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Abstract
We propose a new approach for the analysis of copy number variants (CNVs)for genome-wide
association studies in family-based designs. Our new overall association test combines the
between-family component and the within-family component of the data so that the new test
statistic is fully efficient and, at the same time, achieves the complete robustness against
population-admixture and stratification, as classical family-based association tests that are based
only on the between-family component. Although all data are incorporated into the test statistic,
an adjustment for genetic confounding is not needed, not even for the between-family component.
The new test statistic is valid for testing either quantitative or dichotomous phenotypes. If external
CNV data are available, the approach can also be used in completely ascertained samples. Similar
to the approach by Ionita-Laza et al.(1), the proposed test statistic does not required a CNV-calling
algorithm and is based directly on the CNV probe intensity data. We show, via simulation studies,
that our methodology increases the power of the FBAT statistic to levels comparable to those of
population-based designs. The advantages of the approach in practice are demonstrated by an
application to a genome-wide association study for body mass index (BMI).

1. Introduction
Recent studies (2;3;4;5;6) have highlighted the importance of copy number variation in
modifying the risk of certain diseases. With the increasing interest in the study of copy
number variants (CNVs), a number of methodologies for analyzing these data have been
developed for both population-based and family-based analyses (1;7;8;9;10;11). Recently,
Ionita-Laza et al. (2008) (1) introduced a statistic for association testing of CNVs in family-
based settings. Noting that, for SNP-chips, the calling of CNVs can be a difficult and error-
prone process when standard calling algorithms are applied(12;13;14;15), the test statistic is
constructed using genetic information based on the probe intensity data rather than by the
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called CNVs. Since then, new, improved algorithms to call CNVs’ genotypes based on
intensity data from SNP-chips(16;17;18) have been developed. While the algorithms are
able to provide important genomic insights into the underlying genetic architecture, the
advantages of using called CNVs over probe intensities in the association test statistic are
not clear. In the best-case scenario for the calling-algorithms, (i.e. genotypes called based on
intensities for SNPs), Ionita-Laza et al.(1) showed that there is virtually no difference in
terms of statistical power between association tests that are based on genotype data and
association tests that are based on intensity data. Furthermore, the advantage of using
intensity data is that it avoids bias due to incorrectly called CNV genotypes. In family-based
association tests, mis-called genotypes for SNPs or CNVs can introduce a systematic bias in
terms of increased α-levels (19;20;21;22;23).

Currently, the methodology by Ionita-Laza et al. (2008) (1) for family-based association test
in CNV analysis solely utilizes the within-family component. Similar to the standard FBAT-
approach, the between-family component can only be incorporated into test-strategies and
model building steps in which the between-family component is used to inform the “final”
FBAT-testing step or to construct an FBAT-statistic with maximal statistical power(24;25).
In order to maintain complete robustness against confounding due to population admixture
and stratification, the between-family component can not be included directly in the test
statistic.

In this manuscript, we develop an overall family-based association test that simultaneously
utilizes all information about the genetic association that is included in both components,
i.e., the between-family component and the within-family component. However, by virtue of
its design, the new overall association test for CNVs maintains the complete robustness of
classical family-based association tests, e.g., TDT (26), FBAT(27;28). The new FBAT-CNV
test combines an association test for the population-based component, the between-family
component, with a standard FBAT test that is based only on the within-family component,
using Liptak’s method for combining p-values. Similar to the philosophy of genomic
control(29), the significance of the association test for the between-family component is not
assessed based on its asymptotic distribution, but relative to the other CNVs, using rank-
based p-values. As will be shown, the use of rank-based p-values in the overall test statistic
is sufficient to ensure that the approach is robust against population admixture and
stratification.

The proposed overall CNV-FBAT statistic utilizes the standard FBAT-CNV statistic(1) and
an association test for the between-family component that is constructed based on the
conditional mean model or its non-parametric extensions (24;25). It is therefore straight-
forward to apply the new approach to any trait types which have been integrated into the
FBAT-framework, e.g., binary traits, continuous traits, multivariate traits, time-to-onset, etc.
(30;31;32;33;34;35;36). However, for simplicity, we will illustrate the new overall FBAT-
CNV statistic for scenarios in which dichotomous or quantitative traits are analyzed and for
samples that are either unascertained, i.e., total population samples, or completely
ascertained, i.e., every subject is affected. Using simulation studies that are based on
~900,000 CNV probes, the performance of the overall FBAT-CNV statistic is assessed
under the null-hypothesis and its power levels are estimated. The features of the new
approach are demonstrated by an application to a genome-wide association study for BMI.

2. Methods
Prior to describing the joint test, we briefly review the FBAT-CNV statistic introduced by
Ionita-Laza and colleagues(1). We assume that genotype intensity data have been collected
for nuclear families (i.e., offspring and parents). Let xij denote the probe intensity for the jth
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offspring in the ith family. The recoded offspring phenotype is denoted by Tij, which
represents the offspring phenotype minus an offset value. For example, the phenotype is
quantitative, Tij might be residual from the regression of the offspring phenotype on
important clinical predictors of the phenotype (e.g. BMI ~ SEX + AGE). The FBAT statistic
for copy number variation, introduced by Ionita-Laza et al. (2008)(1) is given by:

(2.1)

where E(Xi) is the ’expected’ intensity score given the parental intensities. When parental
intensities are available, E(Xi) is given by the mean of parental probe intensities. If parental
data are missing, E(Xi) may be obtained by averaging the intensity data across all offspring
within a family E(Xi) = Σj xij/nj. This concept is similar to the sufficient statistic given by
Rabinowitz and Laird (2000) (28). It should also be noted that the empirical variance as
given by Lake et al. (2000) (37), rather than the theoretical variance, is used to standardize
the test statistic, since Mendelian transmissions cannot be identified in the intensity data. For
further details on the derivation of the test statistic, please see Ionita-Laza et al. (2008)(1).

2.1. Quantitative Traits
Next, we turn our attention to the joint test statistic, as originally developed by Won et al.
(2009)(38). Won proposes an overall family-based association test statistic, Zi, which is a
weighted sum:

(2.2)

The parameters ωFBAT and ωP are specified a priori to the analysis, and are standardized so

that . ZFBATi is the Z-score corresponding to the p-value of the ith FBAT
statistic, and ZPi is the Z-score corresponding to a p-value that reflects the relative ranking
of the ith population-based test statistic. To preserve the type I error of the test in the
presence of population stratification, the p-values obtained from ZPi are based on the relative
ranking of the ith test statistic, rather than its asymptotic value. For details, see Won et al.
(38). This method of combining independent test statistics was originally conceived by
Liptak(39), and henceforth, the joint test of family-based and population based information
will be referred to as the FBAT-Liptak test.

2.1.1. Implementation of FBAT-CNV Liptak test for Quantitative or
dichotomous traits—The extension of the method by Won et al. (2009)(38) to copy
number variants is fairly straightforward, when using the statistic developed by Ionita-Laza
et al. (2008)(1). In the joint test statistic, Zi, the family component ZFBATi is replaced by
ZFBAT–CNVi, as given in equation 2.1. The between-family component of the test statistic,
ZPi is obtained from a Wald test of the genetic effect size from a regression of the offspring
phenotype on the expected offspring probe intensity, E(Xi), using a generalization of the
conditional mean model(24;30). In the case of CNVs, this quantity is given by the mean of
parental probe intensities (or in the event of missing parental data, E(Xi) = Σj xij/nj), rather
than by the expected transmissions based on parental genotypes, assuming Mendelian
transmission, as is the case with SNP data. This concept is applicable to both quantitative or
dichotomous (i.e., case-control) traits, using an identity or logit link, respectively, in a
generalized linear model. As noted above, to protect against potential confounding such as
by population stratification, the p-values from ZPi reflect the relative rank of the CNV rather
than an asymptotic value obtained from standard normal or student’s t distribution. As with
the standard method using SNP data, the joint test statistic reflects the summed weighted
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family-based and population-based components, and may be adjusted for multiple
comparisons using standard approaches. It should be noted, however, that while the FBAT-
CNV statistic may detect either de novo or germline mutations, the power to detect de novo
mutations will be decreased using this method, as the between-family component solely is
based on parental intensities.

2.1.2. Implementation of Liptak FBAT-CNV for fully ascertained family-based
samples—Recently, Lasky-Su and colleagues (2009)(36) extended the idea proposed by
Won et al.(38) to family-based studies in which all offspring in the study are affected with
the disease or trait of interest. From equation 2.2, it is easy to see that a standard
Transmission Disequilibrium Test (TDT)(26) could be used to calculate ZFBATi . However,
family-based designs where all offspring are affected pose a problem for calculating the
effect size for the between-family component, as the conditional mean model(24; 30)
requires variation in the offspring phenotype. Murphy et al.(40) propose using relative risk
ratios based on the parental genotypes (which assume Hardy-Weinberg Equilibrium in the
general population) for estimating the between-family effect size for SNP data, but this
method is not applicable in the context of CNVs. Lasky-Su et al.(36) address the issue of
generating between-family information by using control genotype data from either publicly
available (e.g., dbGap) or commercial (e.g., Illumnina, Affymetrix, and Perlegen) sources.
However, the method by Lasky-Su et al. requires called genotype data and thus is not
applicable to CNV intensities. For CNV data, we will extend the concept of using freely
available genetic data to devise a test for generating the statistic ZPi in 2.2.

We assume that CNV probe intensity values will be available for a population of control
subjects from a publicly available source. Let ZPi be the Z-score corresponding to the rank
of the p-value from a Wald test from a generalized linear model with a logit link:

(2.3)

where Yij is the offspring or control phenotype (i.e., Yij=1 if an affected offspring, 0 if a
control), E(Xi) is the expected offspring CNV probe intensity, and Xij is observed CNV
probe intensity in the control. As noted previously, E(Xi) is given by the mean of parental
probe intensities, or in the event of missing parental data, E(Xi) = Σj xij/nj. After obtaining
the Wald test statistic rank-based p-value of the CNV genetic effect size for the population
based component (ZPi), and the FBAT – CNV statistic asymptotic p-value for the family-
based component (ZFBATi), the method by Won et al. follows straightforwardly(38).

As shown in the next section, while this method has slightly less power than a standard case-
control test (where the asymptotic p-value from the Wald test is used), its power loss is
minimal while preserving the attractive feature of FBAT robustness against population
structure.

3. Simulation Studies
3.1. Quantitative trait

Using simulation studies, we contrast the new testing strategy to a both a standard FBAT
statistic, as well as a standard population-based analysis (i.e., a generalized linear model
regressing the phenotype on the observed CNV intensity) of only the offspring. For the
Liptak-CNV test, we varied the weights for the FBAT and Wald components of the of the
statistic from 1:3 and 3:1 (i.e., the FBAT weight ranged from 1 to 3 times the weight of the
Wald weight, and vice-versa), and set δ=0.5. For details on the weights and appropriate
specifications for δ, see Won et al.(38). All three analytic approaches are compared under

Murphy et al. Page 4

Genet Epidemiol. Author manuscript; available in PMC 2012 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scenarios with varying sample and effect sizes. We simulated the trio data under the
assumption that all of the offspring data are available and that the genotype probe intensity
of the parents are known. Additionally, we assumed independence between the CNV loci.
The parental CNV data were generated from a N(0,1) distribution. The offspring intensities
were generated using a N(EX,1) distribution, where EX is the mean of the parental
intensities.

In each simulation, one locus is assumed to be the DSL, while the other CNVs are
considered null loci. For the null loci, the offspring phenotype was simulated using a N(0,1)
distribution. For the DSL, the distribution was N(a * X), where X is the probe intensity of
the CNV locus. In the simulations, the genetic effect size ranges between 0.1 and 0.2. The
trio sample size varies between 500 – 2000 trios.

For each test, the p-value was adjusted using a standard Bonferroni correction. Thus, the
power was defined as the proportion of replicates with an FBAT statistic p-value <
5.56×10−8 (i.e., 0.05/900,000), to reflect the current capacity of CNV typing technology.
The power was based on 10,000 replicates. In table 1 below, the standard FBAT test is
denoted as “FBAT,” the population-based test is denoted as “Wald”, and our new integrated
approach using both the population and family based information is denoted as “FBAT-
Liptak.”

Across all sample and effect size, the FBAT-Liptak test demonstrates considerable power
gains over the standard FBAT test, and generally has less than a <10% power loss in
comparison to the population-based Wald test. In the scenario with equal weighting, 1000
trios and an effect size of 0.175, the FBAT-Liptak test has a 200% power gain over the
FBAT test, while the Wald test only has a 6% power gain over the FBAT-Liptak test. From
the simulations, the optimal weighting scheme tends to range between weighting the FBAT
component 2 to 3 times more heavily than the Wald component. In Won et al. (38), the
optimal weights for the FBAT and Wald components are described as a ratio of their
standardized effect sizes. Overall, the power estimates in the FBAT-Liptak test demonstrate
modest power reductions in comparison to a population based test, while preserving one of
the most desirable properties of the FBAT, robustness against population stratification.

3.2. Completely ascertained sample
In this section, we also compare the new testing strategy to a both the standard FBAT
statistic and population-based test, except that a logit link was used in the generalized linear
model for the population based analysis. The CNV intensities for the unrelated control
population (i.e., to be obtained from a publicly available resource) were simulated using a
N(0,1) distribution. The trio CNV intensities, were simulated using the methods described
above, except that large trio (i.e., parents and offspring) population, from which “affected”
offspring were sampled, using the following approach.

As above, we assumed that there was one locus contributing to disease risk and that there
was no LD between the loci. We assumed that the baseline risk of the disease, K, was 5%.
We used a logistic regression model to estimate the risk of disease for each offspring, where
Pr(Affected) = eα+βX/1 + eα+βX, where α = log(K/1 − K), β is the log of the odds ratio, and
X is the observed CNV intensity in the offspring. From the pool of trio CNV intensity data,
we randomly selected a subset of affected offspring and their parents, to simulate a
completely ascertained sample. The controls were all assigned an affection status of
unaffected, regardless of their CNV intensity value, to reflect the fact that a proportion of
subjects in the “control” dataset are likely to have the disease or trait of interest, at a rate
roughly equivalent to the population prevalence of the disease. We denote these subjects as
“unselected controls.”
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The simulations included sample sizes of 250–500 trios, where the corresponding
population-based test (i.e., denoted as “Wald”) comprises 250–500 pairs of unrelated
individuals, the affected offspring from the trios and the unrelated control population. The
effect size ranged from an odds ratio of 1.25 – 2. As above, the power was defined as the
proportion of replicates with an FBAT statistic p-value < 5.56×10−8 (i.e., 0.05/900,000),
applying standard Bonferonni correction for multiple comparisons. The power was based on
10,000 replicates. The results are displayed in table 2 below.

For completely ascertained samples, the power of both the FBAT and Liptak-CNV tests
generally exceed the population-based Wald test. It should be noted that the simulations are
designed such that the number of trios and number of case-control pairs (e.g. 250 trios/250
case-control pairs) are equivalent. With an equal weighting scheme, the power for the FBAT
and Liptak tests are fairly comparable, although the Liptak-CNV test does give a power
boost in lower power ranges. When the weights for the FBAT and Wald compon-ponents of
the Liptak-CNV are varied, an up-weighting of the FBAT component boosts the power, with
the 3:1 weighting of the FBAT to Wald component, respectively, consistently demonstrating
the highest power.

4. Data Analysis
Asthma is a complex respiratory disorder, with both environmental and genetic components,
which has been shown to have substantial heritability (41;42;43). We applied our
methodology to a genome-wide association study of child asthmatics and their families. The
families were identified through the Childhood Asthma Management Program (CAMP) (44)
Genetics Ancillary Study. Increasing body mass index (BMI) and obesity has been
previously linked to increasing asthma risk, and a recent study(45) found a gene associated
with both BMI and asthma. In our analysis, we screened for potential copy number variants
for associated with BMI.

In the CAMP study, SNP genotyping was performed using Illumina HumanHap 550v3
array. Of the 561,466 SNPs, 16,419 (2.9%) were removed during data cleaning due to the
following reasons: 1) probe sequences did not map uniquely to hg18 genome build, 2) poor
cluster separation as manually reviewed in Illumina BeadStudio software, 3) −log10(pval)
for Hardy-Weinberg equilibrium >= 8, and/or 4) completion rate < 95%, 5) Mendelian error
count >=5, or 6) minor allele frequency = 0. Overall, adequate DNA for genome-wide SNP
genotyping was available for 1172 subjects in 403 families (43 subjects in 19 families were
removed due to inadequate DNA samples)

To reduce the number of multiple comparisons (and false positive results), we applied a
circular binary segmentation algorithm to identify the most likely CNV regions in our
cohort. Circular binary segmentation (CBS) uses SNP intensity at sequential markers to call
CNV regions(46). The goal of CBS is to parse the genome into segments of equal copy
number, while accounting for the inherent noise in measuring array intensities. This is
achieved by identifying change-points, locations at which the distribution preceding the
change-point differs from the distribution proceeding the change-point. The change- or
break- points may then be used to limit testing to regions where copy number gains or losses
have occurred. Practically speaking, this algorithm allows us to restrict the testing of
potential trait-associated CNVs to markers that fall within CNV regions, thus substantially
reducing the number of association tests conducted. The CBS algorithm was applied to all
autosomal SNP in the CAMP dataset using the Bioconductor package DNAcopy(47). In our
analysis, a CNV was called in an individual when the (absolute) intensity value of a segment
was greater than four standard deviations of the middle 50% quantile of all data(48). For
inclusion in the analysis, we required CNV prevalence of at least 1% (i.e., present in 12
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individuals). If called markers were within 50kb of one another, they were considered part
of the same CNV region. Using this approach, 976 common CNVs (from 6,965 SNPs) were
identified in the CAMP data set with frequency of at least 1%. For the analysis, we applied
our joint test statistic to the probe intensities of all 6,965 (called CNV region) SNP, testing
for potential association with BMI at baseline, adjusting for age and sex. Table 3 displays
the results for the CAMP data analysis.

Interestingly, two of the top SNPs (rs1758827 and rs1886314) are in intronic regions of
protocadherin genes (PCDH15 and PCDH9 on chromosomes 10 and 13, respectively),
which are members of the cadherin superfamily. The top two results were significant (at
α=0.05) after Bonferroni correction for multiple comparisons. As noted in Figure 1, there is
significant enrichment in the regions surrounding the top SNP on chromosomes 9 and 10.
Overall, among the top findings, there was consistency in the family-based and population-
based association results.

5. Discussion
In this manuscript, we present a new method for maximizing the available information in
family-based genome-wide studies of copy number variants. Our new methodology
combines the population level and family level data in family-based designs into a more
powerful association test. This test can be applied to both quantitative and dichotomous
traits. Additionally, although public repositories of CNV data are generally not currently
available, it is not unreasonable to anticipate their availability in the near future, given the
current initiatives to develop a public repository of both phenotype and genome-wide SNP
data (e.g. dbGap, http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gap). When control CNV
data become available from a public repository, our methodology also can be applied to
completely ascertained family-based samples. For continuous traits, our methodology
approaches that of a strictly population-based test. For completely ascertained samples, we
have shown that our method can be more powerful than a population based approach
combining affected offspring with unrelated controls. And unlike a population-based
approach, our method is robust against population admixture(38), like the standard FBAT
statistic. The power of our methodology may be further increased by using alternative
approaches for multiple comparisons adjustment. Although we have applied a very
conservative Bonferroni correction to our combined test statistic, other methods, such as
FDR(49) could be applied.
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Fig. 1. Association of BMI with Copy Number Regions on Chromosomes 9 and 10
These figures plot the −Log10 Liptak-CNV p-values against the chromosomal position of
SNP in identified copy number regions on chromosomes 9 and 10. There are areas of
significant enrichment on both chromosomes, centered around two markers, rs1831078 and
rs1758827, which met genome-wide significance criteria.
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W
al

d 
te

st
 r

eg
re
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in
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th
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en

ot
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e 
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pe

ct
ed

 p
ar

en
ta

l C
N

V
 in

te
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es

. T
he
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an

k-
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se
d 

W
al

d 
p-

va
lu

e 
re

fl
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ts
 th

e 
p-

va
lu

e 
ba

se
d 

on
 th

e 
ra

nk
 o

f 
th

e 
W

al
d 

te
st

. T
he

 L
ip

ta
k 

te
st

 is
 th

e 
va

lu
e 

of
 th

e
te

st
 s

ta
tis

tic
 g

iv
en

 in
 e

qu
at

io
n 

2.
2,

 w
hi

ch
 c

om
bi

ne
s 

th
e 

FB
A

T
 p

-v
al

ue
 a

nd
 th

e 
R

an
k-

ba
se

d 
W

al
d 

p-
va

lu
e.

 T
he

 L
ip

ta
k 

p-
va

lu
e 

is
 th

e 
as

ym
pt

ot
ic

 p
-v

al
ue

 f
ro

m
 th

is
 c

om
bi

ne
d 

te
st

 s
ta

tis
tic

. R
es

ul
ts

 w
ith

 a
 L

ip
ta

k

p-
va

lu
e<

 7
.1

8×
10

−
6  

ar
e 

si
gn

if
ic

an
t a

t t
he

 α
=

0.
05

 le
ve

l a
ft

er
 B

on
fe

rr
on

i c
or

re
ct

io
n 

fo
r 

m
ul

tip
le
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om
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ri
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.
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