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Abstract
Mesh deformation methods are a versatile strategy for solving partial differential equations
(PDEs) with a vast variety of practical applications. However, these methods break down for
elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of
problems, the additional interface jump conditions are required to maintain the well-posedness of
the governing equation. Consequently, in order to achieve high accuracy and high order
convergence, additional numerical algorithms are required to enforce the interface jump
conditions in solving elliptic interface problems. The present work introduces an interface
technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We
take the advantages of the high accuracy, flexibility and robustness of the matched interface and
boundary (MIB) method to construct an adaptively deformed mesh based interface method for
elliptic equations with discontinuous coefficients. The proposed method generates deformed
meshes in the physical domain and solves the transformed governed equations in the
computational domain, which maintains regular Cartesian meshes. The mesh deformation is
realized by a mesh transformation PDE, which controls the mesh redistribution by a source term.
The source term consists of a monitor function, which builds in mesh contraction rules. Both
interface geometry based deformed meshes and solution gradient based deformed meshes are
constructed to reduce the L∞ and L2 errors in solving elliptic interface problems. The proposed
adaptively deformed mesh based interface method is extensively validated by many numerical
experiments. Numerical results indicate that the adaptively deformed mesh based interface method
outperforms the original MIB method for dealing with elliptic interface problems.
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I Introduction
To solve partial differential equations (PDEs) in real world applications, adaptive strategy is
often desirable. There are three main tactics, i.e., mesh subdivision (i.e., h-refinement), local
high order schemes (i.e., p-refinement) and grid deformation method (i.e., r-method).
Among them, the grid deformation strategy is an important approach. It has been applied to
a variety of physical and engineering problems, such as combustion, shock waves, reaction
diffusions, and two-phase flows.7,19,21,35,36,46 When the underlying problems are time-
dependent, the deformed meshes change during the course of time evolution and the method
is thus called moving mesh method. The essential idea of mesh deformation approaches can
be dated back to 1974 by de Boor,3 who proposed the equi-distribution principle, which
governs the selection of the spatial grid such that the solution error is equally distributed
over all subintervals and the total error is minimized. This principle has been successfully
employed to generate meshes in a one-dimensional (1D) setting with a number of elegant
methods.

For mesh deformation methods in higher dimensions, a major advance was due to
Winslow,40 who used the solution of the Poisson equation to generate a mapping from a
regular mesh in the computational domain to an irregular mesh in the physical domain. This
method was further studied by Thompson, Thames and Mastin.33,34,37 A body-fitted
coordinate system was constructed for arbitrarily shaped geometries and a source term was
introduced to control the spacing of coordinate lines. However, all these methods were
mainly focused on the geometry of the physical domain. Little attention was paid to adaptive
grid generations for singular solutions before Brackbill and Saltzman’s work in 1982.4,5

These authors incorporated the adaptation of the solution into Winslow’s method. Based on
the variational approach, they managed to improve the smoothness and orthogonality of
their mesh by considering some controlling terms. In 1991, Dvinsky introduced a harmonic
mapping to realize adaptive mesh generations.12 In his work, a single energy functional is
minimized by using the Euler-Lagrange equation. By using the equi-distribution principle,
Huang, Cao and Russell7,20,21 derived a series of moving mesh PDEs in a 1D setting, and
then extends this method to a 2D domain based on a gradient flow. In 1992, Liao and
Anderson26 introduced a new mesh deformion method, in which grid nodes were moved
according to the velocity field such that a specified cell volume distribution could be
achieved.

In computational fluid dynamics, the mesh equation and the original equation are to be
solved simultaneously. For problems with boundary layers or near-shock solutions, Miller
and Miller29 proposed a moving mesh finite element method, in which grid nodes
concentrate automatically in critical regions and move along the velocity. Dorfi and Drury11

proposed a moving mesh finite difference method in a 1D domain. They combined the
adaptive grid with the implicit finite difference method to achieve high accuracy and allow
relatively large time steps to be taken. Motivated by Dvinsky’s work, Li and Tang24

proposed a moving mesh finite element method. In this approach, the change of meshes in
the computational domain is used to guide the mesh redistribution in the physical domain at
each time step. The solution is then updated through certain formula. Their method has been
used in many applications.32

In general, mesh deformation methods are only applicable to PDEs with near singular
solutions, boundary layers or interior layers. In particular, these methods do not work for
elliptic equations with discontinuous coefficients, also known as elliptic interface problems.
Usually, due to the discontinuous coefficients, the solution of these problems is of low
regularity. Typically the solution admits jumps. In case that the solution is continuous, the
gradient of the solution is usually discontinuous. Consequently, for this class of problems,
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even if the meshlines are highly concentrated around the interface, the traditional mesh
deformation solution can not maintain the desired order of convergence and may even
diverge. In fact, the solution can be completely wrong as illustrated in our numerical test in
Section III. This is due to the fact that the traditional mesh deformation does not
automatically enforce interface jump conditions required at discontinuities. Whereas elliptic
interface techniques can achieve high order convergence for this class of problems.
Therefore, in order to make traditional mesh deformation strategy applicable to elliptic
equations with discontinuous coefficients, one needs to incorporate elliptic interface
techniques.

Elliptic equations with discontinuous coefficients and singular sources are of great
importance in fluid dynamics, material science, and biological systems. Since Peskin’s
pioneer work of immersed boundary method (IBM),31 many other methods have been
proposed in the past few decades. Among them, immersed interface method (IIM) proposed
by LeVeque and Li23 is a remarkable scheme that achieves the second order accuracy and
preserves the jump information at the interface. In their method, a local correction of the
finite difference scheme is employed to incorporate the interface jump conditions.25 The
ghost fluid method (GFM) proposed by Fedkiw, Osher and coworkers13 is relatively simple
and easy-to-use approach. Other methods such as finite element formulations,1,6 finite
volume based methods,30 the piecewise-polynomial discretization,9 integral equation
methods,28 coupling interface method,10 and discontinuous Galerkin techniques18 have also
generated much interest.

The matched interface boundary (MIB) method was initially introduced by Zhao and Wei
for solving the Maxwell’s equation with material interfaces48 and later generalized to the
solution of elliptic equations with discontinuous coefficients and singular sources,43,45,49,50

as well as the Helmholtz equation with material interfaces.47 It is a systematic higher-order
method for interface problems. The 16th order scheme is demonstrated with a simple
geometry,50 and 6th order MIB scheme has been constructed for irregular interfaces in 3D
domains.43 In the MIB method, the fictitious values are used on irregular points so that the
standard finite difference scheme can be employed throughout the computational domain.48

Similar ideas have been used in our discrete singular convolution algorithm for many
years.38,39 To further achieve flexibility, the enforcement of the jump condition is separated
from the discretization of the original equation.50 One important feature of the MIB method
is that, in order to avoid the use of high order jump conditions, it iteratively enforces the
lowest order jump conditions to achieve high order accuracy.48,50 Another feature of the
MIB method is that if possible, it splits a high-dimensional interface problem into multiple
1D ones.39,48 As for geometric singularities, the disassociation technique and some schemes
for handling singularities are invented.45 Equipped with Krylov-subspace acceleration
techniques, the state of the art MIB method is able to efficiently solve elliptic PDEs with
arbitrarily complex interfaces, geometric singularities and singular sources in 3D
settings.8,43

Although there are many existing elegant methods for solving interface problems, simple
regular Cartesian meshes are usually used in most approaches. Such meshes are certainly not
optimal for problems with localized dramatically varying solutions. These problems differ
from the normal high frequency ones, which can be dealt with high order interface schemes,
such as the high order MIB method, with an optimal performance. One of optimal strategies
for localized dramatic changes is the local mesh refinement. Finite element and finite
volume based interface methods can build in locally adaptive grid generation
algorithms.22,41 However, it is very difficult to construct high-order convergent finite
element or finite volume based interface methods for arbitrarily complex interfaces,
particularly, interfaces with geometric singularities.42,43 Consequently, it is extremely
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valuable to develop an adaptive mesh strategy for solving elliptic equations with
discontinuous coefficients and locally fast varying solutions. To our knowledge, such a
method does not yet exit at present.

The objective of the present work is to construct the first known adaptively deformed mesh
based interface technique for solving elliptic equations with discontinuous coefficients and
locally fast varying solutions. Our goal is to take the advantage of the mesh deformation
strategy for elliptic interface problems. To this end, we generalize the MIB technique to
mesh deformation settings. Two mesh deformation strategies, i.e., interface geometry based
deformed meshes and solution gradient based deformed meshes are incorporated with our
interface techniques in the present work. The resulting interface method is not only high
accuracy but also high-order convergence. We believe that the proposed numerical
algorithm is a significant advance of both traditional mesh deformation methods and elliptic
interface schemes.

The rest of the paper is organized as follows. Section II is devoted to the theory and
algorithm. To provide essential knowledge and establish notation, we provide a brief review
of the mesh deformation method proposed by Liao and Anderson.26,27 The construction of
general monitor functions for location specific mesh mapping is described. The
transformation of the governing equation from the physical domain to the logical domain
(i.e., the computational domain) is discussed. In Section II.B, the essential techniques of the
MIB method are presented. This discussion provides a basis for the development of an
adaptively deformed mesh based elliptic equation solver. In Section II.C, we construct new
interface techniques in the transformed domain, which are a reformulation of the original
MIB method in the mesh deformation framework. In Section III, we carry out a large
number of numerical experiments to validate the proposed new adaptively deformed mesh
based interface method. In the first test case, we illustrate that the traditional mesh
deformation methods do not converge for elliptic equations with discontinuous coefficients.
Either the discontinuity in the solution or the discontinuity in the solution gradient will cause
the failure of the traditional mesh deformation methods. The rest of the test examples are
designed to demonstrate the performance of the proposed method. The effectiveness of two
types of deformed meshes, namely, the interface geometry based ones and solution gradient
based ones, is examined in the present work. Comparison is made to the original MIB
method. We show the improvement of the proposed interface technique based deformed
mesh strategy to the original MIB method for elliptic interface problems. This paper ends
with some concluding remarks.

II Theory and algorithm
We define the elliptic interface problem in an open bounded domain Ω ∈ ℝ2. The interface
is usually originated from a physical setting. Let us consider a given interface Γ which
divides Ω into two subdomains, Ωa and Ωb, such that Ω = Ωa ∪ Ωb and Γ = Ωa ∩ Ωb. In the
present work, we limit our attention to the situation that the boundary ∂Ω and interfaces Γ
are continuous, although more general nonsmooth cases often occur in applications.42,43 We
define a level-set function Φ on Ω̄, such that Γ = {x, y|Φ = 0; x, y ∈ Ω}, Ωa = {x, y|Φ ≥ 0; x,
y ∈ Ω}, Ωb = {x, y|Φ ≤ 0; x, y ∈ Ω}. The two dimensional (2D) elliptic interface problem is
given as

(1)

where the variable coefficient β(x, y) may have jumps at the interface Γ, at which two jump
conditions can be prescribed to ensure the well posedness of the mathematical formulation
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(2)

(3)

Here we denote ua as the limiting value of function u from the Ωa side of the interface, ub the
limiting value from Ωb side of the interface, and un is the derivative along the norm
direction. For simplicity, we assume that both Ψ1(x, y) and Ψ2(x, y) are C1 continuous in
the present work.

In the following subsections, we construct deformed mesh based interface technique for the
solution of Eq. (1), subject to interface conditions (2) and (3). The boundary condition of Eq.
(1) can be either Dirichlet, Neumann or Robin. To establish notation and introduce basic
concepts, we first describe the mesh deformation method proposed by Liao and Anderson
and our MIB method. Then the a new elliptic interface technique will be developed based
these methods.

II.A Mesh deformation methods
Mesh deformation methods are designed to generate a mapping φ⃗: ℝn → ℝn which
transforms a regular mesh in the logical domain to the physical domain based on certain
rules. There are many kinds of mesh deformation methods or moving mesh methods as we
have reviewed in the introduction. The most important ingredients shared by all mesh
deformation methods are monitor functions, mesh equations, and the transformation of the
governing equation.

Monitor functions are used to control the meshline distribution. They can be designed based
on either the geometry, the solution, the gradient of solution, or the posterior errors. The
selection of the monitor function has a major impact on the final mesh distribution and thus
the accuracy of the solution. In practice, smoothness and regularity of the monitor function
are usually needed. The mesh equation governs the mesh redistribution. A satisfactory mesh
equation should concentrate sufficiently many grid nodes in local regions of interest. On the
other hand, it should deliver the smoothness and orthogonality of the new mesh. The
transformation of the governing equations may not be necessary for finite element methods
as governing equation is directly solved on the irregular mesh or some iterative strategy may
be used.24 However, for finite difference methods, it is important to transform the governing
equation from the physical domain to the computational domain. Otherwise, irregular grid
finite difference schemes must be used, which may lead to accuracy reduction.

In the present work, we develop our mesh deformation method based interface technique by
reformulating the mesh deformation algorithm proposed by Liao and Anderson.26 In their
work, the grid nodes are shifted according to a velocity field determined by a linear Poisson
equation. The cell “volume” of the new mesh directly related to the transformation Jacobian
is specified on the regular logical grid. After normalization, the monitor function is designed
as a source term to control the contraction or expansion of the mesh at each node point.

The essential idea of Liao and Anderson’s mesh deformation method is equi-distribution.2,34

In a 1D setting, it can be stated as,

(4)
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where φ is a transformation from the Cartesian grid ξ to the physical grid x, and f is the
weight function, which is equi-distributed over the grid when Eq. (4) is satisfied. In a
discrete representation, the equi-distribution takes the form

(5)

In higher dimensions, we assume that there is a smooth monitor function f(x⃗) defined on the
physical domain Ω ⊂ ℝn and satisfies two conditions

(6)

(7)

where the AΩ is the area of the physical domain. We construct certain transformation φ⃗: ℝn

→ ℝn satisfying the relation

(8)

(9)

where ξ⃗ is the Cartesian grid in the computational domain, and φ⃗(ξ⃗) is the new grid in the
physical domain. The “volume” element in the physical domain is given by |∇φ⃗(ξ⃗) |dξ⃗, and
it is determined by the specified monitor function. On the other hand, function  can be
viewed as the weight function and satisfies the equi-distribution principle on the new mesh
in the physical domain.

II.A.1 Algorithm for mesh deformation—Liao and Anderson provide a computational
algorithm to carry out the above transformation.16,17,26,36 Here, we outline a practical
procedure for the mesh generation.

1. Design a temporal monitor function h(x⃗) > 0 according to a desirable role of choice.
The performance of a mesh deformation method depends crucially on the
appropriate choice of the monitor function. In the literature, monitor functions
based on arc-length and/or error indicator are often used.

2. Normalize the monitor function according to (7) by finding a coefficient cf such
that

(10)

Then, we set the normalized monitor function as .

3. Construct a Poisson equation with the zero flux boundary condition

(11)
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(12)

where c is a continuous monitor function for mesh control20 and w is a C2 function
for mesh generation. Obviously, the mesh can be adjusted by using either c or f, or
the both. In the present work, we set c = 1 and control the mesh movement by
appropriate f. Here n⃗ is the unit normal vector at the boundary. One needs to
specify a value of w(x⃗) at a boundary point to make the final solution unique.

4. Define a velocity field vector v⃗: Ω → ℝn by the gradient

(13)

5. Construct a deformation equation, i.e., a mesh equation, as

(14)

(15)

Obviously, this equation has to be solved iteratively.

6. Set the new mesh as

(16)

Liao and Anderson give a detailed description to show that the mesh generated by such an
algorithm can satisfy Eq. (8). The cell volume here can be directly controlled by the monitor
function according to one’s need. Normally, there are two ways to choose a suitable monitor
function. The first way is based on the geometric characteristic. For example, if we want
meshlines to concentrate in the region near the interface, we calculate the absolute distance
from every point to the nearest interface, and this absolute distance is then treated as a
variable in the monitor function. Figure 1 gives two examples of using geometry based
monitor functions to control the mesh movement.

The second way is based on the solution characteristic. As such, the monitor function is
incorporated with either the solution arclength, curvature, or posterior errors. Usually, if the
solution is denoted as u, then this monitor function is of the form f(u, ∇u, Δu). Figure 2
depicts an example of a deformed mesh.

II.A.2 Transformation of governing equations—For finite difference methods, the
governing equation can be solved either on a regular Cartesian mesh or on an irregular
mesh. However, for a given number of finite difference nodes, the method on a regular
Cartesian mesh has higher accuracy than that on an irregular mesh. Therefore, it is
worthwhile to transform the governing equations defined in the irregular coordinate x⃗ in the
physical domain back to the regular coordinate ξ⃗ in the logical or the computational domain.
This transformation can be viewed as the inverse process of the mesh generation. For 2D
problems, if we denote x⃗ = (x, y), and ξ⃗ = (ξ, η). We have the transformation relations
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(17)

Here J is determination of the transformation matrix, J = xξyη − xηyξ. Combined with the
chain rules

(18)

one can transform ux into the new coordinate,

(19)

In this way, the first and second derivatives of the solution can also be transformed into the
new coordinate,

(20)

(21)

(22)

(23)

(24)

Here the a1,a2, b1,b2 and f1 to f5 are some coefficients. They are determined when the mesh
is generated. Their explicit expressions are given as

(25)

(26)

(27)

(28)

(29)
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(30)

(31)

(32)

(33)

(34)

(35)

In mesh deformation methods, usually there is no explicit expression of x⃗ with ξ⃗ or the
inverse. So all these coefficients should be evaluated on each grid point numerically. For
example, if a grid node (i, j) is not on the boundary, one can have the approximation of xξ at
(i, j) as

(36)

Here since coordinate system ξ⃗ is of Cartesian, the grid spacing is equal and one denotes it
as hξ⃗. During the process of transformation of the governing equation, we implement the
transformation relations (17) just for the purpose of avoiding the difficulty of approximation
ξx, ξy, ηx, and ηy directly. Once the mesh generation is completed, all these coefficients can
be calculated numerically.

II.B Matched interface and boundary method
The mesh deformation method obtained in Sections II.A.1 and II.A.2 can be used to solve
the elliptic equation (1) directly for continuous coefficients or at the absence of interface
conditions (2) and (3). However, mesh deformation methods can not achieve the designed
order of convergence, accuracy and efficiency when the elliptic equation has discontinuous
coefficients. In fact, the deformed mesh solution can be completely wrong when the solution
admits jumps at the interface. To restore the power of mesh deformation methods, one needs
to enforce interface conditions (2) and (3) in the mesh deformation framework. To this end,
we consider the MIB method.

In the MIB method, irregular points are defined as the grid points which lie near the
interface so that at least one of the required node points of a standard central finite
difference scheme is located on the other side of the interface. In order to employ the central
finite difference scheme for this kind of grid points. We introduce fictitious values, which
can be viewed as a smooth extension of function values from the other side of the interface.
Jump conditions are used to calculate the fictitious values, so that their implementation is
disassociated with the discretization of the elliptic equation. As such, the same MIB scheme
can be used for many different PDEs. We split a high dimensional problem to 1D problems.
Therefore, the treatment of high dimensional problems is essentially the same as the
treatment of 2D problems.
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The MIB method enforces interface jump conditions at each intersecting point of the
interface and meshlines. Let us consider a 2D problem. The first thing to do is to define a
local coordinate system at an intersecting point of the interface and a meshline. To this end,
we derive one more interface condition by differentiating Eq. (2) along the tangential
direction of the interface when the interface is not aligned with the x- or the y- mesh line.

This tangential direction jump condition can be expressed as . Hence, if we
define the norm direction n⃗ = (cos θ, sin θ) of the interface at the intersecting point, we can
have three jump conditions

(37)

(38)

(39)

where θ is defined with respect to the Cartesian meshline.

We discretize (βux)x and (βuy)y separately using the second-order central finite difference
scheme. For example, if the interface intersects the jth mesh line at a point between (i, j) and
(i + 1, j), the function values ui,j and ui+1,j are located in different subdomains. Hence, (i, j)
and (i + 1, j) are irregular points and fictitious values fi,j and fi+1,j are defined. The
discretized form of (βux)x at the irregular points (i, j) and (i + 1, j) can be given as,

(40)

Therefore, the direct evaluation of (βux)x at point (i, j) involves grid points ui−1,j, ui,j and
fictitious value fi+1,j. The enforcement of the jump conditions in fact defines the fictitious

values. This is done by discretizing some of terms ua, ub, , and  based on the
geometry. Two linear equations involving two fictitious values can be constructed. This is

always possible in practice. If  is difficult to evaluate, one can eliminate it from Eqs. (38)
and (39) to attain

(41)

where  and .

Based on the geometry, one can choose to eliminate one of  and  and attain two linear
equations. Normally, one eliminates the derivative which is difficult to evaluate due to the

constraint of the interface geometry. If one eliminates , then

(42)
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where  and . If one

eliminates , then

(43)

where  and . If one eliminates
, then

(44)

where  and .

As depicted in Fig. 3, the interface divides the whole computational domain into two
subdomains, denoted as Ωa and Ωb. Here Ωa is marked with yellow color, while Ωb is marked
with green color. To make it more clear, we denote uao the limiting value of function u at
point o from the Ωa, and ubo the limiting value at point o from Ωb. The derivative of u with
respect to x at point o from Ωa is represented as , and that from domain b is represented as

.

Therefore, for point o, using ui−2,j, ui−1,j, ui,j, ui+1,j and the fictitious values fi−1,j fi,j, one can

discretize uao, ubo,  explicitly as

(45)

where  is the standard finite difference weights computed from Lagrange polynomials.
Subscript n = 0 represents the interpolation of the solution and subscript n = 1 represents the
first order derivative of the solution. Here, subscript m is for the node index and superscript l
indicates the position. For example, ao stands for the limiting value at the interface point o
from domain Ωa.

In Fig. 3, it is difficult for us to find suitable auxiliary points to discretize  as there are not

enough grid points in Ωa around point o. Thus, we choose to discretize . In order to do so,
we need three u values along the y-direction in domain Ωb. If we denote the coordinate of
point o as (io, j), then these three values lie at points (io, j), (io, j + 1) and (io, j + 2). Since we
have already had the expression for the value ubo at point (io, j), the other two values can be
approximated by auxiliary values ui−3,j+1, ui−2,j+1, ui−1,j+1, ui−2,j+2, ui−1,j+2 and ui,j+2. Here

 can be computed as

(46)
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where, w1 and w2 are finite difference coefficients for the points at two auxiliary lines. Two

equations can be attained by substituting Eqs. (45) and (46) into Eq. (42) to eliminate ,

(47)

(48)

Here n⃗ = (cos θ, sin θ) is a unit normal vector,

 and . Therefore, we obtain
two equations from the interface information at point o.

To evaluate fictitious values, we solve Eqs. (47) and (48) together. The fictitious values can
be represented by node values and jump conditions

(49)

where vector {U}13×1 consists of 10 function values and 3 jump conditions

(50)

Here, {C}2×13 is a coefficient matrix and its components are the combination of weights and
trigonometric functions of the normal direction at points o. Thus, once the locations of o is
given, one can easily calculate the matrix and then the expression of fictitious values.
Finally, one discretizes (βux)x at irregular points (i − 1, j) and (i, j) as

(51)

Many other MIB schemes are created to handle geometric singularities (i.e., nonsmooth
interfaces) and on-grid interface situations.45,48,49 So far, many MIB techniques have been
developed, such as dimension splitting, iteratively enforcement of the lowest order jump
conditions, disassociation of equation discretization and fictitious value evaluation,
simultaneously using two sets of interface conditions, etc. These techniques endow the MIB
method the robustness, flexibility and accuracy in tackling arbitrarily complex interface
geometries.

II.C Adaptively deformed mesh based interface methods
The MIB method is based on finite difference schemes. Both regular Cartesian grids and
irregular grids44 have been used in the MIB method. When an irregular mesh is generated by
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a mesh deformation method, we can either apply the MIB method directly on the irregular
grids or implement the MIB method on the Cartesian mesh, which requires the transform of
the governing equation. Since normal interface techniques may reduce their accuracy on
irregular meshes, it it preferred to solve the transformed equation on the Cartesian mesh. For
this purpose, the same kind of transformation as shown in Section II.A.2 should be
employed. To make it clear, the transformation here is the inverse process of mesh
transformation form curvilinear coordinate (x, y) to the regular coordinate (ξ, η). As the
elliptic equation has discontinuous coefficient, which can be a function depending on the
location. The transformation of the elliptic equation is given by

(52)

where coefficients f1, ··· f5 share the same form as those in Section II.A.2

(53)

Here coefficients co1, ··· co5 are similar to the coefficients f1, ··· f5 and can be evaluated
numerically when the new mesh is generated. The discretization of terms uξξand uηη is the
same as that in the MIB method. On regular point, the central finite difference scheme is
implemented. For irregular points, we replace the gird values located at the other side of the
interface with fictitious values. The first order derivatives are evaluated by the central finite
difference scheme involving fictitious values at irregular points.

For the term uξη, at a point (i, j), the usual central difference scheme is,

In order to approximate the term uξη, we divide all grid points into two kinds. For a point (i,
j), if the four grid points needed for the central difference scheme of uξη are all in the same
domain of (i, j), this point belongs to the first category. The rest belongs to the second kind.
The discretization of the term uξη involves finding the suitable points in the same
subdomain based on the geometry. The technique of finding points based on the geometry is
discussed in detail in our earlier work.44,45

During the transformation from curvilinear coordinate (x, y) to the regular coordinate (ξ, η),
the relative location of the grid nodes and the topology of the interface do not change. That
is to say, if a point (i, j) is located in certain subdomain in the physical domain, after
transformation this point still lies in the same type of subdomain but in the logical domain.
Although the shape and length of the interface may change during this process, the
topological relation of the interface with respect to its surrounding grid nodes is kept
unchanged.
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The implement of jump conditions is of great importance. Assume there is an interface
intersecting point o in the physical domain, the jump values at this point are denoted as [u]o,
[uτ]o and [βun]o. There exists a corresponding interface intersecting point o′ in the
computational domain with the same jump values

(54)

If we defined the normal direction at point o as n⃗ = (cos θ, sin θ). The tangential direction
jump condition can be rewritten as

(55)

Here  is a vector, and its expression is,

To make it clear, here the derivative  is evaluated at point o in the physical domain. But

 is evaluated at point o′ in the computational domain. Their values are equal due
to chain rules. The normal direction jump condition can be rewritten in the same way

(56)

and  is a vector with expression

Here  and  can be viewed as coefficient vectors. Their values are to be
approximated at point o′ in the logical domain. To attain the discretized physical coordinate
system {xi,j, yi,j}, one computes the relative location of interface point o and the value of the
normal unit vector n⃗ = (cos θ, sin θ). Then the problem lies in how to evaluate coefficient
ξx, ξy, ηx and ηy at point o′ or more specifically, the coordinate of point o′ in (ξ, η).

The approximation of these values is the key to the transformation of the jump conditions.
We give a detailed description of the approximation. For example, if point o is located on
the mesh line between irregular points (i, j) and irregular (i + 1, j) in coordinate system {xi,j,
yi,j}. Point o′ should also be located on the mesh line between points (i, j) and (i + 1, j), but
in different axis (ξ, η). We denote (xi,j, yi,j) as the coordinate for point (i, j) and (xo, yo) as
the coordinate for point o in the coordinate system (x, y). The coordinate for o′ is denoted as
(ξo′, ηo′) and point (i, j) as (ξi, ηj) in coordinate system (ξ, η). From Taylor expansion we
obtain the relation,
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(57)

(58)

As (ξ, η) is a Cartesian grid and o′ is a point in which the interface intersects with the mesh
line. Therefore, either ξo′− ξi or ηo′− ηi is equal to zero. The distance from point o′ to point
(i, j) can be approximated by one of two equations

(59)

(60)

Coefficients ξx, ξy, ηx and ηy can be approximated numerically at each grid point by using
the transformation relation Eq. (17). As the coordinate of point o′ is already known, the
value of the coefficients at this point can be evaluated by interpolation. Therefore, we obtain
a new set of jump conditions in the new coordinate system (ξ, η). The MIB scheme can then
be directly employed to solve the problem as (ξ, η) is a Cartesian grid. The jump conditions
can also be transformed from the physical domain to the computational domain in the same
manner. Therefore, we can combine mesh deformation techniques with the MIB method to
solve the elliptic interface problem in the computational domain. We call this approach an
adaptively deformed mesh based interface method.

III Numerical studies
In this section, we carry out numerical experiments to validate the proposed the adaptively
deformed mesh based interface technique. Section III.A is devoted to an illustration that
traditional mesh deformation methods do not converge for elliptic equations with
discontinuous coefficients. Therefore, they can not be applied directly to solve elliptic
interface problems. Whereas, the MIB method works well for this class of problems. In
Section III.B, we use three test examples to demonstrate the performance of the present
adaptively deformed mesh based interface method which is also called “adaptively deformed
mesh based MIB”, with interface geometry based monitor functions. Indeed, if the solution
has largest changes near the interface, the geometry based monitor functions work well.
Significant improvement on the original MIB method can be obtained. However, if the
solution has dramatically changes away from the interface, interface geometry based
monitor functions can not achieve better performance. Therefore, we design solution
gradient based monitor functions in Section III.C. We show that this class of monitor
functions has better performance than the original MIB method in terms of accuracy.

III.A Failure of traditional mesh deformation methods for equations with discontinuous
coefficients

Case 1a—In this example, we solve the elliptic equation (1) with domain Ω = {(x, y)| |x| <
5, |y| < 5} by using the MIB method and a traditional mesh deformation method described in
Sections II.A.1 and II.A.2. We design the level set function φ(x, y) as
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(61)

where  is the radius of the circle, Γ = {(x, y)|Φ = 0;x, y, ∈ Ω }, Ωa = {(x, y)|Φ ≥ 0; x,
y, ∈ Ω}, Ωb = {(x, y)|Φ ≤ 0; x, y, ∈ Ω }. The coefficients are discontinuous and are given by

(62)

The solution at two different domains is

(63)

To focus the mesh in the physical domain around the interface, we design a monitor function
based on the interface geometry

(64)

with .

Figure 1 illustrates a deformed mesh for this problem. A much denser meshlines are
attracted to the interface region. Figure 4 shows the solution calculated by using the original
MIB method and the error computed from the traditional mesh deformation method with the
grid size 80 × 80. Obviously, the errors are very large. Table 1 lists main results for both
methods. It is seen that the original MIB method can achieve the second order convergence,
while the solution of the mesh deformation method is completely wrong due to the large
amplitude of errors on the interface and in the whole inner subdomain Ωa. These errors
persist when the mesh is refined, even though we test different monitor functions. The main
reason is that the traditional mesh deformation method does not enforce the interface jump
conditions. Which is equivalent to saying that the original problem is not well posed.
Therefore, errors induced at the interface propagate to the whole inner subdomain. In order
to employ the mesh deformation techniques for elliptic interface problems, one needs to
combine the mesh deformation strategy with interface techniques.

Case 1b—In the last example, the discontinuity of the solution at the interface certainly has
contributed to the failure of the traditional mesh deformation method. One may hope to
understand what happens to the traditional mesh deformation method when the solution is
continuous. To this end, we consider another test example. In the above case, we change the
solution to C0

(65)

and we set the monitor function as

(66)

with .
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In this case, the solution is continuous at the interface. However, the first order derivatives
still have jumps at the interface. Figure 5 shows the solution calculated by using the original
MIB method and the error computed from the traditional mesh deformation method with the
grid size of 80 × 80. Table 2 lists main results for both methods. Obviously, the original
MIB method works well. Whereas, the errors of the traditional mesh deformation method do
not decrease as the mesh is refined. Note that we have tested different monitor functions and
find no obvious improvement. This again demonstrates the importance of the enforcement of
interface conditions. It is clear that the mesh deformation strategy by itself does not work for
elliptic equations with discontinuous coefficients.

III.B Performance of interface geometry based deformed meshes
In this subsection we first demonstrate the performance of the adaptively deformed mesh
based interface method with interface geometry based monitor functions in Cases 2, 3 and 4.
We then illustrate the limitation of this approach in Case 5. The performance the proposed
adaptively deformed mesh based interface method is compared with that of the original MIB
method. We calculate relative ratios of L∞ and L2 errors obtained from the original MIB
method and from the adaptively deformed mesh based interface method, and denote them as
RL∞ and RL2, respectively

(67)

(68)

For instance, if RL∞= 3, then the L∞ error of the original MIB method is 3 times as large as
that of the adaptively deformed mesh based MIB method. Therefore RL∞ and RL2 ratios
indicate the improvement of proposed adaptively deformed mesh based MIB upon the
original MIB method when they are larger than one.

Case 2a—In this case, the elliptic equation (1) is solved in domain Ω = {(x, y)| |x| < 5, |y| <
5}. The interface is specified by the level set function φ(x, y)

(69)

where  is the radius of the circle, Γ = {(x, y)|Φ = 0; x, y, ∈ Ω }, Ωa = {(x, y)| Φ ≥ 0; x,
y, ∈ Ω }, Ωb = {(x, y)| Φ ≤ 0; x, y, ∈ Ω }. The discontinuous coefficients are given by

(70)

We design the solution at two different subdomains as

(71)

To redistribute the mesh in the physical domain around the interface, we construct the mesh
monitor function according to the interface geometry
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(72)

where . Here max(|d − r0|/r0, 0. 4) determines the maximal contraction rate and it
is less than 0. 4.

Figure 6 depicts the numerical solution and error. In Table 3, we list the main results of L∞
and L2 errors, the order of accuracy, and the ratios RL∞ and RL2. It can be seen from Table
3, compared with the original MIB method, the adaptively deformed mesh based MIB
method can significantly reduce both the L∞ and L2 errors. It is worthwhile to mention that,
the proposed new method also keeps the designed second order convergence.

Case 2b—In the above case, we change the solution to

(73)

and we set the monitor function as

(74)

where . The main results are listed in Table 4. It is seen that the present
adaptively deformed mesh based MIB method significantly improves the L∞ and L2
accuracy of the original MIB method. The second order convergence is maintained for this
problem.

Case 3—We next consider the elliptic equation (1) in domain Ω = {(x, y)| |x| < 5, |y| < 5}.
To characterize the interface, we design a level set function φ(x, y)

(75)

where  and  Γ = {(x, y)| Φ = 0; x, y, ∈ Ω}, Ωa = {(x, y)| Φ ≥ 0; x, y, ∈ Ω}, Ωb =
{(x, y)| Φ ≤ 0; x, y, ∈ Ω}. The coefficients are discontinuous and are given by

(76)

We design the analytical solution at two different subdomains as

(77)

For this problem, it is convenient to choose the monitor function according to the interface
geometry
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(78)

where .

The numerical solution and error distribution are illustrated in Fig. 7. Detailed results are
listed in Table 5. Compared with the original MIB method, the adaptively deformed mesh
based MIB method achieves more than 5 times of improvement on L∞ and L2 accuracy. It
also maintains the designed second order convergence.

Case 4—In this case, the elliptic equation (1) is solved in domain Ω = {(x, y)| |x| < 5, |y| <
5}. We choose the level set function φ(x, y) as

(79)

where  and , Γ = {(x, y)}| Φ = 0; x, y, ∈ Ω}, Ωa = {(x, y)| Φ ≥ 0; x, y,
∈ Ω}, Ωb = {(x, y)| Φ ≤ 0; x, y, ∈ Ω}. The discontinuous coefficients are given by

(80)

The solution at two different subdomains is designed as

(81)

(82)

In this problem, one can simply design the monitor function according the geometric shape

(83)

where .

Figure 8 plots the numerical solution and error. Table 6 gives a summary of the accuracy
and convergence. The L∞ and L2 errors of the proposed adaptively deformed mesh based
MIB method are much smaller than those of the original MIB method. The second order
accuracy is essentially achieved by both methods.

Case 5—The above four examples indicate that the proposed adaptively deformed mesh
based MIB method work well for problems with relatively simple interfaces. In this test
case, we consider a more complex interface geometry. We solve the elliptic equation (1) in
the domain Ω = {(x, y)| |x| < 1, |y| < 1}. The interface is defined as
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(84)

where Γ = {(r, θ)| Φ = 0; r, θ, ∈ Ω}, Ωa = {(r, θ)| Φ ≥ 0; r, θ, ∈ Ω}, Ωb = {(r, θ)| Φ ≤ 0; r, θ,
∈ Ω}. The discontinuous coefficients are given by

(85)

The solution at two different subdomains is designed as

(86)

We design a monitor function

(87)

where  and .

Figure 1 shows a deformed mesh for this problem. More meshlines are focused around the
interface. The numerical solution and error are presented in Fig. 9. It is seen from Table 7
that the present adaptively deformed mesh based MIB method is essentially second order
accurate, but it does not improve the original MIB method very much. This test case
highlights the difficulty in the construction of appropriate monitor functions when there is an
interface.

III.C Performance of solution gradient based deformed meshes
In Cases 2, 3 and 4, all the solutions are more oscillatory near the interface. Therefore, we
just need to concentrate the mesh density around the interface so as to reduce both L∞ and
L2 errors. However, the selection of the monitor function based on the geometry may not
always work. In Case 5, the solution does not oscillate more intensively in the interface
region. As such, distributing a denser mesh around the interface does not have a significant
improvement to the final solution. Therefore, for general interface problems, one should
make the monitor function adaptive to the gradient of the solution. As such, one
concentrates more meshlines to the regions where the solution varies dramatically. We test
this kind of deformed meshes in the next two examples.

Case 6a—We consider the elliptic equation (1) in domain Ω = {(x, y)||x| < 1, |y| < 1}. We
specify the interface by using the level set function φ(x, y)

(88)

where  is the radius of the circle, Γ = {(x, y)| Φ = 0; x, y, ∈ Ω}, Ωa = {(x, y)| Φ ≥ 0; x, y,
∈ Ω}, Ωb = {(x, y)| Φ ≤ 0; x, y, ∈ Ω}. We set discontinuous coefficients to

(89)
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We design the solution at two different subdomains as

(90)

This solution has a large peak at the origin as shown in Fig. 10. Therefore, the previous
geometry based monitor functions do not work well. Here we design a monitor function
according to the gradient of the solution

(91)

where c1 and c2 are two parameters controlling the shift of the mesh. The solution is first
calculated by the original MIB method, and then the gradient of the solution is evaluated by
the central difference scheme. If the computed monitor function is non-smooth, it may lead
to an improper mesh, which may concentrate too many meshlines in certain regions and
sometime may even cause mesh tangling at certain regions, as a result of insufficient
accuracy in solving the mapping Poisson equation. A commonly used technique is to smooth
the monitor function by a filter or an averaging algorithm. Here we use a simple algorithm to
smooth f

(92)

Another important aspect is how to distribute meshlines near the interface. The mesh
deformation strategy is usually designed for shock-wave type of problems with dramatic
solution changes at the shock front. However, too much concentration of the meshlines in
the areas with large gradient may jeopardize the accuracy of the solution in other areas and
thus leads to the L2 accuracy reduction. This is particularly true for elliptic interface
problems, as the MIB schemes already take special treatment of points near interface.
However, certain mild concentration of the meshlines around the interface region will yield
better results.

In test Case 6a, the gradient of interface jumps is relatively large, so that one does not need
to employ any additional mesh adjustment at the interface. When the mesh is 80 ×80, three
sets of parameters are tested. Table 8 lists the main results. It can be seen from the table that
compared with the original MIB method, the adaptively deformed mesh based MIB method
can reduce L∞ and L2 errors dramatically when the mesh size is small. This result shows the
main advantage of the mesh deformation strategy.

When the mesh sizes are 160 × 160 and 320 × 320, we test a set of monitor functions
obtained by adjusting coefficients. The results are listed in Tables 9 and 10. The original
MIB method demonstrates the designed second order convergence. Compared the original
MIB method, the adaptively deformed mesh based MIB method can still significantly
improve the L∞ errors. However, as the number of grid points is increased, The L2 accuracy
does not improve much compared with the original MIB method, due to the fact that the
solution is near singular at the origin. Additionally, although the adaptively deformed mesh
based MIB method shows better accuracy, it does not maintain the designed second order
convergence.

Case 6b—In the above case, we make the solution C0 continuous across the domain
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(93)

With this solution, we hope to understand the behavior the monitor function (91) for the
discontinuous coefficients.

Results are presented in Fig. 11 and Tables 11, 12 and 13. When the results in three tables
are compared, it is easy to see that the original MIB is still second order convergent.
However, the adaptively deformed mesh based MIB method outperforms the original MIB
method under all meshes. At a coarse mesh, the adaptively deformed mesh based MIB
method is much more accurate than the original MIB method. In particular, the present
monitor function works well. Therefore, the present adaptively deformed mesh based
strategy is relatively robust and stable for elliptic interface problems.

Case 7—We next consider a more difficult case that has two near singular peaks, in
addition to the interface jump of the solution. The elliptic equation (1) is solved in domain Ω
= {(x, y)| |x| < 5, |y| < 5}. To specify the interface, we construct the level set function φ(x, y)
as

(94)

where  is the radius of the ellipse, Γ = {(x, y)| Φ = 0; x, y, ∈ Ω}, Ωa = {(x, y)|
Φ ≥ 0; x, y, ∈ Ω}, Ωb = {(x, y)| Φ ≤ 0; x, y, ∈ Ω}. The discontinuous coefficients are chosen
as

(95)

The solution at two different subdomains is designed as

(96)

As shown in Fig. 12, the solution admits an interface jump and two near singular peaks.
Obviously, we need to choose the monitor function based on the gradient of the solution

(97)

In this test example, we test the deformed mesh strategy for a near singular solution. The
results are listed in Tables 14 and 15. Here as the solution has relatively large jumps at the
interface, we do not incorporate any additional special term in the monitor function to
emphasize the interface. When the mesh size is 160 × 160, the adaptively deformed mesh
based MIB method can dramatically reduce L∞ and L2 errors. As the mesh size is further
increased, the adaptively deformed mesh based MIB method can improve the L∞ accuracy
to certain extend. However, the L2 errors do not reduce much.
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Similar to the behavior in the last case, the original MIB method show the second order
convergence, while the adaptively deformed mesh based MIB method does not have the
designed second order convergence, although it is more accurate.

A possible solution to this problem is to take into consideration the interface information as
in the Section III when one designs the monitor functions. State differently, we may
construct a mesh based on both the interface geometry and the solution gradient. There are
many ways to do so. For example, one may add a special weight function to the monitor
function to emphasize the interface

(98)

where w1(x, y) and w2(x, y) are two weight functions, and g(x, y) is a function related to the
interface. However, the construction of multipurpose weight functions is by no means
trivial. Therefore, more study is needed in order to reveal the full potential of the mesh
deformation strategy for elliptic interface problems. A detailed exploration of this aspect is
beyond the scope of the present work.

IV Concluding Remarks
Mesh deformation methods are an effective and mesh-adaptive strategy for the numerical
solution of a wide class of physical models. They are particularly popular in computational
fluid dynamics, material science and many other engineering problems. However, traditional
mesh deformation methods break down when the governing partial differential equations
(PDEs) admit discontinuous coefficients, especially when the solution has jumps at the
interface. This class of problems, known as interface problems, requires the enforcement of
interface jump conditions to maintain their well-posedness. As such, the corresponding
numerical techniques, known as interface techniques, have to implement the interface jump
conditions in their solution procedures. The present work develops the first known interface
technique based adaptively deformed mesh method for solving elliptic PDEs with
discontinuous coefficients.

In general, the mesh movement is often driven by an elliptic PDE. Essentially, there are two
ways to formulate the elliptic mesh-movement PDE. One way is to incorporate the mesh
movement information in the elliptic operator, while the other is to embed mesh movement
as the source term of the mesh movement equation.26 The latter is relatively simple and is
adopted in the present work. The procedure of this mesh deformation method involves the
mesh deformation and the transformation of the governing equation. The new mesh is
generated by using a PDE with a source term to control the mesh redistribution in the
physical domain. After the transformation of the governing equation, the new governing
equation is solved on a Cartesian mesh.

There are a large number of elliptic interface techniques in the literature that can be
equipped with the mesh deformation strategy. In the present work, we choose the matched
interface and boundary (MIB) method which is a highly accurate, robust and flexible
method for a wide range of interface problems. The combination of the mesh deformation
strategy and the MIB technique results in a mesh adaptive interface algorithm, called
adaptively deformed mesh based interface method or adaptively deformed mesh based MIB
method. In this approach, the MIB method is used to solve the elliptic PDE in its
transformed form on a Cartesian mesh, i.e., on the computational domain.
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A large number of test cases are designed to demonstrate the usefulness, accuracy,
convergence order, and flexibility of the proposed adaptively deformed mesh based interface
method. Two types of deformed meshes, namely, the interface geometry based deformed
meshes and solution gradient based deformed meshes are constructed in the present work to
understand the performance of mesh deformation strategies. The original MIB method is
used as a reference to assess the performance the proposed new interface method.
Meanwhile, we also show that the traditional mesh deformation method does not work for
elliptic PDEs with discontinuous coefficients. In contrast, the proposed adaptively deformed
mesh based interface method significantly outperforms the original MIB method. Therefore,
the present interface technique based adaptively deformed mesh method is a viable, effective
and accurate strategy for solving elliptic PDEs with discontinuous coefficients.

However, there are still technical difficulties in maintaining the second order convergence as
shown in the last two test cases. First, transformed governing equation (52) in the
computational domain has a second order cross derivative uξ,η,. To maintain the second
order accuracy, there must be certain grid points around the interface so that the cross
derivative can be evaluated. When the solution admits singularities, it is difficult to find
enough grid points to achieve the second order accuracy for evaluating the cross derivative
term. Additionally, the solution gradient based monitor function should also incorporate the
interface information. Unfortunately, it is not an easy task to optimize a multicomponent
monitor function so as to achieve the second order accuracy when the solution is
discontinuous and singular. Finally, the use of a low-pass filter in Eq. (92) for smoothing the
monitor function may also contribute to the order reduction.

Technically, there is a long way to go before the proposed adaptively deformed mesh based
interface method becomes as practical and robust as the original MIB method for solving
real world elliptic interface problems.8,14,15,42 First, for most realistic applications, it is a
must to take care of geometric singularities, i.e., nonsmooth interfaces.43,45 This class of
interface problems are typically more challenging than those with smooth interfaces.
Currently, it is unknown how a mesh deformation strategy works for nonsmooth interfaces
because the low regularity of the original problem may reduce the accuracy of the mesh
generation and hinder the transformation of the governing equation. Additionally, to deal
with real-world problems, one needs to further develop three dimensional (3D) schemes.
Although there is no conceptual difficulty in generalizing the present 2D method into a 3D
one, the computational cost of a 3D mesh deformation method can be significantly large.
Finally, the appropriate design of effective monitor functions is still an important issue in
adaptively deformed mesh based interface methods. As discussed earlier, it is particularly
difficult to construct efficient multipurpose monitor functions that can maintain the designed
order of convergence for complex interface geometries and solution. These issues are
beyond the scope of the present work and are under our consideration.
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Figure 1.
The deformed mesh generated by two geometry based monitor functions. (a) The mesh used
in Cases 1 and 2 of Section III; (b) The mesh used in Case 5 of Section III.
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Figure 2.
The deformed mesh generated by a solution gradient based monitor function for Case 6 of
Section III.
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Figure 3.
Here domain Ωa is marked with yellow color, while domain Ωb is marked with green color.
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Figure 4.
The numerical solution (Left) and error (Right) of a mesh deformation method on a 80 × 80
grid for Case 1a.
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Figure 5.
The numerical solution (Left) and error (Right) of a mesh deformation method on a 80 × 80
grid for Case 1b.
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Figure 6.
The numerical solution (Left) and error (Right) on a 80 × 80 grid (Right) for Case 2a.
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Figure 7.
The numerical solution (Left) and error (Right) on a 80 × 80 grid for Case 3.
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Figure 8.
The numerical solution (Left) and error (Right) on a 80 × 80 grid for Case 4.
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Figure 9.
The numerical solution (Left) and error (Right) on a 80 × 80 grid for Case 5.
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Figure 10.
The numerical solution (Left) and error (Right) on a 80 × 80 grid for Case 6a.
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Figure 11.
The numerical solution (Left) and error (Right) on a 80 × 80 grid for Case 6b.
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Figure 12.
The numerical solution on a 160 × 160 grid for Case 7.
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