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Abstract
For genomewide association studies with family-based designs, we propose a Bayesian approach.
We show that standard TDT/FBAT statistics can naturally be implemented in a Bayesian
framework. We construct a Bayes factor conditional on the offspring phenotype and parental
genotype data and then use the data we conditioned on to inform the prior odds for each marker. In
the construction of the prior odds, the evidence for association for each single marker is obtained
at the population-level by estimating the genetic effect size in the conditional mean model. Since
such genetic effect size estimates are statistically independent of the effect size estimation within
the families, the actual data set can inform the construction of the prior odds without any statistical
penalty. In contrast to Bayesian approaches that have recently been proposed for genomewide
association studies, our approach does not require assumptions about the genetic effect size; this
makes the proposed method entirely data-driven. The power of the approach was assessed through
simulation. We then applied the approach to a genomewide association scan to search for
associations between single nucleotide polymorphisms and body mass index in the Childhood
Asthma Management Program data.

Keywords
family-based association tests; Bayes factors; complex traits

1 Introduction
Genetic association studies can be dichotomized into those that have population-based
designs and those that have family-based designs. Population-based studies test for
association between a phenotype and a genotype in a sample of unrelated individuals. These
studies are susceptible to population stratification, i.e., systematic differences in allele
frequencies between subpopulations in a population not due to a causal association with the
phenotype of interest. Family-based studies test for association between a phenotype and a
genotype in a sample of related individuals by assessing whether individuals with a given
phenotype have a higher transmission ratio than would be expected by chance given their
parents' (or other family members') genotypes and Mendel's laws. It is this ability to
compare a person's genotype to his expected genotype based on Mendel's laws that makes
family-based tests robust to population stratification. Family-based studies can also assess
the evidence of association by examining allele frequencies across families in a somewhat
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similar fashion to what is done in population-based studies (although this evidence is not
inherently robust to population stratification).

The use of the two independent sources of information available in family data is what
makes the family-based association test (FBAT) screening method proposed by Steen et al.
(2005) so powerful. If we let x denote the offspring genotypes, y denote the offspring
phenotypes, and P denote the parents' genotypes, the following relationship holds:

P(x|y, P) represents the information used in the FBAT statistic; that is, the FBAT statistic
conditions on the offspring phenotypes, y, and parents' genotypes, P, and only the offspring
genotypes, x, are considered random variables. P(y, P) represents the information used in
Steen et al. (2005)'s screening approach, which first determines which SNPs will have the
highest power to be detected if a true association exists in the given study and then applies
FBAT only to those SNPs. In determining which SNPs have the highest power, only the
offspring phenotypes, y, and parental genotypes, P are used. By applying the FBAT to only
the SNPs in which a true association would most likely be detectable, the number of
comparisons that must be adjusted for is reduced. The statistical validity of the screening
method is due to the relationship in the formula above.

We propose a novel approach for family-based genetic association studies that also
capitalizes on this relationship. However, instead of using one portion of the family data
(i.e., x|y, P) to create a statistical test and the other independent portion (i.e., y, P) to screen
SNPs, we take a Bayesian approach: we use one portion to calculate a Bayes factor and the
other to calculate the prior odds of the null hypothesis. Our method capitalizes on both the
between and within family information in a more intuitive and flexible manner than
frequentist approaches. We construct a Bayes factor conditional on parental genotypes and
offspring phenotypes and then use the information conditioned on to inform the prior odds
of association for each marker. In this way we are able to combine evidence from the over-
transmission of alleles within families with evidence based on the allele frequencies across
the families into a posterior odds of no association.

2 Methods
An intuitive measure of the evidence for genetic association is the posterior odds of no

association: . We will denote the hypothesis that a given marker is not associated
with a phenotype by H0. The posterior odds of H0 can be written as

When there are only two hypotheses under consideration, we can rewrite the above equation
as

We assume throughout that the alternative hypothesis of interest, H1, is an additive genetic
effect; however the Bayes factor and posterior odds described below can easily be modified
to test other hypotheses.
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If we now consider family-based association studies with complete genotype data for trios
(two parents and an offspring) and a continuous phenotype for the offspring, then the data
consists of parental genotypes, P, offspring genotypes, x, and offspring phenotypes, y. In the
derivation of our Bayes factor we borrow from the FBAT statistic the concept of
conditioning on the parental genotypes, P, and offspring phenotypes, y, so that the formula
for the posterior odds of H0 becomes

By conditioning on y and P when we assess the weight of evidence for over-transmission of
alleles in the Bayes factor, we are able to use the between-family information available in y
and P to gain further evidence for or against association in the conditional prior odds. Two
main goals of genomewide association scans can be addressed by a measure of the posterior
odds of H0, no association: ranking markers to decide which to follow up and determining
which findings to report as noteworthy, or significant. In the following three subsections we
discuss the conditional Bayes factor, the conditional prior odds, and how to use these
measures to infer the noteworthiness of individual markers.

2.1 A Bayes factor for x conditional on y and P
We assume our data consists of independent trios (two parents and an offspring in each
family) and H0 and H1 correspond to the hyotheses of no genetic effect and an additive
genetic effect, respectively. We assume the ith individual's phenotype, yi, is independently
distributed as yi ~ N(μ + axi, σ2), where μ is the overall mean of the quantitative trait and a
is the genetic effect. Since we assume an additive genetic effect, we code the individual's
genotype. xi as the number of copies of an allele, i.e., 0, 1, or 2. The Bayes factor using the
offspring genotypes, x, conditional on the offspring phenotypes, y, and parental genotypes, P
is

where the sum is over all possible offspring genotypes that could have occurred in family i
given the parental genotypes, Pi. (See Appendix 6.1 for derivation.)

A fully Bayesian approach requires specification of the conditional prior distribution, P(a, μ,
σ | y, P). However, the multiple integration needed to calculate this Bayes factor may be
computationally prohibitive. The integrals can be evaluated at the maximum likelihood
estimates derived by regressing y on x, so that the Bayes factor is approximated as

where â, , and  are the maximum likelihood estimates.
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We also assessed the power of fully specifying the priors based on only the parents'
genotypes and offsprings' phenotypes, but found this approach to be less powerful and more
computationally intensive. In this case, we derived the conditional prior for a, μ and σ
analytically by fitting the conditional mean model (Lange et al., 2003),

and specifying an unconditional prior on a, μ and σ, e.g.,

In the conditional mean model, E(xi|Pi) is determined using Mendel's Laws. This allows us
to gain additional evidence for or against association from y and P without using the true
offspring genotypes, x. Since substituting in the maximum likelihood estimates for a, μ and
σ was more powerful than this approach, we only discuss the former method in the
remainder of the manuscript. In the next section we describe how we used the conditional
mean model to estimate the conditional prior odds.

2.2 Deriving the conditional prior odds
The conditional prior odds are used to weigh the evidence for association using only the
offspring phenotypes, y, and the parental genotypes, P (i.e., the offspring genotypes, x, are
not used).

To get an estimate of the genetic effect size, a, without using the observed offspring
genotypes we use the conditional mean model (Lange et al., 2003):

The conditional mean model uses Mendel's Laws to determine the expected offspring
genotypes given only the parents' genotypes. This enables estimation of the genetic effect
size, a, using only the parents' genotypes and the offsprings' phenotypes. We can then use
the estimated effect size, ã, and its standard error, , to summarize the evidence of
association contained in y and P. One way to do this is to consider approximating the

distribution of the genetic effect size, a, by . Then we can think of P(a < 0) as a
proxy for P(H0|y, P) and calculate the prior odds as

We cannot use P(a = 0) since this quantity is always equal to zero. Instead, we use the
probability a is less than or equal to zero if ã > 0 or the probability a is greater than or equal
to zero if ã > 0; this is equivalent to taking P(a > 0) when we assume that a is normally
distributed with mean equal to the absolute value of ã. By taking the absolute value of a, we
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are not penalized if it is wrong due to population stratification. This is an admittedly ad hoc
way to derive the prior odds, but it does utilize the information in y and P. Furthermore,
multiplying the conditional Bayes factor by this prior odds yields greater power in
simulation (for an individual test with threshold based on null simulations) than the Bayes
factor alone (Supplementary Table VI).

2.3 Using the posterior odds to make inference
SNPs can easily be ranked according to the posterior odds. Unlike some recently proposed
Bayesian methods (Wakefield, 2008a; Consortium, 2007), ranking SNPs by our Bayes
factor alone will not yield the same rankings as the posterior odds. This is because the
conditional prior odds are not constant for all markers: we use the parental genotypes and
offspring phenotypes to inform the prior odds for each marker individually. With our
method, it is more powerful to rank the SNPs by posterior odds since doing so uses more of
the information available in the data.

One caveat to including the prior odds is the increased susceptibility to detecting association
due to population stratification. The conditional Bayes factor may be affected by population
stratification if the maximum likelihood estimates are substituted for a, μ, and σ, but it
primarily weighs the evidence for association in the within-family information. (The
transmission of alleles within a family is completely robust to population stratification.) On
the other hand, the prior odds rely entirely on population differences in allele frequencies
and are therefore as susceptible as any unadjusted population-based method. Because of this,
we recommend that SNPs be followed up only if the posterior odds of the null hypothesis is
less than the prior odds of the null hypothesis, i.e., only if the conditional Bayes factor is less
than one.

Inferring which SNPs to report as noteworthy or significant is a more challenging matter
than just ranking them. One issue that must be taken into account is that P(H0|y, P) ≤ 0.5
which is not likely to be a realistic reflection of one's true beliefs in a genomewide
association scan; i.e., it is not likely that at least half of the markers will be associated with a
given phenotype. Also, substituting the maximum likelihood estimates for the priors in the
Bayes factor is likely to favor the alternative hypothesis since the Bayes factor is evaluated
at only the best estimate under the alternative. It is relatively straightforward to control the
type one error for a single test: use the sample size, allele frequencies, and variance of the
phenotype to simulate the data under the null hypothesis of no association and choose as a
the threshold the 95th percentile of the simulated posterior odds. Alternatively, one could
permute the data to obtain an empirical p value. Bayesian decision theory has been
suggested as a tool for controlling the false discovery rate when using Bayesian methods to
assess many markers individually in genomewide association scans (Wakefield, 2008b).
Wakefield showed that the expected posterior cost is minimized when the posterior odds is
less than the cost of a false nondiscovery, CFND, divided by the cost of a false discovery,
CFD: i.e., when

This approach can be easily implemented as long as one is careful to weight the conditional
prior odds to truly reflect one's beliefs.
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3 Results
3.1 Simulations

Simulations were performed to assess power. We simulated samples of 100, 500, or 1000
trios, each consisting of two parents and an offspring. All probands and parents were
assumed to be accurately genotyped. Parental genotypes were drawn from a binomial
distribution with the probability of success equal to the allele frequency. Offspring
genotypes were generated based on Mendelian transmission. A continuous trait was
generated with a standard normal distribution. Bayes factors were calculated for varying
combinations of locus-specific heritability of the trait and allele frequency (0.05, 0.1 or 0.2).
For each set of conditions, 10,000 iterations were run. All simulations were performed in R
version 2.6.1.

Summary statistics for conditional Bayes factors and posterior odds (i.e., conditional Bayes
factor times prior odds) simulated assuming no genetic effect are shown in Supplementary
Tables II and III. The null simulations were used to determine a threshold for each allele
frequency that preserves a type one error rate of 0.05. Thresholds were calculated as the 95th
percentile of the null distribution. We examined the distributions of Bayes factors and
posterior odds generated under varying allele frequencies and heritabilities and used the
threshold values to determine power (Supplementary Tables IV and V). Both the conditional
Bayes factor alone and the resulting posterior odds were more powerful than the FBAT
statistic (Figure 1 and Supplementary Table VI). Figure 1 also shows the power when
maximum likelihood estimates substituted into the Bayes factor are obtained by regressing y
on x (as opposed to the conditional mean model in which y is regressed on E(x|P)). This did
not yield as great a power as using the conditional mean model maximum likelihood
estimates. As one would expect, power increased as the amount of heritability explained by
the SNP of interest increased. The increase in power was observed across varying
heritabilities and allele frequencies. While in some scenarios the improvement was
substantial, in others it was slight.

3.2 Application to CAMP
We applied these methods to the Childhood Asthma Management Program dataset (199,
1999). We assessed the evidence for association between roughly 500,000 SNPs and
baseline body mass index z-scores (BMIZ) (Kuczmarski et al., 2000). The analysis included
389 genotyped trios (two parents, one offspring). All SNPs were individually tested for
association. We assumed an additive genetic model. No further adjustments were used since
neither age nor sex was significantly associated with BMIZ. Empirical p values for the
posterior odds were obtained by permuting the phenotypes repeatedly. Table I shows the
twenty SNPs with Bayes factor less than one that had the highest posterior odds of the
alternative hypothesis. Since the Bayes factor is

a Bayes factor of less than one indicates P(data|H0) < P(data|H1). By only considering the
posterior odds for SNPs that have a Bayes factor of less than one, we avoid calling SNPs
significant when there is no evidence of association within families. A low posterior odds of
no association with a Bayes factor greater than one is likely to result from population
stratification.
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4 Discussion
The use of Bayes factors has been advocated as a powerful way to gauge the evidence for
genetic association in population-based genomewide association scans (Wakefield, 2008a;
Consortium, 2007). Bayes factors are suitable for both ranking SNPs and for calibrating
inferences to decide which SNPs to consider noteworthy (Wakefield, 2008b). Wakefield
(2008a) proposed an asymptotic Bayes factor approach for population-based studies that
does not require integration and has suggested possible priors that can be used in
conjunction with it. As Wakefield mentions, there are two aspects of Bayes factors that have
prevented their more widespread use: the multidimensional integrals required to calculate
them can be computationally unattractive for large genomewide association scans and
specification of priors leads to much controversy. Our approach makes no assumptions
about the distribution of alleles or the genetic effect size. Furthermore, our method
circumvents both the need to compute multidimensional integrals and the need to
subjectively specify a prior.

The Bayes factor approach to family-based association testing presented here is a flexible
and intuitive way to utilize both the within- and between-family information. Because the
Bayes factor conditions on the parental genotypes and offspring phenotypes, we can use this
portion of the data to inform the prior odds. The Bayes factor uses within family information
to weigh the evidence for association at a given SNP. A main advantage of using a Bayesian
framework is the flexibility it provides. The likelihood can be chosen to model any number
of study designs. Additional information regarding individual SNPs can easily be
incorporated into the prior as well. Furthermore, this approach does not require
distributional assumptions about allele frequencies.

There are many ways this method can be extended and further characterized. The Bayes
factor approach could be adapted for use with extended pedigrees, missing data, or gene-
environment interactions. Biological information pertaining to individual markers could
easily be used to weight the prior odds. To potentially increase the power of our novel
method, information from multiple SNPs could be incorporated, or one might consider
doing a joint model of all SNPs to eliminate multiple comparisons.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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6 Appendix

6.1 Deriving the Bayes factor for x conditional on y and P
The Bayes factor for the offspring genotypes, x, conditional on the offspring phenotypes, y,
and parental genotypes, P, is defined as
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where H0 and H1 correspond to no genetic effect and an additive genetic effect, respectively.
We assume the phenotypes, y, are independently distributed as yi ~ N(μ + axi, σ2).
Integrating out the genetic effect, a, yields

Henceforth it is assumed that we are conditioning on H1 and H0 and we drop the notation
accordingly. Like the genetic effect size, a, the mean and variance of y is unknown, so we
integrate over these parameters as well.

because offspring genotype does not depend on the phenotype when the effect size is zero.
Applying the definition of conditional probability,

Since the trios are assumed to be independent, it follows that

where the sum is over all the possible offspring genotypes that could have occurred in
family i given the parental genotypes, Pi. Then,

In the absence of phenotype information, y, offspring genotypes depend only on parental
genotypes, P. Thus,
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Since we assume the offspring phenotypes, y, depend on the parental genotypes, P, only
through the offspring genotypes, x, it follows that
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Figure 1.
Power of the posterior odds (blue) compared with the power of the Bayes factor using
maximum likelihood estimates from regressing y on E(x) (green), the power of the Bayes
factor using maximum likelihood estimates from regressing y on x (red), and the power of p
values from the family based association test (black). The posterior odds (blue) is equivalent
to the Bayes factor (red) multiplied by the prior odds.
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Table I

Twenty SNPs with lowest empirical pvalues based on posterior odds.

SNP Bayes Factor Posterior Odds empirical pvalue FBAT pvalue

rs16970570 0.15 0.000003 0.063

rs10428219 0.46 0.000005 0.080

rs7869694 0.14 0.000006 0.062

rs1429862 0.12 0.000009 0.006

rs9374571 0.12 0.000010 0.029

rs3793276 0.11 0.000022 0.022

rs1863159 0.11 0.000031 0.023

rs9307306 0.16 0.000038 0.077

rs10750642 0.10 0.000038 0.024

rs6536309 0.16 0.000054 0.040

rs2195731 0.19 0.000060 0.160

rs6836146 0.20 0.000063 0.154

rs7813810 0.01 0.000072 0.001

rs17075980 0.12 0.000084 0.037

rs9645521 0.11 0.000088 0.019

rs349403 0.12 0.000095 0.037

rs7990570 0.14 0.000096 0.047

rs867477 0.15 0.000097 0.100

rs4720952 0.12 0.000102 0.038

rs242967 0.17 0.000109 0.029
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