenascin

  MMP-16 MT3-MMP, MT-MMP3 Membrane-
type MMPs

Cartilage proteoglycans, casein, collagen Ⅲ, fibronectin, gelatin, laminin, α 2-M

  MMP-17 MT4-MMP, MT-MMP4 Membrane-
type MMPs

Fibrin, fibrinogen, TNF precursor

  MMP-19 RASI-1, MMP-18 Other MMPs Aggrecan, collagen Ⅰ, Ⅳ, fibronectin, gelatin I, laminin, nidogen, cartilage oligometric matrix 
protein, casein, tenascin

  MMP-20 Enamelysin Other MMPs Amelogenin, aggrecan,  cartilage oligometric matrix protein
  MMP-21 Homologue of Xenopus XMMP Other MMPs ND
  MMP-23 Cysteine array MMP (CA-MMP), 

femalysin, MIFR, MMP-21/
MMP-22, MMP-23A/MMP-23B1

Other MMPs McaPLGLDpaARNH 2 (synthetic MMP substrate)

  MMP-24 MT5-MMP, MT-MMP5 Membrane-
type MMPs

Proteoglycans

  MMP-25 MT6-MMP, MT-MMP6, leu-
kolysin

Membrane-
type MMPs

Collagen Ⅳ, gelatin, fibrin, fibronectin

  MMP-26 Endometase, matrilysin-2 Matrilysins Collagen Ⅳ, fibronectin, gelatin Ⅰ, α 1-PI,  fibrinogen, TACE substrates
  MMP-27 Other MMPs ND
  MMP-28 Epilysin Other MMPs Casein

Table 1  The human matrix metalloproteinase family

ECM interactions can also induce or repress the expres-
sion of  MMPs[24].

MMPs are produced and secreted by cells as inac-
tive zymogens, also referred to as pro-MMPs. These 
inactive enzymes contain a pro-peptide region with a 
cysteine-sulphydryl residue near the C-terminal end of  
the peptide (Figure 1). The zinc ion of  the catalytic re-

gion, which is essential for MMP activity, is bound to 
this residue of  the pro-peptide, thus blocking the active 
site. Activation of  pro-enzymes begins with the disrup-
tion of  the cysteine-zinc interaction (cysteine switch) 
and exposure of  the catalytic site[32,40]. Proteinases and 
non-proteolytic agents such as SH-reactive agents, mer-
curial compounds, reactive oxygen or denaturants are 

1The amino acid sequences of MMP23A and MMP23B are almost identical, but are encoded by distinct genes[22,23]. α 1-AC: α 1-antichymotrypsin; α 2-M: α 
2-macroglobulin; α 1-PI: α 1-proteinase inhibitor; ND: No data available; TACE: TNF α converting enzyme; MMP: Matrix metalloproteinases.
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involved in the activation process[24] with the exception 
of  MMP-11[31], MMP-14[41,42], MMP-16[43] and the mouse 
homologue of  MMP-28 (the human MMP-28 has not 
yet been investigated)[44], which are activated prior to 
secretion by furin-like serine proteinases. Moreover, the 
activation of  certain MMPs is dependent on the pres-
ence and activity of  other MMPs[14], such as activation 
of  MMP-1 by MMP-10[45], or MMP-2 by MMP-14[11,46-48], 
a fact that may be reflected in the close correlation 
of  their expression patterns. It is also suggested that 
MMP-15 acts synergistically with MMP-14 in activation 
of  pro-MMP-2[49]. In addition, gelatin-zymography sug-
gested that tumor related overexpression of  MMP-24 
contributes to generation of  the gelatinolytic activity in 
conjunction with MMP-2[50] and demonstrated the ability 
of  MMP-25 to mediate the membrane activation of  pro-
MMP-2, thus suggesting that overexpression of  this pro-
tease by tumor cells facilitates the progression of  brain 
tumors in vivo[51].

The fully active enzyme is generated by proteolytic 
cleavage of  the pro-peptide domain of  the partially ac-
tive intermediate enzyme[11].

Once active, MMPs are regulated by interactions 
with endogenous inhibitors including α2-macroglobulin, 
thrombospondin-2, tissue inhibitors of  metallopro-
teinases (TIMPs) and RECK (reversion-inducing 
cysteine-rich protein with kazal motifs)[12]. Whereas α2-
macroglobulins play an important role in the irreversible 
clearance of  MMPs in tissue fluids by forming complex-
es with them, which are afterwards removed by scaven-
ger receptor-mediated endocytosis[11], the TIMP protein 

family leads to a locally restricted and reversible inhibi-
tion of  MMPs. To date, these proteins are the best stud-
ied natural inhibitors of  MMPs and comprise the four 
structurally related proteins, TIMP1 to TIMP4. TIMPs 
are secreted in a soluble form in most tissues and body 
fluids with the exception of  TIMP3, which is closely as-
sociated with the ECM[52]. They specifically form non-
covalent stoichiometric complexes with the zinc binding 
sites of  active MMPs[53]. Individual TIMPs differ in their 
ability to modulate the various MMPs. For instance, 
TIMP1 only inhibits MMP-16 very weakly. TIMP2 and 
TIMP3 are effective inhibitors of  the membrane-type 
MMPs, e.g., MMP-14, and TIMP3 inhibits MMP-9 with 
a higher affinity than the other TIMPs[11,54]. TIMP4, in 
contrast, seems to be a strong inhibitor of  all MMPs[55]. 
However, TIMPs are also involved in the activation of  
MMPs. Pro-MMP-2 is activated at the plasma membrane 
through a unique multistep pathway involving both, 
active and TIMP2-bound MMP-14[46,47], as shown by 
measuring its gelatinolytic activity using in situ zymog-
raphy[49,51]. The hemopexin domain of  pro-MMP-2 in-
teracts with the C-terminal domain of  TIMP2, whereas 
MMP-14 associates with the N-terminus of  TIMP2 and 
is inhibited in this way. This complex allows an adjacent 
uninhibited MMP-14 to cleave the N-terminal prodo-
main of pro-MMP-2, thus generating the intermediate 
MMP-2, which is then completely activated by removal 
of  the residual portion of  the pro-peptide by another 
MMP-2 molecule[11,48]. Consistently, only the latent form 
of  MMP-2 is found in malignant glioma cells that lack 
MMP-14 protein[56] and MMP-2 is constitutively pro-
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duced at low levels during normal tissue maintenance 
and remodelling[46,57].

MMP EXPRESSION BY GLIOBLASTOMAS
Human glioblastoma cell-lines
Human GBM cell-lines are commonly used for in vitro 
and in vivo studies of  cell migration and invasion[58-62]. 
Although numerous studies have investigated the ex-
pression of  selected MMPs in human GBM cell lines[10

,13,51,56,63-77], as summerized in Table 2, the only compre-
hensive study of  all 23 MMPs is an analysis of  U251 
glioma cells by quantitative real time PCR[71]. As it has 
already been reported that there are differences in the 
expression patterns of  MMPs in different cell-lines, even 
when they originate from the same type of  tissue[67], it 
is not surprising that MMP expression varies in differ-
ent glioma cell-lines. It is conspicuous that MMP-13, 
-17, -19 and -24 were expressed by all analyzed cell-lines, 
whereas MMP-20 and MMP-21 were not expressed 
by any of  the GBM cells (Table 2). Controversial data 
on MMP expression have been reported for MMP-2 
in U251, MMP-3 in U87, U373 and U138, MMP-7 in 
U87, U138 and T98G, MMP-8 in U251, MMP-9 in 
SNB-19, U251, U87, U373, A172 and T98G, MMP-11 
in U251, U373 and T98G, MMP-12 in U251 and U138, 
MMP-14 and -15 in U87 and U373 and MMP-16, -26 
and -27 in U251 cells (Table 2). A number of  different 
techniques have been used to detect protease expres-
sion patterns including semiquantitative RT-PCR[68,73,75], 
quantitative real time-PCR [65,71,76], gelatin zymogra-
phy[13,56,63,65,66,68-70,73], Northern-blotting[56,64,66,69,70], Western-
blotting[13,56,66,69,70,73,74], 125I Western-blotting after protein 
concentration[65] and RNase protection assay[72]. This list 
implies that the use of  different methods may have led 
to dissimilar conclusions, due to disparate sensitivities 
and due to comparing mRNA expression with protein 
expression or protein activity. However, for expression 
of  most MMPs in U251, U87 and U373 cells in most 
studies reach concordant results, as can be seen in Table 
2, suggesting that divergent data may also be caused by 
other factors. Fluctuations in MMP expression with the 
number of  passages has been reported in some GBM 
cell-lines[77,78]. It was suggested that these variations in 
MMP expression may be due to in vitro selection proc-
esses or karyotype evolution, where the transcription of  
either the enzyme and/or its inhibitor may be affected 
which ultimately leads to an imbalance in the MMP-reg-
ulatory network[78]. However, alterations in MMP expres-
sion may also depend on the cell environment. MMP-2, 
-9 and MMP-14 are differentially upregulated by increas-
ing cellular density[79]. MMP-14 expression was enhanced 
if  U87 cells were cultured as neurospheres instead of  
as monolayers[80]. MMP-12 expression in U251 cells in-
creased during growth in a three-dimensional tenascin-C 
matrix compared to its expression in a two-dimensional 
matrix[81]. U87 cells displayed low MMP-7 expression in 
culture, which increased after the cells were implanted 

into the brain of  RAG 2/γc immune-deficient mice[82], 
suggesting that the astrocyte environment may also 
influence MMP expression. Astrocytes in culture pro-
duce significant amounts of  pro-MMP-2, but no active 
MMP-2. Co-cultured U251 cells are then able to convert 
pro-MMP-2 into its active form[83].

In vivo MMPs are regulated by the surrounding tis-
sue and by growth-factors or cytokines and their down-
stream signalling pathways[10,16,18,84,85]. In particular, for 
MMP-9 it has been shown that its production is de-
pendent on a regulation by extracellular signal-regulated 
kinase (ERK), PKCα/NF-κB and jun amino-terminal 
kinase (JNK) signaling cascades[84-86]. Glioblastomas are 
highly hypoxic and hypoxia upregulates MMP-2 mRNA 
expression in U87, U251, U373 and LN18 glioblastoma 
cell-lines by activation of  the HIF-1α transcription fac-
tor, thereby enhancing their invasive potential[87]. Migra-
tion and invasion of  U87 and T98G GBM cells is also 
facilitated by NO, which can be found in high concen-
trations in glioblastoma tissue[88]. NO stimulates MMP-1 
expression and activity[88]. EGF raises MMP-14 expres-
sion in U251 cells, but does not influence MMP-15, 
-16 or MMP-24[74]. MMP-2 expression and secretion is 
induced by IL-6 in U87 cells[89]. However, IL-6 action 
seems to be cell-line specific, since U343 cells were not 
affected[89].

The inflammatory cytokine TNF-α and the immun-
suppressive cytokine TGF-β have been implicated in 
migration and invasion of  glioma cells in vitro[59,90,91]. In 
U251 and in U373 cells, TNF-α stimulated the expres-
sion of  MMP-9 and MMP-19[77]. MMP-1 mRNA expres-
sion was significantly increased in U373 cells by TNF-α, 
whereas its expression in U251 cells remained unaffect-
ed. This may be due to the high basal level of  MMP-1 
expression displayed by U251 cells, where a further 
increase is not possible, or else it could also be a cell-
line specific effect[77]. Such an effect has been observed 
for MMP-1, -2, -3 and MMP-7 regulation by TNF-α 
and TGF-β1, which only caused a marked induction of  
expression in some GBM cell-lines, but not in others[64]. 
TNF-α enhances the invasivenes of  T98G cells through 
an induction of  MMP-3, but has no effect on MMP-1, 
-2 or MMP-9[92]. However, in U251 cells TNF-α inhibits 
MMP-2 and decreases invasiveness into the extracellular 
matrix[93]. In A172 cells, TNF-α induces gene expression 
and protein secretion of  MMP-9[94]. TGF-β1 alone had 
no effect on MMP-9 production. However, when it was 
added together with TNF-α a significant dose-depen-
dent inhibition of  MMP-9 secretion was observed[94]. 
TGF-β1 displayed inconsistent effects on adhesion and 
invasiveness, depending on the cell-line examined. The 
invasive potential of  U138 cells was markedly reduced, 
whereas U373 cell invasion remained unchanged[95]. 
TGF-β1 caused a significant induction of  MMP-11 and 
MMP-24 expression in U373 cells, whereas there was no 
impact on MMP expression in U251 cells[77]. In U87 and 
LN229 cells, TGF-β upregulates MMP-2[90,91]. Thus, the 
transcriptional modulation of  MMP genes in response 
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to TNF-α or TGF-β is not consistent, but extremely 
cell-line specific[64].

Together these data indicate that there is a large va-
riety in the MMP expression patterns between different 
cell-lines, and that these expression patterns can change 
with duration of  cell culture and are highly dependent 
on specific cell culture conditions and cell-density. Cyto-
kines show divergent effects depending on the cell-line.

MMPs expressed by human malignant gliomas
Elevated levels of  several MMPs were not only found 
in cell-lines, but also in malignant glioma tissue samples 
from patients. Although MMP expression levels are 
highly variable from one tumor to another (Figure 2)[96,97], 
their increased expression suggests that they are closely 
related to malignant progression in vivo[10]. 

MMP-1 expression was increased in surgical speci-
mens of  GBM compared to LGA and normal brain 
(NB)[98,99]. In contrast, other groups only found very low 
gene expression levels in glioma tumor samples[64,100]. We 
re-analysed the expression of  this gene and screened 
three NB samples, 15 LGA and 15 GBM by semiquanti-
tative RT-PCR (Figure 2)[97]. This analysis confirmed the 
view of  Nakagawa et al[98], since there was a clear increase 
in MMP-1 mRNA expression in GBM compared to low 
grade tumors, whereas expression of  this gene was not 
detected in NB tissue (Figure 2)[97]. This increased ex-
pression is probably due to a single nucleotide polymor-
phism in the MMP-1 promoter at position-1607, creat-
ing a functional binding site for members of  the ETS 
family of  transcription factors[99]. MMP-1 was expressed 
throughout the tumor section, particularly in the highly 

cellular areas of  the GBM, as determined by immuno-
histochemistry[97]. There was no specific association with 
necrosis or the invasive zone. The signal mainly was 
found in the interstitial matrix, but tumor cells and mac-
rophages also showed strong cytoplasmic staining[97].

RT-PCR, Northern-blotting, Western-blotting and 
gelatin zymography analysis of  surgical tumor samples 
showed that the gradual expression and activity of  
MMP-2 is closely related to the malignant progression 
of  human glioblastomas in vivo[49,56,64,69,96,100-107] and may be 
associated with the invasive behavior of  these tumors[108]. 
Komatsu et al[109] showed that MMP-2 mRNA expression 
was increased in 62% of  glioma samples and protein ex-
pression in 38%, however, in contrast to earlier reports, 
they could not find any correlation between the expres-
sion of  MMP-2 protein or mRNA and the morphology 
of  the tumors. However, a very similar study analysing 
17 LGA, 20 astrocytoma WHO grade Ⅲ and 12 GBM 
found a significant elevation of  MMP-2 expression with 
the degree of  malignancy of  the glioma (53% LGA, 
80% astrocytoma WHO grade Ⅲ and 100% GBM 
stained positive)[110]. In situ hybridization revealed MMP-2 
transcripts to be present in normal neurones and glia, 
malignant glioma cells and blood vessels[102]. MMP-2 pro-
tein expression is restricted to the cytoplasm of  tumor 
cells, as shown by immunohistochemistry[98,100,108,110-112], 
and the cytoplasm of  glial cells around the tumor show 
strong expression[113]. Additional immunohistochemical 
analysis of  tumor tissue determined intense staining of  
MMP-2 protein in highly cellular areas and in endothelial 
cells of  tumor blood vessels with a radial spread into the 
surrounding perivasculature, which suggests an involve-
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SNB-19 GaMG U251 U87 U373 U343 U138 A172 T98G References
  MMP-1 + + + +/- + + + - + [10,63,64,67,71,72,77]
  MMP-2 + + +/- + + - + + + [10,56,63-65,67-69,71-73,76]
  MMP-3 + - + +/- +/- +/- - + [51,64,67,68,71,72]
  MMP-7 + - + + / - + +/- - +/- [10,13,64,67,68,71,73,76]
  MMP-8 - - + / - - - - - - [67,71,76,77]
  MMP-9 +/- + + / - + / - +/- - - +/- +/- [13,63,64,67,68,72,73,77]
  MMP-10 + + + - + + + - [67,71,76,77]
  MMP-11 - + +/- - +/- + + +/- [10,67,71,77]
  MMP-12 + - + / - + - +/- - [67,68,71,73]
  MMP-13 + + + + + + + + [67,71,76,77]
  MMP-14 + + +/- +/- + + - + [10,56,64,66,67,69,71-74,76]
  MMP-15 + +/- +/- + + [10,66,67,71,74]
  MMP-16 +/- + - - + [10,66,67,71,74,76]
  MMP-17 + + + + + + + [71,77]
  MMP-19 + + + + + + + [71,77]
  MMP-20 - - - - - - - [71,77]
  MMP-21 - - - - - - - [71,77]
  MMP-23 + - + + + + + [71,77]
  MMP-24 + + + + + + + [71,74,77]
  MMP-25 - - - - [71]
  MMP-26 - - +/- - - - - [71,75,77]
  MMP-27 - - +/- - - - - [71,77]
  MMP-28 + - + - + + - [71,77]

Table 2  Matrix metalloproteinases expression in glioblastoma cell-lines

MMP: Matrix metalloproteinases; +: Expressed; -: Not expressed; +/-: Controversely discussed.
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ment in tissue remodelling during tumor invasion and 
neoangiogenesis[101-103,110,114,115]. This view is supported 
by results from a mouse model[116]. GBM tumors de-
rived from cells devoid of  MMP-2 exhibited a marked 
increase in vascular density as well as enhanced vascular 
branching and sprouting, however, these tumor vessels 
did not undergo proper maturation and were thus only 
poorly perfused[116]. The increased but dysfunctional vas-
culature caused the tumor cells to become more prone 
to apoptosis, which led to prolonged survival of  tumor 
bearing mice[116]. In humans, MMP-2 expression was cor-
related with an expression of  hepatocyte growth factor 
(HGF), which has a stimulatory effect on the synthesis 
of  MMP-2[114]. LGA and NB samples showed very weak 
or no MMP-2 staining[98,100,102] and low levels of  HGF[114].

The expression pattern of  MMP-7 is very similar 
to that of  MMP-2, although Northern-blot and RT-
PCR analysis identified a more diverse expression of  its 
mRNA in native GBM tissues. There was no expression 
detected in NB, LGA and anaplastic astrocytoma. There-
fore, this gene could be closely related to malignant pro-
gression of  human glioblastomas[64,100,103]. Our data were 

in line with these findings, showing only a weak MMP-7 
immunoreactivity in tumor specimens, around the cyto-
plasm of  tumor cells, macrophages and endothelial cells 
of  small capillaries. Immunostaining of  NB samples was 
restricted to single blood vessel pericytes, supporting a 
possible role in tumor invasiveness[103]. However, when 
MMP-7 mRNA expression was analyzed in different pri-
mary brain tumors, it showed highly variable levels of  ex-
pression that were not related to the invasive behavior[82].

Many studies have demonstrated an intimate associa-
tion between MMP-9 and tumor invasiveness. Data ob-
tained by RT-PCR, Northern-blot, Western-blot and im-
munohistochemical analyses for MMP-9 were negative 
in NB tissue, showed weak signals in LGA and strong 
expression in GBM[64,96,98,100,102-105,107,109,110,117]. Gelatin zy-
mography analyses revealed that MMP-9 activity increas-
es from LGA to malignant tumors[69,96,100,102,105]. MMP-9 
is strongly expressed in blood vessels at proliferating 
margins, as well as tumor cells, as revealed by in situ hy-
bridization[102]. Immunostaining determined MMP-9 lo-
calization in the cytoplasm of  tumor cells[98,100,108,110-112,117].
In addition, strong staining was seen in the vicinity of  
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Figure 2  Expression analysis of matrix metalloproteinases in normal brain and tumor brain samples by semiquantitative real-time reverse transcription 
PCR. Total RNA from normal brain (NB, lanes 1 to 3), low grade astrocytoma (LGA, lanes 4 to 18) and glioblastoma multiforme tissue samples (GBM, lanes 19 to 33) 
was used as a template for real-time reverse transcription PCR (RT-PCR) analysis. Primers, specific for each transcript, were designed in flanking exons, resulting 
in longer amplicons if human genomic DNA was amplified [positive control (+)] and in shorter amplicons representing cDNAs. In several cases (MMP-1, -10 and -24) 
HBMEC (human brain microvascular endothelial cell) cDNA was used as a positive control. The various cDNA concentrations were normalized to that of the house-
keeping gene GAPDH (glyceraldehyde-3-phosphate dehydrogenase) which was used as an internal loading control. GAPDH transcripts were amplified in 20 cycles, 
whereas amplification of MMP transcripts was performed in 33 cycles. All technical procedures, PCR conditions and primer sequences have been published[77].
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necrosis and the tumor vasculature, suggestive of  a role 
in the regulation of  tumor neoangiogenesis[102,103,109,110,115]. 
MMP-9 expression is promoted by epidermal growth 
factor receptor (EGFR) signalling and the ligand-inde-
pendent EGFR variant Ⅲ is frequently overexpressed by 
primary GBM in contrast to secondary GBM, which are 
more often characterized by P53 mutations[1]. Expression 
of  active MMP-9 was found in 69% of  primary GBM 
and only in 14% of  secondary GBM[118]. In addition, 
73% of  EGFR-overexpressing GBM, but only 20% of  
EGFR-negative tumors expressed active MMP-9[118], 
suggesting a close relation between EGFR-signalling and 
MMP-9 expression, especially in primary GBM.

Whereas Northern-blotting and RT-PCR analysis 
identified only a very weak expression of  MMP-11[100], 
other studies have revealed that MMP-11 mRNA expres-
sion increased concomitantly with the WHO grading of  
human gliomas, whereas NB samples remained negative 
(Figure 2)[97,115]. Immunohistochemistry demonstrates 
MMP-11 protein expression in the invasive zone of  the 
GBM, predominantly around tumor cells and not in the 
extracellular matrix itself. MMP-11 staining was also 
located in the cytoplasm of  tumor-associated macro-
phages and a small number of  tumor cells. The highest 
concentrations of  MMP-11, however, were found in 
the proximity of  tumor blood vessels and around their 
endothelial lining[97]. These data suggest a functional rel-
evance of  MMP-11 in GBM development[97,115].

There were no detectable levels of  MMP-12 mRNA 
in both NB and tumor samples by Northern blot analy-
sis[100]. However, MMP-12 mRNA was identified in sur-
gical glioma samples using semiquantitative and quantita-
tive RT-PCR analysis[68,81,119]. Western-blotting confirmed 
these results[81,96] which is possibly explained by the 
higher sensitivity of  RT-PCR and Western blot detection 
methods.

Overexpression of  MMP-14 in human glioma sam-
ples was determined by several studies[9]. Results of  
Northern blot and real-time PCR expression analysis 
showed that the level of  MMP-14 mRNA was signifi-
cantly higher in malignant glioblastomas than in low-
grade gliomas, whereas it was not detectable in NB 
tissues[10,49,51,56,69,71,100,104-106]. Consistent with these results, 
in situ hybridization analysis of  MMP-14 mRNA identi-
fied its localization in neoplastic astrocytes in glioma 
specimens[49,120]. Moreover, the latent and active forms 
of  MMP-14 were detected in glioblastoma samples by 
Western-blot analysis, whereas no MMP-14 protein was 
found in NB[49]. In malignant glioma sections, the intense 
heterogeneous immunoreactivity for MMP-14 was seen 
at the cell membrane and in the cytoplasm of  neoplastic 
astrocytes, the cytoplasm of  glial cells around the tumor, 
endothelial cells and perivascular cells. In low grade 
gliomas and normal white brain matter it was almost 
undetectable[49,56,100,105,106,113]. Therefore, the expression 
of  MMP-14 seems to be closely related to the malignant 
phenotype in vivo.

Analysis of  MMP-15 showed that its expression in-

creases gradually with the tumor grade from low-grade 
glioma to GBM[9]. Strong expression of  this gene was 
determined in malignant tumor samples at both mRNA 
and protein levels, whereas no expression could be 
identified in NB and only a weak expression was found 
in low-grade tumors[71]. In situ hybridization and im-
munohistochemical analysis of  GBM tissues identified 
signals for MMP-15 in neoplastic astrocytoma cells and 
some endothelial cells of  blood vessels[49]. Moreover, 
Western-blot analysis identified latent and active forms 
of  MMP-15 in glioma samples, whereas no such species 
could be detected in NB tissue[49].

MMP-19 expression was not detected in both NB 
and malignant glioma specimens by Northern-blot anal-
ysis[100]. However, our semiquantitative RT-PCR analysis 
showed a clear increase in the expression of  MMP-19 
mRNA in high grade tumor tissues compared to low 
grade tumors, whereas its expression was not detected in 
NB tissue (Figure 2)[97]. Immunohistochemical staining 
revealed its expression throughout the tumor section[97].

Llano et al[50,71] examined NB and tumor tissues by 
Northern-blot analysis and showed that the expression 
of  MMP-24 is related to glioma tumor progression. The 
MMP-24 transcript is moderately expressed in astrocyto-
ma specimens, strongly expressed in anaplastic astrocy-
tomas and GBM, whereas the few examined samples of  
NB showed no expression of  its mRNA at all. However, 
since the data on MMP-24 expression in GBM is scarce, 
we screened NB, LGA and GBM by semiquantitative 
RT-PCR (Figure 2) and detected a weak expression of  
the gene in several of  the samples, but were not able to 
confirm any correlation to the tumor grade (Figure 2).

Northern-blot and quantitative RT-PCR analysis of  
MMP-25 in both, NB and tumor tissues, identified its 
strong expression in some anaplastic astrocytoma and 
also expression in GBM, whereas no significant levels 
were detected in NB tissues[51,71,81].

MMPs without relevance in glioblastoma development
In gliomas a number of  MMPs probably have little 
or even no functional relevance in degradation of  the 
extracellular matrix, as no significant correlation be-
tween their expression and the tumor grade could be 
observed. MMP-3 was only weakly or in some cases not 
detectable at the mRNA and protein levels in both NB 
and surgical specimens of  patients with malignant glio-
mas[64,100,103,104,119,121]. Northern-blot and RT-PCR analysis 
identified very weak expression of  the two MT-MMPs, 
MMP-16 and MMP-17, in different samples, without 
any correlation to the tumor grade[10,49,51,71,100]. However, 
one group reported increased expression of  MMP-16 in 
brain tumors compared to normal tissue at the mRNA 
and protein level[104]. Expression of  MMP-8, -10 and -13 
could not be detected in both NB and malignant glioma 
specimens by Northern-blot analysis [100]. Our own 
analysis confirmed these data by semiquantitative RT-
PCR (Figure 2). There was no significant difference in 
MMP-8 expression between NB and GBM[107], and it has 
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been shown in U251 GBM cells that MMP-8 is epige-
netically silenced[76]. Since MMP-8 expression may have 
tumor-protective functions and has the ability to inhibit 
melanoma progression and to reduce the metastatic po-
tential of  breast and lung cancer cells in both mice and 
humans[122,123], putatively its repression may contribute 
to GBM development. MMP-21 expression has been 
reported to be elevated in mid-grade glioma specimens, 
but then to decline again in GBM[81]. We could not detect 
any expression of  MMP-21 in the entire tumor panel we 
analysed (Figure 2).

As yet, the expression of  MMP-20, -23, -26, -27 and 
-28 in glioma has not been covered in the literature. We 
therefore analysed mRNA levels of  these MMPs by semi-
quantitative RT-PCR (Figure 2). This analysis showed 
ubiquitous expression of  MMP-23 and MMP-28 in all 
tested samples and detected no expression of  MMP-20, 
-26 and -27, thus suggesting that these MMPs are not in-
volved in astrocytic tumor development (Figure 2).

MMP expression by primary cells derived from GBM 
specimens
The differences in MMP expression profiles of  GBM 
cell-lines and patient tissue samples led to the question 
whether primary cells derived from human tumor biop-
sies will maintain or alter their MMP expression pattern. 
From four of  the GBM analysed (Figure 2), primary 
cells were isolated, cultured and analysed at passage 1, 
passage 5 and passage 10[77]. At passage 1, a completely 
altered MMP expression pattern was seen as compared 
to the orginal tumor tissue. Again this pattern was not 
stable, but changed with each further passage[77]. The 
pattern was similar to the one seen in established GBM 
cell-lines, although there were some differences. MMP-1, 
-11, -23 and MMP-24 expression was stronger in the 
primary cells. MMP-9 expression showed more altera-
tions during passages in primary cells, but was more 
stably expressed in the cell-lines. MMP-13 and MMP-28 
expression was nearly absent in primary cells, whereas it 
was clearly visible in the cell-lines[77]. In summary, MMP 
expression is highly variable under cell culture conditions 
and their expression patterns do not match those seen in 
the original GBM patient tumor tissue.

OUTLOOK
Expression of  MMP-1, -2, -7, -9, -11, -12, -14, -15 and 
-25 shows correlation with the tumor grade, whereas 
MMP-3, -8, -10, -13, -16, -17, -20, -21, -23, -26, -27 and 
-28 do not seem to play a major role during glioblas-
toma development, since they are either constitutively 
expressed in NB, LGA and GBM, or they are not ex-
pressed at all. The available data for MMP-19 and -24 are 
contradictory, since some studies including our own sug-
gest their involvement during development of  astrocytic 
tumors, and the results of  other groups contradict such 
a connection. However, the detection of  MMP mRNA 
expression level only offers a first hint, suggesting MMPs 

might be of  functional relevance in glioblastomas. MMP 
regulation is complex and involves several steps, includ-
ing signal transduction, transcription factor regulation, 
inhibitors and interdependency with other MMPs. Stud-
ies showing protein concentration, tissue distribution and 
activity are necessary to gain a more complete picture. So 
far, comprehensive data are only available for very few 
MMPs. A correlation of  MMPs during activation was 
shown for MMP-2 in conjunction with MMP-14, -15, -24 
and -25[48-51]. A precise  understanding of  MMP expres-
sion and activation will help to identify more specific 
and effective targets for GBM therapy. The single-agent 
broad spectrum inhibition of  MMPs has been of  little 
clinical benefit[14,15]. However, a simultaneous interfer-
ence of  MMP9 and cathepsin B, the upstream regulator 
of  its activation, by siRNA resulted in decreased gliob-
lastoma cell invasion, tumor growth and angiogenesis in 
an animal experiment[13]. The inhibition of  MMP-2 and 
MMP-9 in conjunction with temozolomide chemother-
apy also showed promising results in cell culture[124,125]. 
However, COL-3 (6-demethyl-6-deoxy-4-dedimethyl-
aminotetracycline), a compound which targets multiple 
aspects of  MMP regulation such as MMP proenzyme 
synthesis and activation, did not provide any benefit to 
GBM patients in a phase Ⅰ study[126]. On the other hand, 
phase Ⅱ clinical trials using the broad-spectrum MMP-
inhibitor, marimastat, in conjunction with temozolomide 
has shown encouraging results[20,21]. The major therapy-
related toxicity was joint and tendon pain in 47% of  pa-
tients and 11% were eliminated from the study because 
of  intolerable joint pain[20]. These multimodal treatment 
concepts point towards the right therapeutic direction 
and further tests with a combination of  MMP inhibition 
and chemotherapy seem warranted. A further advance-
ment on these strategies could be the direct local delivery 
of  the inhibitor using novel drug delivery techniques, 
such as the use of  drug-impregnated wafers, convection 
enhanced delivery, nanoparticles or even the delivery of  
genes encoding for inhibitory or toxic proteins by virus 
particles or immune-cells[127-133]. These methods could in-
crease the effectiveness while reducing systemic toxicity. 
When deciding on appropriate future targets it has to be 
kept in mind, however, that the MMP expression pattern 
in established cell lines and primary cells is highly variable 
and will depend on the individual cell-line, passaging and 
cell culture conditions.
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