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Introduction
Carbamazepine (CBZ), a dibenzazepine, is a tricyclic compound used in the treatment of
epilepsy, trigeminal neuralgia, and psychiatric mood disorders [1]. Serious adverse events
have been reported for CBZ including Stevens–Johnson syndrome (SJS), toxic epidermal
necrolysis (TEN), and Drug Reaction with Eosinophilia and Systemic Symptoms [2,3].
Other types of hypersensitivity reactions are also associated with CBZ including mild skin
rashes, fever, eosinophilia, and cross-reactions to other anticonvulsants. Up to 80% of
patients who have an idiopathic drug reaction to CBZ drugs will also have an adverse
reaction to other anticonvulsants, further restricting treatment options [4]. In addition to
adverse events, lack of efficacy can also be a problem, with as many as 30% of patients with
epilepsy experiencing drug-resistance [5,6]. The mechanisms by which these events occur
are not entirely clear although several candidate pharmacogenes have been associated with
CBZ treatment responses. Current methods to individualize treatment involve therapeutic
drug monitoring, the measurement of drug metabolites in patient samples posttreatment, and
subsequent dose adjustment. Although this provides an accurate view of the drug-response
phenotype, it still risks adverse events and cross-sensitivity. The ability to identify the
patients that will benefit from CBZ, not suffer adverse events and define dose before
treatment would be a highly valuable clinical tool. Here we present the current knowledge of
CBZ pharmacogenomics (PGx) as a gene centered view of the pharmacokinetics of CBZ
(Fig. 1) and collate the gene variants associated with CBZ responses.
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Pharmacokinetics
CBZ is almost completely metabolized in the liver with only approximately 5% of the drug
excreted un-changed [7]. The major route of metabolism is conversion to CBZ 10,11-
epoxide (CBZ-E) [1]. This reaction is primarily catalyzed by CYP3A4 although CYP2C8
also plays a role, and involvement of CYP3A5 has also been suggested (Fig. 1) [1,8]. Minor
metabolic pathways include ring-hydroxylation to form 2-hydroxy-CBZ (2-OH-CBZ) and 3-
hydroxy CBZ (3-OH-CBZ). The formation of each presumably proceeds by an epoxide
intermediate (referred to as an arene oxide intermediate), with CYP2B6 and CYP3A4, being
the major catalysts of 3-OH-CBZ formation [1] and multiple CYPs involved in 2-OH-CBZ
formation [9]. Secondary metabolism of 2-OH-CBZ and 3-OH-CBZ by CYP3A4 represent
two distinct potential bioactivation pathways. CYP3A4-dependent secondary oxidation of 2-
OH-CBZ leads to the formation of thiol-reactive metabolites by an iminoquinone
intermediate [10], whereas CYP3A4-dependent secondary oxidation of 3-OH-CBZ results in
the formation of reactive metabolites capable of inactivating CYP3A4 [1] and forming
covalent adducts [11]. 3-OH CBZ, and to a lesser extent 2-OH CBZ and CBZ, can be
metabolized to form radicals by myeloperoxidase [12]. This releases reactive oxygen species
and may lead to the formation of protein adducts. Covalent binding and protein adduct
formation has also been observed for another antiepileptic drug, phenytoin, and is generally
considered to be a necessary step in the pathogenesis of idiosyncratic reactions to this class
of compounds [12].

CBZ stimulates the transcriptional upregulation of genes involved in its own metabolism,
with autoinduction of CYP3A4 and CYP2B6, by nuclear receptors NR1I2 (PXR) and NR1I3
(CAR) [13–15]. Drug–drug interactions through CYP3A4 [16] and CYP2B6 [17] are well
documented and can complicate the use of CBZ in polytherapy.

Some studies have suggested that glucuronidation is likely to play only a minor role in
metabolism of CBZ and CBZ-E [7]. But other studies dispute the documenting involvement
of UGT2B7 [18,19].

Transport
Variable transport of CBZ, particularly across the blood–brain barrier, may be responsible
for variable CBZ response. Increased export from the brain has been discussed as a method
of drug resistance with P-glycoprotein (PgP, coded by ABCB1) as the main focus [5].
Although studies in rats suggested PgP transport of CBZ [20], in-vitro assays and work in
mice did not show evidence of CBZ transport by PgP [21,22] (not depicted in Fig. 1).
RALBP1, also known as RLIP76, has been shown to transport CBZ and be involved in drug
resistance [23]. Additional PGx evidence implicates ABCC2 as a potential pharmacogene
for CBZ [24] however, cellular studies showed ABCC1, ABCC2, and ABCC5 did not
transport CBZ in vitro [25]. See below for discussion of specific genomic variants in
transporters and CBZ PGx.

Pharmacogenomics
Major histocompatibility locus variants

The most well-studied PGx variants with respect to CBZ are variants within major
histocompatibility (MHC) locus in the human leukocyte antigen gene, HLA-B [26]. HLA-B
codes for a protein that presents peptides to the immune system, identifying foreign or
infected cells [27]. There are over 1500 alleles of HLA-B according to the IMGT/HLA
Database [28]. Historically, these were identified by serotype phenotyping and although new
allele subtypes are commonly identified by sequencing, the definitive genomic variants
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associated with most alleles are not well described. The extreme diversity of this locus in
different ethnic groups means that different tag single nucleotide polymorphisms (SNPs) are
associated with different serotypes in different populations. The serotype allele mostly
associated with risk for the severe adverse drug reactions (ADRs), SJS, and TEN, in
response to CBZ is HLA-B*1502 [29]. One mechanism that has been suggested for how
CBZ hypersensitivity is triggered involves the proteasomal degradation and MHC-
dependent presentation of CBZ metabolites [30]. The generation of free radicals is
considered another possible mechanism. By forming adducts with CYP3A4 enzyme the
radicals may also contribute to the cross-reactive hypersensitivity sometimes seen with other
antiepileptic drugs [11]. An in-vitro study showed covalent binding of CBZ-modified
peptides to the HLA-B*1502 protein that may lead to T-cell activation and SJS with this
allele specifically [31].

HLA*1502 allele is strongly associated with CBZ-induced SJS/TEN in Taiwanese, Chinese,
Indians, and Chinese–Americans but not in Caucasians or Japanese individuals [29,32–38].
This has led the clinical labeling from the Food and Drug Administration to recommend
testing only in individuals with ancestry genetically at risk populations. The tag SNPs for
HLA-B*1502 in Han Chinese HapMap samples are SNPs rs3909184 and rs2844682 [39].

HLA-A*3101 has been associated with CBZ-induced ADRs in Asians [32]. Recently, two
independent genome-wide association studies showed association of HLA-A* 3101 with
CBZ-induced ADRs in Caucasians [40] and Asians [41]. The tag SNP in linkage with HLA-
A*3101 in the Asian population was rs1633021 [41] and in the Caucasian population was
rs1061235 [40].

As a result of high degree of linkage across the MHC region, tagging SNPs may tag for a
functional variant in another gene. The variants rs3909184 (within FLOT1 gene), rs2844682
(MUC21), rs1059510 (HLA-E), rs1264511 (intergenic), rs3130690 (intergenic), rs2848716
(intergenic), rs750332 (BAT2), rs2227956 (HSPA1A, HSPA1L, LSM2), rs1043620
(HSPA1A, HSPA1L, LSM2), rs506770 (HSPA1A, HSPA1L), rs2395402 (LEMD2)
rs986475 (LST1, LTB, NCR3), rs2894342 (MLN) and rs1800629 (TNF:(−308)G > A) have
been associated with CBZ-induced ADRs (including SJS, TEN, maculopapular eruption,
and hypersensitivity syndrome) [32,42,43] (see variant annotations at
http://www.pharmgkb.org/do/serve?objId=PA448785&objCls=Drug#tabview=tab2 for more
details). In addition, the HLA-B*0702 allele was shown to protect against severe CBZ
hypersensitivity (mostly Drug Reaction with Eosinophilia and Systemic Symptoms) in a
small study of Caucasians [36].

As not all individuals with the HLA*1502 allele experience ADRs, it is still unclear which
particular SNPs are causative and which are just tagging SNPs, or which other mechanisms
(e.g. possible haplotype combinations), may be protective and prevent occurrence of ADRs
in HLA*1502 carriers. The definition of which SNPs are causative for the CBZ-induced
ADRs, as opposed to linked to the serological phenotype, will aid in better identifying those
patients at risk for ADR particularly in those without Asian ancestry.

Metabolizing enzyme variants
Variants in CBZ metabolizing enzymes have been shown to affect CBZ pharmacokinetics
although studies have been few and without replication. The reduced function protein
CYP3A4*16 (rs12721627) shows decreased clearance in in-vitro systems [44,45] therefore
potentially requiring altered dosing in individuals with this variant (found at a frequency of
1–5% in populations from Japan, Korea, and Mexico). Clearance of CBZ may be altered in
vivo by CYP3A5 variants [46,47] (for a description of CYP3A5*3 see
http://www.pharmgkb.org/search/annotatedGene/cyp3a5/variant.jsp). A small study on
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Korean individuals with epilepsy found that CYP3A5 nonexpressors (CYP3A5*3,
rs776746) had higher clearance of CBZ and higher plasma levels than CYP3A5 expressors,
a finding that seems incongruent but could be explained by autoinduction of CYP3A genes
[46]. However, a larger study of Japanese epilepsy patients did not find a difference
although this study included patients on comedications that may have further induced
CYP3A4 [47]. Variants in EPHX1 have also been associated with altered CBZ metabolism
[48]. A haplotype of rs1051740 (EPHX1:Y113H) and rs2234922 (EPHX1:H139R) showed
increased plasma CBZ-diol/CBZ-E ratios in vivo in Japanese epilepsy patients [48]. Studies
of polymorphisms in metabolizing drugs and effect on CBZ-induced ADRs have been
mostly negative with one study associating a SNP in the 3′UTR of CYP2B6 (rs1042389)
with maculopapular eruption and hypersensitivity syndrome but this was not significant after
the Bonferroni correction [32].

Transporter variants
Study on the PGx of CBZ transport and resistance are similarly conflicting and in need of
replication in larger cohorts. The well-known ABCB1 variant 3435C > T, rs1045642 CC
genotype was associated with drug-resistant epilepsy in a cohort of 315 British patients
although the drugs used in this study were not specified [49] (for a full description of
ABCB1:3435C > T see http://www.pharmgkb.org/search/annotatedGene/abcb1/variant.jsp).
Several studies since then have found no association of this variant (see meta-analysis by
Bournissen et al. [50]) and these too did not separate patients by treatment. A study of 464
Chinese epilepsy patients associated ABCB1 variants rs3789243 and rs2032582 with CBZ
resistance [51], but a study of 228 North Indian epileptics did not replicate this association
[52]. Although it could be that different haplotype structures or racial background may have
influenced these results, a subanalysis of the Bournissen meta-analysis, which looked at
European cohorts and Asian cohorts separately also found no evidence of association of
ABCB1:3435C > T with drug resistance [50].

Initial studies of RALBP1 expression pointed toward a role in drug-resistant epilepsy [23]
however, two studies of RALBP1 variants in British cohorts failed to find association for all
treatments [53,54]. Although there was a weak association in the small subset of patients (n
= 81) on CBZ only for rs329017 in which the P values were not significant but the
researchers felt warranted further study [54]. One association that has been replicated is with
the ABCC2 SNP c.1249 G > A (p.V417I, rs2273697). This variant was associated with
neurological ADRs in 146 Korean individuals with epilepsy receiving CBZ and validated in
an independent cohort of the same ethnicity [24]. An additional SNP in ABCC2 (−24C > T,
rs717620) has been associated with lack of response to CBZ in young Caucasian epilepsy
patients [6].

Pharmacodynamic variants
Although not depicted in the figure, the targets of CBZ in the brain sodium channels
SCN1A, SCN1B, SCN2A, and SCN3A have pharmacogenomic consequences. The variant
SCN1A IVS5N + 5 G > A (rs3812718, also reported as SCN1A IVS4–91 G > A) has been
associated with high-dose requirements in patients with epilepsy [55,56]. Variants in
SCN2A and SCN3A may contribute to CBZ resistance [57,58] in individuals with epilepsy.
In-vitro evidence from mice also suggests SCN1B as a potential pharmacogene for CBZ that
may warrant further study [59].

Conclusions
The HLA alleles (HLA-B*1502 and HLA-A*3101) are the most important
pharmacogenomic variants for carbamazepine to date. Although it is encouraging that
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labeling changes have been made for CBZ that have been shown to prevent severe side
effects [60], we still need to understand the mechanism by which these events occur and
how ethnicity influences this so as to develop more reliable tests based on causative variants
that can be applied in all individuals regardless of race or ancestry.

Although preliminary data has been collected to show influence of genomic variation on
CBZ metabolism, studies have been small and not validated. Studies appear to be
heterogeneous with respect to ethnicity and assessment of ADRs. Study on defining the PGx
of drug resistance has been complicated by common cotreatment with several antiepileptic
drugs. There is a need for larger studies that have sufficient numbers in each of the
documented treatment groups with well-defined phenotypes. In addition, studies including
DNA sequencing, micro-RNA, or epigenetic analyses are lacking. Thus, more work is
needed to translate observed differences in metabolism and pharmacokinetics into using
genomic variation for predictive dosing.
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Fig. 1.
Stylized liver cell depicting candidate genes involved in the pharmacokinetics of
carbamazepine (CBZ). A fully interactive version is available online at
http://www.pharmgkb.org/do/serve?objCls=Pathway&objId=PA165817070. 2-OH-CBZ, 2-
hydroxy-CBZ; 3-OH-CBZ; 3-hydroxy-CBZ; MPO, myeloperoxidase; ROS, reactive oxygen
species.
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