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Abstract
This PharmGKB summary briefly discusses the CYP2C19 gene and current understanding of its
function, regulation, and pharmacogenomic relevance.
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Introduction
The cytochrome P450, family 2, subfamily C, polypeptide 19 (CYP2C19) gene is located
within a cluster of cytochrome P450 genes (centromere-CYP2C18-CYP2C19-CYP2C9-
CYP2C8-telomere) on chromosome 10q23.33. The CYP2C19 enzyme contributes to the
metabolism of a large number of clinically relevant drugs and drug classes such as
antidepressants [1], benzodiazepines [2], mephenytoin [3], proton pump inhibitors (PPIs)
[4], and the antiplatelet prodrug clopidogrel [5]. Similar to other CYP450 genes, inherited
genetic variation in CYP2C19 and its variable hepatic expression contributes to the
interindividual phenotypic variability in CYP2C19 substrate metabolism. The CYP2C19
‘poor-metabolism’ phenotype was initially discovered by studies on impaired mephenytoin
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metabolism and the major molecular defect responsible for the trait is the CYP2C19*2 (c.
681G > A; rs4244285) loss-of-function allele [3]. CYP2C19 genotype has since been shown
to affect the metabolism of several drugs and clinical CYP2C19 genetic testing is currently
available [6,7].

Expression
CYP2C19 is predominantly expressed in the liver and, to a lesser extent, in the small
intestine [8]. Constitutive expression of CYP2C19 is largely mediated by hepatic nuclear
factors 4 α (HNF4α, HNF4A) and 3 γ (HNF3γ, FOXA3) [9-11], and transcriptional
activation is mediated by the drug-responsive nuclear receptors CAR (NR1I3), PXR
(NR1I2), and GRα (NR3C1) [12,13], suggesting regulation by endogenous hormones and
by drugs such as rifampicin [14,15]. In addition to rifampicin, human CYP2C19 can be
induced by ritonavir, nelfinavir, hyperforin, St. John’s Wort, dexamethasone, and
artemisinin [16]. In-vitro expression studies have recently shown that the GATA-4
(GATA4) transcription factor also upregulates CYP2C19 transcriptional activity by binding
to two predicted GATA-specific promoter elements [17]. Additionally, reduced CYP2C19
activity among women using steroid oral contraceptives results from transcriptional
downregulation of CYP2C19 expression through binding of ligand-activated estrogen
receptor α to a specific estrogen response element consensus half-site in the CYP2C19
promoter [18].

Certain selective serotonin-reuptake inhibitors (e.g. fluoxetine, fluvoxamine) [19,20] and
PPIs (e.g. omeprazole, lansoprazole) [21-23] have an inhibitory effect on CYP2C19, which
may cause drug–drug interactions with co-administered CYP2C19-metabolized drugs. For
example, early studies suggested that omeprazole (a common PPI) diminished the
pharmacodynamic antiplatelet effects of clopidogrel and increased corresponding
cardiovascular risks [24,25]. However, it is currently not clear whether identified changes in
ex vivo platelet aggregation due to concomitant omeprazole and clopidogrel administration
translates into clinically meaningful outcome differences (for review see [26]).

CYP2C19 gene and polymorphisms
The CYP2C19 gene has nine exons and is highly polymorphic, with over 25 variant star (*)
alleles currently defined by the Human Cytochrome P450 Allele Nomenclature Committee
(http://www.cypalleles.ki.se/CYP2C19.htm) (Fig. 1). In addition, detailed mapping
information for CYP2C19 variants and lists of associated drugs and diseases are available at
http://www.pharmgkb.org/search/annotatedGene/CYP2C19/variant.jsp.

Common variants that encode reduced or absent enzymatic activity
rs4244285 (c.681G > A; p.P227P)—rs4244285 (c.681G > A) is the defining
polymorphism of the CYP2C19*2 allele (previously referred to as CYP2C19m1) and is a
synonymous G > A transition in exon 5 that creates an aberrant splice site (Fig. 1). This
change alters the mRNA reading frame, which results in a truncated, nonfunctional protein
(Table 1) [3]. CYP2C19*2 is the most common CYP2C19 loss-of-function allele, with allele
frequencies of approximately 12% in Caucasians, 15% in African-Americans, and 29-35%
in Asians [6].

rs4986893 (c.636G > A; p.W212X)—rs4986893 (c.636G > A) is the defining
polymorphism of the CYP2C19*3 allele (previously referred to as CYP2C19m2) and is a G
> A transition in exon 4 that results in a premature termination codon at amino acid 212
(p.W212X; Table 1) [33]. The CYP2C19*3 allele frequencies in most populations are below
1%; however, it is more prevalent among Asians (2–9%) [6].
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Rare variants that encode reduced or unknown enzymatic activity
Less frequent CYP2C19 alleles associated with absent or reduced enzyme activity are
CYP2C19*4 (rs28399504), *5 (rs56337013), *6 (rs72552267), *7 (rs72558186), and *8
(rs41291556; Table 1). These variants typically have allele frequencies less than 1% [6,47].

Additional variant CYP2C19 alleles originally identified in different populations with little
available functional data are also summarized in Table 1. Alleles that cause a missense
amino acid substitution were subjected to PolyPhen-2 [48] and Sorting Tolerant From
Intolerant [49] algorithm analyses to computationally predict their effect on protein function.
Although not a substitute for actual in-vitro or in-vivo enzyme activity analyses, these data
can provide a basis for potential consequences of these sequence alterations on CYP2C19
enzyme function.

Variants that encode increased enzymatic activity rs12248560 (c. −806C > T)
rs12248560 (c. −806C > T) is the defining polymorphism of the CYP2C19*17 allele and is a
C > T transition in the promoter that creates a consensus binding site for the GATA
transcription factor family, resulting in increased CYP2C19 expression and activity (Table
1) [39,40,44]. The CYP2C19*17 allele frequencies are approximately 21% in Caucasians,
16% in African-Americans, and 3% in Asians [6].

Drug metabolizer categories
On the basis of the ability to metabolize CYP2C19 substrates, individuals can be classified
as ultrarapid metabolizers (UM), extensive metabolizers (EM), intermediate metabolizers
(IM), or poor metabolizers (PM). EM individuals are homozygous for the CYP2C19*1
allele, which is associated with functional CYP2C19-mediated metabolism. The IM
genotype consists of one wild-type allele and one variant allele that encodes reduced or
absent enzyme function (e.g., *1/*2, *1/*3), resulting in decreased CYP2C19 activity [47].
PM individuals have two loss-of-function alleles (e.g., *2/*2, *2/*3, *3/*3), resulting in
markedly reduced or absent CYP2C19 activity [47,50]. Of note, some CYP2C19 literature
uses a separate nomenclature system that includes ‘homozygous extensive metabolizers’
(e.g., *1/*1), sometimes also referred to as ‘rapid metabolizers’; ‘heterozygous-extensive
metabolizers’ (e.g., *1/*2); and ‘PM’ (e.g., *2/*2). Regardless of the nomenclature system,
the frequency of CYP2C19 PMs is approximately 2-5% in Caucasians and African-
Americans, and approximately 15% in Asians [6].

Individuals who carry one or two *17 gain-of-function alleles (e.g., *1/*17, *17/*17) may
be categorized as UMs. However, the phenotypic consequences of a loss-of-function allele
and a *17 compound heterozygous genotype (e.g., *2/*17) is currently unclear but may be in
between the EM and IM phenotypes, and possibly may be dependent on the substrate
[51,52]. An important caveat in translating genetic information into predicted metabolizer
status category is that the CYP2C19*1 allele is defined by the absence of other variants.
Thus, genotyping assays that do not query all variation in the gene may misclassify some
individuals. If all common variants (i.e., > 1% allele frequency) are genotyped,
misclassification error will be small.

CYP2C19 genotype and Drug response
Platelet-aggregation inhibitors

Clopidogrel is a commonly prescribed antiplatelet pro-drug that is metabolized into an
active metabolite by several hepatic CYP450 enzymes, predominantly CYP2C19 [53].
CYP2C19 loss-of-function alleles have been associated with lower active metabolite
exposure [54,55] and decreased platelet responsiveness ex vivo among clopidogrel-treated

Scott et al. Page 3

Pharmacogenet Genomics. Author manuscript; available in PMC 2013 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



patients [5,56,57], and increased cardiovascular event rates among clopidogrel-treated
patients with acute coronary syndromes and/or those undergoing percutaneous coronary
intervention [57-60]. In addition, a genome-wide association study found CYP2C19*2 to be
strongly associated with clopidogrel response [61] and recent large meta-analyses indicate
that both heterozygous (e.g., *1/*2) and homozygous (e.g., *2/*2) clopidogrel-treated acute
coronary syndromes/percutaneous coronary intervention patients are at an increased risk for
serious adverse cardiovascular events with a gene-dose effect [62,63]. Interestingly, this
CYP2C19 gene-dose effect has largely been illustrated with clopidogrel by pharmaco-
kinetic, ex vivo platelet aggregation, and clinical outcome studies. This effect is less evident
for some other CYP2C19 substrates, which are more so influenced by PM genotypes (e.g.,
*2/*2).

Some studies have identified enhanced platelet inhibition and clopidogrel response among
UM patients [51,57,64,65] and possibly an increased risk of bleeding complications [44];
however, other studies have not identified an independent effect of CYP2C19*17 on
clopidogrel response [58,61,66]. Despite the heterogeneity in results among individual
studies, a recent meta-analysis found CYP2C19*17 to be associated with a lower risk of
cardiovascular events and a higher risk of major bleeding [67]. However, as the variant that
defines the activating allele of *17 and the variant that defines the absence of the *2 allele
are in linkage disequilibrium (e.g., D′ = 1.0 and r2 = 0.064 in CEU HapMap sample; D′ =
1.0 and r2 = 0.065 in YRI HapMap sample; and D′ = 1.0 and r2 = 0.074 in CHB HapMap
sample), it is unclear whether there is an independent effect of the *17 allele on platelet
aggregation or whether this association is due to the relative absence of the *2 allele in these
same patients. Moreover, there is significant linkage disequilibrium across the entire CYP2C
locus [68] and *17 has been identified on haplotypes with both wild-type and variant
CYP2C8 alleles depending on ethnicity [69,70].

Proton pump inhibitors
PPIs are commonly prescribed for gastroesophageal reflux disease, gastric and duodenal
ulcer disease, eradication of Helicobacter pylori (H. pylori) infection, prevention and
treatment of nonsteroidal anti-inflammatory drug-associated damage, and for patients with
nonvariceal upper gastrointestinal bleeding or nonulcer dyspepsia. Given most PPIs are
predominantly metabolized by CYP2C19, both IMs and PMs can have reduced drug
elimination and higher PPI plasma concentrations compared with EM individuals [71].
Consequently, eradication of H. pylori infection with omeprazole, lansoprazole, and
pantoprazole has been reported to be greater among CYP2C19 IMs and PMs compared with
EMs [72-75]. In addition, the healing rates of peptic ulcers and gastroesophageal reflux
disease during PPI treatment is influenced by CYP2C19 genotype [76] as IMs and PMs have
been found to respond better to PPI treatment than EMs [72,77,78].

The UM genotype (i.e., *17/*17) has been reported to affect omeprazole pharmacokinetics
resulting in increased rates of drug metabolism and subtherapeutic exposure [79]. However,
not all studies have identified a significant effect of CYP2C19*17 on PPI metabolism and H.
pylori eradication [80,81].

Antidepressants
CYP2C19 is involved in the metabolism of the tertiary amine tricyclic antidepressants
(TCAs) imipramine, amitriptyline, trimipramine and clomipramine, and of the secondary
amine TCA nortriptyline. Although multiple CYP450 enzymes are involved in the
metabolism of these antidepressants, their plasma concentrations and active metabolite
levels have been reported to be greater in CYP2C19 PMs than in EMs [82,83]. Adverse
effects from TCAs may be associated with CYP2C19 loss-of-function alleles, but are more
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likely when CYP2D6 genotype is also defective and/or CYP2C19/CYP2D6 inhibitors are
coadministered [47,83].

Some selective serotonin-reuptake inhibitors, such as citalopram, sertraline, fluoxetine and
venlafaxine, and the reversible MAO inhibitor moclobemide are also CYP2C19 substrates.
CYP2C19 genotype has an effect on citalopram serum concentration but the clinical
significance of CYP2C19 PMs for this agent is controversial [7,84,85]. For sertraline,
patients with one or two CYP2C19 loss-of-function alleles typically have higher dose-
adjusted serum concentrations compared to EMs, which may have clinical utility for
predicting outcome [7,86-88].

With regard to UMs, CYP2C19*17 has been found to correlate with lower serum
concentrations of several antidepressants compared with EM patients [40,89,90]; however,
the exact clinical relevance of UM genotypes in antidepressant response warrants further
investigation.

Others
Other drugs that may be influenced by CYP2C19 genotype include anticonvulsants (e.g.,
diazepam, phenytoin) [91,92] and anti-infectives, notably the antimalarial agent proguanil
[93] and the antifungal voriconazole [94].

Clinical CYP2C19 pharmacogenetic testing
Although a number of genotyping technologies can be used to interrogate variant CYP2C19
alleles in Clinical Laboratory Improvement Amendments-approved laboratories, two
genotyping platforms have been approved by the US Food and Drug Administration at the
time of this writing: the AmpliChip CYP450 Test (Roche Molecular Systems, Inc.,
Pleasanton, California, USA) that interrogates CYP2C19*2 and *3 (plus CYP2D6 variant
alleles) and the Infiniti CYP2C19 Assay (AutoGenomics, Inc., Vista, California, USA) that
interrogates CYP2C19*2, *3, and *17. For test interpretation and clopidogrel dosing
suggestions, see the Clinical Pharmacogenetics Implementation Consortium guidelines for
CYP2C19 genotype and clopidogrel therapy [6] (www.pharmgkb.org). In addition, a recent
clinical pharmacogenetics practice review provides dosing guidelines for clopidogrel and
other CYP2C19-metabolized drugs [7] and CYP2C19/ CYP2D6 genotype-based
antidepressant dosing recommendations have been previously reported [95].

Conclusion
Clearly, CYP2C19 is a very important pharmacogene. Although there are gaps in the
knowledge, particularly with respect to how modifying dosing and/or drug substitution
based on metabolizer status affects clinical outcomes, the infrastructure is now in place to
implement personalized drug treatment for several key drugs based on CYP2C19
genotyping results.
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Figure 1.
Illustration of the CYP2C19 gene highlighting the location of selectedloss-of-function (*2–
*8) and gain-of-function (*17) variant alleles. Exons are represented by numbered black
boxes (not to scale).
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