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Abstract

Homologous long segments along the genomes of close or remote relatives that are identical by descent (IBD) from
a common ancestor provide clues for recent events in human genetics. We set out to extensively map such IBD segments
in large cohorts and investigate their distribution within and across different populations. We report analysis of several
data sets, demonstrating that IBD is more common than expected by naı̈ve models of population genetics. We show that
the frequency of IBD pairs is population dependent and can be used to cluster individuals into populations, detect
a homogeneous subpopulation within a larger cohort, and infer bottleneck events in such a subpopulation. Specifically, we
show that Ashkenazi Jewish individuals are all connected through transitive remote family ties evident by sharing of 50 cM
IBD to a publicly available data set of less than 400 individuals. We further expose regions where long-range haplotypes are
shared significantly more often than elsewhere in the genome, observed across multiple populations, and enriched for
common long structural variation. These are inconsistent with recent relatedness and suggest ancient common ancestry,
with limited recombination between haplotypes.
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Introduction
Understanding the identity of alleles across individuals by
descent from a common ancestor is central to genetics. The
transmission of haploid copies of the genome with almost
no mutation from parent to multiple offspring and their
descendents gives rise to this identity and facilitates linkage
in pedigrees and association mapping in less-related indi-
viduals. Generally, two contemporary homologous copies
of a locus will differ only at sites of mutations along the
respective lineages leading to them from the copy of that
genomic region at the locus-specific most recent common
ancestor (MRCA). For the average pair of copies, these lin-
eages are thousands of generations long, but relatives may
have a very recent MRCA for many loci.

The quantification of identity by descent (IBD) has been
extensively studied. Standard assumptions in population
genetics postulate that the chances of lineages leading into
the past to meet at each generation are inversely propor-
tional to the effective population size, Ne (Fisher 1930;
Wright 1931), and under the classical Wright–Fisher model
the time from MRCA is geometrically distributed, averaging
2Ne (Tajima 1983). Copies of a locus that are transmitted by
a parent to a pair of sibling carriers have a chance of ½ to be
IBD, and kth cousins share an IBD locus across any of the
four pairs of their respective copies with probability ½2k,
a negligibly small number for k5 20 and beyond. However,

in the unlikely event that such remote relatives do share an
autosomal locus IBD, flanking genomic loci are also likely to
be shared, spanning a continuous IBD region to the nearest
sites of crossover in any of the meioses from the relatives to
their MRCA. Under the assumption of independent recom-
bination events, the genetic length of this region would
have an exponential distribution with mean (100 cM)/
(k þ 1), unless bounded by the end of the chromosome.
Across the 22 autosomal chromosomes, which together
contain 3,400 cM (Kong et al. 2002), there are on average
22 þ (6800/100) � (k þ 1) regions with unchanged trans-
mission patterns; each being an opportunity for IBD, (22 þ
68 � [k þ 1]) � 2�2k, such regions are in fact expected to
be IBD. Based on these considerations, relatives can be con-
veniently partitioned into three broad categories:

1. Close relatives, hereby defined as avuncular or closer pairs
of samples, which share large fractions of their genomes
rather than specific segments. Pairs of relatives in this
category typically share segments of considerable length
(.66.7 cM) along most chromosomes, for a total expected
genome-wide sharing of 1,700 cM. Such an abundance of
IBD sharing facilitates the inference of relationships
through the use of standard metrics such as whole-
genome identical by state (IBS) coefficients (e.g., p and Z1)
(Pritchard et al. 2000). Close relatives constitute a con-
founding factor for genome-wide association studies, and
they should be filtered out during the initial stages of the
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analysis. Fortunately, estimation of IBS coefficients is efficient
and feasible in high-throughput data (Pritchard et al. 2000).

2. Intermediate relatives, from first cousins to third cousins
once removed. Relatives in this category are likely to share
multiple regions (.2.5 expected segments) due to the
single pair of most recent ancestors defining their
relationship. The shared segments are expected to reach
the length of .62 cM in total and .25 cM each.
Although the length of IBD segments for these individuals
facilitates their discovery, standard metrics based on IBS
coefficients may fail to detect these relatives, as the total
sharing may represent a small fraction of the entire
genome, within the noise level of genome-wide IBS
statistics in unrelateds.

3. Remote relatives, whose closest family relationship is
fourth cousins or more distant, are very likely to share one
or fewer regions through their MRCA. Such pairs include
the vast majority of individuals for the average population
and are usually referred to as ‘‘unrelateds,’’ because their
genome-wide IBD sharing is expected to be extremely
limited. Note that, typically, the time k to the MRCA of
remote relatives cannot be reliably estimated. When only
a single segment is shared any estimator of k may only be
based on the length of that segment, which is
exponentially distributed with mean and standard de-
viation proportional to 1/k. Such distributions overlap
considerably for different values of k; therefore, length
alone is insufficient to estimate this parameter.

Quantifying intermediate and remote relatedness
requires more than IBS coefficients. Indeed, previous meth-
ods aim at identifying specific IBD regions using a probabi-
listic model (Pritchard et al. 2000; Browning SR and
Browning BL 2010). Such a model generally leverages
stretches of IBS that are longer than expected by chance
as indicators of putative IBD. Although the chance of seeing
such IBD increases quadratically with sample size, these
methods require a pairwise comparison of all individuals
and are therefore limited to the analysis of small data
sets or small genomic regions. Analysis of all genetic

relatives (pairs of individuals with genetic evidence for their
relationship) had remained a challenge in large or densely
related cohorts.

We have developed a method to accurately detect all
long shared regions that is computationally efficient and
enables rapid processing of whole-genome data from thou-
sands of individuals (Gusev et al. 2009). The method uses
a dictionary-based sliding window approach to identify re-
gions of pairwise sharing efficiently and without examining
all pairs of individuals. We hereby extend this method to
analyze unphased genotype data and report the analysis of
such sharing in multiple data sets within and across differ-
ent populations. Although any genomic region can be con-
sidered a patch work of very ancient IBD between two
individuals, our focus is on identifying longer and more re-
cent segments that have been inherited contiguously from
a single common ancestor. To this end, we show this ex-
tension to have high accuracy for segments of 3 cM and
longer (mean k of 32, with very high variance). We report
remote relatedness to be common within populations,
with frequencies of shared segments revealing demography
and population history. We further demonstrate the
frequency of such shared segments to vary by locus, with
specific regions showing increased sharing. We discuss the
implication of these detected regions, depleted of cross-
haplotype recombinants, and the consistency of potential
models of selection with these findings.

For the study, we have applied our methodology to
multiple reference panels (Materials and Methods and
table 1). Briefly, we analyzed founders from the third gener-
ation Human HapMap (HM3), a reference panel collected
from multiple world populations; the Intragen Database
(Idb) of New York Health Study participants; and samples
from the Hebrew University Genetic Resource (HUGR), all
typed for genome-wide single nucleotide polymorphism
(SNP) arrays. We have scanned each of these data sets for
pairs of samples sharing genetic segments 3 cM or longer.

Table 1. Population and IBD Sharing Summary.

Data
Set Population Na Markers

Closely
Related Pairsb Segmentsc Pairsd

Total
Sharing (cM)

Average
Share Length (cM) P(pair)e (%)

% of Genome
Shared

HUGR AJ 397 308,329 3 940,317 76,132 5,180,110 5.51 96.9 1.94
Idb AJ 389 308,330 2 744,426 74,957 4,105,410 5.52 99.3 1.60

EU 514 308,330 3 61,501 48,216 252,518 4.11 36.6 0.06
HM3 ASW 42 1,482,375 4 670 265 4,743 7.08 30.78 0.16

CEU 109 1,359,327 1 28,311 5,819 106,609 3.77 98.86 0.53
CHB 82 1,270,434 0 15,980 3,292 58,490 3.66 99.13 0.52
CHD 70 1,230,833 2 11,532 2,390 42,239 3.66 98.96 0.51
GIH 83 1,346,564 5 23,565 3,146 100,336 4.26 92.45 0.87
JPT 82 1,233,871 0 26,069 3,320 96,647 3.71 99.97 0.86
LWK 83 1,454,225 11 20,843 3,377 103,747 4.98 99.24 0.90
MEX 45 1,382,929 4 9,349 984 36,160 3.87 99.39 1.07
MKK 143 1,472,015 94 47,779 9,522 410,169 8.58 93.79 1.19
TSI 77 1,348,828 0 10,431 2,832 44,137 4.23 96.79 0.44
YRI 108 1,431,888 2 6,019 3,659 25,249 4.19 63.33 0.13

a Individuals self-reported as having no relatives in the cohort.
b Pairs of individuals defined as avuncular or closer by total IBD sharing and average shared segment length.
c Total number of IBD shared segments in entire cohort.
d Number of pairs of individuals sharing at least a single IBD segment.
e Fraction of pairs of individuals that share any IBD segment.
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Materials and Methods

IBD Discovery
The GERMLINE algorithm identifies pairwise IBD shared
segments in time proportional to the number of individuals
processed (Gusev et al. 2009). Briefly, the algorithm rapidly
seeks out short, exact pairwise matches between individu-
als and then extends from these seeds to long, inexact
matches that are indicative of IBD. The published
implementation of GERMLINE is intended for fully phased
data where it performs with near-perfect accuracy.
However, performance can suffer when the data are phased
poorly—as can be the case when trio or family data are
unavailable. We present improvements to the original
IBD discovery algorithm that allow analyzing data of either
phase quality with only slight decrease in accuracy.

Haplotype Extension
In order to facilitate analysis of a diverse collection of data
sets, it is important to ensure that phasing accuracy does
not have a significant effect on the distribution of shared
segments. We do this by generalizing the extension step to
handle unphased data. Because the GERMLINE algorithm is
tolerant of single-marker inaccuracies, we have observed
that the phasing error which most commonly results in
an IBD false negative is a long-range switch or one that
switches the identity of several dozen contiguous markers.
To accommodate this, we amend GERMLINE to treat in-
dividuals as single units rather than pairs of haplotypes
and to allow extension across any permutation of the re-
spective individuals’ haplotypes. By extending a match as
long as each word maintains these criteria, we can
accommodate the long-range switches.

Genotype Extension
Borrowing a technique from a recent long-range
haplotype-phasing algorithm (Kong et al. 2008), we further
adjust GERMLINE to process data agnostic of phase. As in
(Kong et al. 2008), we define a ‘‘consistent’’ pair of segments
to be one where mutually homozygous markers are iden-
tical and all heterozygous markers act as wild cards. Like-
wise, we assume two words that are consistent in this way
can be extended until the overall match is unequivocally
long (typically 3 cM). As this function effectively looks
at the mutually homozygous markers only, the threshold
for allowed mismatches must be much lower than that
of the haplotype extension approach. The overall GERM-
LINE algorithm allows a match if it passes either of the ex-
tension criteria, though they are permitted to have
different mismatch rate parameters.

Extension Accuracy
Synthetic Data. We validate the accuracy of our extension
methods on synthetic data sets obtained using the GE-
NOME rapid coalescent-based whole-genome simulator
(Liang et al. 2007). We measure the accuracy of GERM-
LINE’s IBD discovery using standard measures of precision
(fraction of discovered segments that correspond to real
IBD segments) and recall (fraction of real IBD segments
retrieved). A ground-truth set for IBD segments is obtained

considering all identical segments in the set of simulated
haplotypes. Haplotypes are merged to form synthetic gen-
otypes, discarding phase information. GERMLINE’s haplo-
type and genotype extensions are tested on both
perfectly phased and computationally phased data. Discov-
ered segments of 3 cM or longer are reported. To compute
recall GERMLINE’s, IBD discovery is compared with true
segments longer than 3 cM. A measure of false-positive seg-
ments is computed comparing the obtained IBD matches
with segments .1 cM long in the ground-truth set.

We investigate the dependency of GERMLINE’s geno-
type extension on the population’s demographic parame-
ters measuring the algorithm’s accuracy for a variety of
synthetic populations differing in their recent history
(supplementary fig. 1, Supplementary Material online).
The false-positive percentage exhibits slight fluctuations,
with an 8% decrease (37–29%) as the ancestral population
size is increased from 1,000 to 10,000 individuals, and a 5%
decrease (30–25%) as the time for the bottleneck event in-
creases from 15 to 90 generations before present (gbp). The
percentage of entirely invented segments (segments of at
least 3 cM that do not overlap any segment of at least 1
cM) is generally minimal, with a mild increase for extremely
small ancestral populations and remote bottleneck events.
The size of the current population has a negligible effect on
all measures. In all testing scenarios, GERMLINE is run on
a synthetic data set, where the studied demographic
parameter is varied over a common population model of
3,000 diploid individuals sampled from a population of
20,000 individuals, expanded from 5,000 founders in 30 gen-
erations. The size of an linkage disequilibrium (LD) block is
set to 80 Kb, and a mutation rate of 2 � 10�8 is adopted.

We evaluate the differences between the haplotype and
the genotype extensions of the GERMLINE algorithm. Sup-
plementary figure 2B, Supplementary Material online shows
the performance of the haplotype extension on perfectly
phased data as the minimum length threshold for a reported
IBD segment ranges from 3 to 25 cM (the ground truth
length threshold ranging from 1 to 23 cM). The algorithm
allows a matching segment to be extended through any
combination of the individuals’ chromosome pairs, intro-
ducing a false-positive rate of 5–10%, whereas recall is kept
close to 100%. False positives moderately increase as short
segments are not considered. This result may be an artifact
due to the proximity of reported segments to the boundary
of chromosomes, where long segments are not reported in
the ground-truth set. The haplotype extension was run on
computationally phased data (supplementary fig. 2D, Sup-
plementary Material online, phased using the BEAGLE
Genetic Analysis Software Package (Browning BL and
Browning SR 2009)). Although the false-positive rate remains
comparable to the perfect-phase scenario, the recall rate
drastically drops for long haplotypes due to long-range phas-
ing errors. When the phase agnostic genotype extension is
used (supplementary fig. 2A, Supplementary Material on-
line), the recall is maintained close to 100% while the
false-positive rate grows. The performance of the genotype
extension remains unchanged when perfectly phased data
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are used (supplementary fig. 2C, Supplementary Material on-
line), demonstrating the robustness of this approach to
phasing accuracy. We emphasize that although the false-
positive rate can be high for shorter segments, it is consistent
across many different population models, even when the
overall abundance of IBD in these cohorts varies significantly.
We have experimented with removing the shorter segments
entirely but observe that this would also eliminate a substan-
tial amount of true and useful IBD sharing. In light of this, we
restrict our analysis to relative comparisons between popu-
lations typed on the same platforms and with simulation
data that exhibit the same false-positive consistency. Al-
though the traditional haplotype extension mode may be
less prone to false positives (supplementary fig. 2B and D,
Supplementary Material online), it is entirely dependent
on the quality of phasing which can introduce significance
data-source biases.

Real Data and Comparison with Current Methods. We
further validate our extension methods in a realistic sce-
nario and compare the algorithm’s accuracy with current
methodologies for IBD discovery. To this end, we plant sim-
ulated instances of pairwise IBD segments of varying length
and with realistic genotyping error onto real background
genotype sequences from the HapMap CEU cohort. To ex-
amine the impact of phasing on accuracy, we also simulated
a child for each pair of individuals and phased the data us-
ing the trio-phasing and singleton-phasing options of the
BEAGLE Genetic Analysis Software Package (Browning BL
and Browning SR 2009). We compare the performance
of these two approaches with GERMLINE as well as a stan-
dard Hidden Markov Model (HMM)-based approach that
depends only on genotypes (Purcell et al. 2007).

Supplementary figure 3, Supplementary Material online
shows the relative accuracies according to three figures of
merit: 1) true positive percentage—the average percent
length of the recovered true IBD segment; 2) true positive
segments—the number of IBD segments recovered (de-
fined as overlapping the true segment); and 3) false positive
(flanking)—the amount (in cM) of falsely identified IBD
sharing that flanks a true IBD segment. In both measures
of sensitivity, GERMLINE greatly outperforms the HMM ap-
proach, consistently identifying greater than 90% of the
segments, whereas the HMM never identifies greater than
70% and is especially poor in simulations with short seg-
ments, as low as 36% recovery for 3 cM segments. More-
over, although the trio-phased data does offer a slight
increase in accuracy over singleton phasing, the difference
is negligible. The increased sensitivity comes at a cost, how-
ever. Measuring specificity, the HMM algorithm maintains
a superior average length of flanking false positives (average
0.14 cM), whereas GERMLINE offers a relatively low rate of
0.53 cM on average, with negligible difference between the
two phasing approaches. Using the same data, we also cal-
culated the number of unplanted segments detected by
the algorithms. Supplementary table 1, Supplementary Ma-
terial online shows that in ten different background pairs,
GERMLINE found four and five unplanted segments in the

trio and singleton phased, respectively. An important ca-
veat is that although the background individuals were re-
ported unrelated by the HMM algorithm, its poor
sensitivity on short segments (below 50% at 3 cM) allows
for these short false positives to be genuine. Looking at the
actual positions, if we take the trio-phased results as
ground truth, the singleton-phasing results in a single
false-positive segment. Through experimentation with
the CEU simulated segments, we converged on default pa-
rameters of 128 SNP window length, four allowed homo-
zygous mismatches and one allowed heterozygous
mismatch (-min_m 3 -bits 128 -err_hom 4 -err_het 1)
and use these settings for all subsequent analysis. These
parameters were chosen to maximize specificity, as sensi-
tivity was no lower than 97% in all tests.

Lastly, we compare the effect of the two phasing ap-
proaches on GERMLINE-identified shared segment distri-
butions in two cohorts from HapMap three for which
trio data are available. Supplementary figure 4, Supplemen-
tary Material online shows the distribution of shared seg-
ments as a function of their length for the MEX and MKK
populations (27 and 26 trios, respectively). In both instan-
ces, the trio and singleton data results in nearly identical
distributions, with correlation coefficient greater than
0.99. We explore these two populations singularly for an-
alyzing susceptibility to phased data and note that the re-
spective shared segment distributions are consistent with
figure 4B. In addition, the HapMap consortium has recently
released haplotype data that were thoroughly phased in
accordance with population-specific models; we have
found our tests remain consistent as compared with this
high quality data (not shown). We demonstrate that phas-
ing has little effect on the overall distribution of IBD dis-
covery performed by GERMLINE.

Recently, our algorithm has been evaluated in compar-
ison with the BEAGLE and PLINK IBD detection algorithms
that utilize HMMs in conjunction with pairwise analysis
(Browning SR and Browning BL 2010). As in our analysis,
the authors found GERMLINE to be of high sensitivity
and moderate specificity for regions beyond 3 cM in length.
However, those comparisons were only performed on local
regions or small number of samples due to the computa-
tional complexity of the other algorithms.

The GERMLINE tool has been written in Cþþ, and the
source code is available at http://www.cs.columbia.edu/
;gusev/germline/. Version 1.3.0 with default parameters
was used for all analysis.

Description of Reference Panels and
Cleaning

International HapMap Project 3 (HM3)
SNP genotype data from a variety of human populations
were collected using the Illumina Human1M and the Affy-
metrix SNP 6.0 platforms and merged (with consensus) af-
ter separate quality control. The panel includes sets of
samples from two parents and an adult child (trios). Off-
springs in such sets were excluded from the analysis. Alleles
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are expressed in the forward (þ) strand of the reference
human genome (NCBI build 36 or the University of Cali-
fornia–San Cruz hg18). The data are publicly available at
http://www.hapmap.org/.

To analyze cross-continent IBD sharing, we split the
HapMap 3 panel into three continental cohorts: Euro-
pean-origin (CEU, ASW, MEX, TSI); African-origin (MKK,
LWK, YRI); and East Asian-origin (GIH, CHB, CHD, JPT). Seg-
ment distributions were normalized by the number of
potential pairs across any of the three cohorts.

InTraGen Population Genetics Database (Idb)
Three hundred and nine DNA samples from subjects who
self-reported as being Ashkenazi Jewish (AJ) were taken
from the New York Cancer Project (NYCP) collection
(Mitchell et al. 2004). Five hundred and fourteen DNA sam-
ples from non-Jewish Caucasians were taken from the
NYCP collection, as well as control collections previously
described (Duerr et al. 2006). Data on Illumina HapMap300
v1 were produced at the Feinstein Institute for Medical Re-
search and are available for download at http://intragen.cu
-genome.org/.

Hebrew University Genetic Resource
Three hundred and ninety-seven samples were collected
from individuals with AJ ancestry, as self-reported from
the subjects themselves (reporting four AJ grandparents).
Type 2 diabetes (T2D) samples were collected across ten
specialized clinics in Israel by the patients’ caring physi-
cians. Healthy control samples were collected from blood
bank donors at the Israeli Central Blood Bank, Tel-
Hashomer, Israel. Sample collection was conducted under
appropriate ethical committees approvals, and informed
consent was obtained from donors. The data are available
at http://hugr.huji.ac.il/.

Filtering Regions for Informative SNPs
Examining SNP density with respect to physical and genetic
distance, we observe a small number of regions that are
significantly devoid of markers and may introduce an
abundance of false sharing (supplementary fig. 5A, Supple-
mentary Material online). To ensure consistency across gen-
otyping platforms and remove noise, GERMLINE output was
postprocessed by filtering out regions of low information con-
tent. SNP density in sliding, nonoverlapping 1 Mb blocks
across the genome was used to filter shared segments which
spanned SNP-sparse regions. Specifically, we identified and
excised regions that presented less than 100 SNPs per mega-
base and subsequently removed shared segments, which were
shorter than a continuous 3 cM. These excised regions ac-
counted for 8.2% and 20.3% of the HapMap and Illumina data
respectively, such that the total quantity of sharing will be
different between platforms but each segment will be of
consistent quality. Supplementary figure 5, Supplementary
Material online shows the distribution of SNP density across
all regions and those that have been excised, revealing the
latter to be outliers of the overall distribution. These regions

were primarily located around the centromere or telomere,
where marker ascertainment is sparse.

Simulating AJ Population Expansion

Extreme Population Bottleneck
We conveniently define an idealized extreme bottleneck–
expansion scenario where a population is formed by one
individual G gbp and infinite individuals from generation
G � 1 to present. In such a scenario, all coalescent events
happen at generation G. For a population that underwent
an extreme bottleneck–expansion at generation G, two
contemporary individuals are expected to share a number
of segments of length l proportional to pð1 � pÞ2Gl, where
the length is expressed in centiMorgans, and P5 0.01 rep-
resents the chance of a recombination event along one unit
of length for a shared segment at each generation. G can be
computed from Nl and Nlþ1 as:

Nlþ 1

Nl
5 0:992G;

therefore

G5
logð Nlþ 1

Nl
Þ

2logð0:99Þ

Grid Search
We refine the estimate obtained from the above calcula-
tions simulating different demographic scenarios using co-
alescent simulations. As summarized in supplementary
figure 6, Supplementary Material online, we infer the pa-
rameters of a bottleneck event performing a grid search
in the richer space of ancestral population size (A), timing
of the bottleneck (G), and current population size (C). We
use an exponential expansion model (i.e., the number of
individuals exponentially decreases from C to A until gen-
eration G, then remains constant) and test the parameter
space in the ranges: A5 400–1,550 diploid individuals with
steps of 150, G 5 15–27 with steps of 1 and C 5 75,000
or 100,000. We obtain for the HUGR data set the least
absolute deviation for A 5 950, G 5 23, and C 5

75,000 (diploid). The deviation is computed in log-space
as D5

P
bin2histogram

jSbin � Rbinj where S and R represent,

respectively, values obtained from the simulated and real
data. The sharing distributions obtained from the synthetic
data sets are stable, as shown through repeated indepen-
dent simulations in supplementary figure 7, Supplementary
Material online.

Simulation Parameters
All coalescent simulations are performed using the GE-
NOME rapid coalescent-based simulator (Liang et al.
2007). The GENOME package simulates resultant haplo-
types from a coalescent population according to a re-
verse-time model; in particular, it allows for complex
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population histories and generates sequences with realistic
LD structure. Because we are concerned primarily with
segment length rather than total sharing, we limit the
analysis to the first three chromosomes (unless otherwise
specified). All diploid samples are created randomly mating
haploid individuals, which are generated using a recombina-
tion rate of 1 cM per 1 Mb and mutation rate of 1 � 10�08

per generation per base pair. For each synthetic data set
genotypes are obtained simulating ten times, the number
of markers used for the analysis of the HUGR data set (un-
less otherwise specified). The number of synthetic markers
is then matched to the HUGR data set uniformly sampling
markers with MAF � 0.05.

Effects of Admixture
To determine the influence of admixture on the sharing
distributions, we simulate the first chromosome of two
populations, P1 and P2. For the demographic profile of
P1, we use the best-fit parameters for the AJ population
(A 5 950, G 5 23, and C 5 75,000). Population P2 has
a constant size of 150,000 diploid individuals from gener-
ation 0 to 400 and 10,000 individuals from generation 401
on. We assess the influence of admixture on the sharing
distribution of 500 samples from P1, allowing the flow
of a varying number of individuals from P2 to P1 at gen-
eration 23. As the admixture proportions approach 50%,
we observe a deviation of the distribution from the case
of no admixture (supplementary fig. 8, Supplementary
Material online).

Effects of SNP Ascertainment
Here, we explore the effects of potential ascertainment bias
in GERMLINE’s IBD detection. First, we consider the impact
of minor allele frequency (MAF)-based thresholding in two
related populations within real data. We reanalyze the Idb
data set after excluding any markers with less than 15%
MAF in both AJ and EU populations (25% of the total sites)
to establish an allele frequency distribution similar in both
cohorts (supplementary fig. 14A, Supplementary Material
online). Even with this overly conservative filtering criterion,
we observe that only the overall abundance of IBD sharing
decreases, whereas the segment length decay is unchanged
(Pearson r of 0.991, supplementary fig. 14B, Supplementary
Material online) and the giant AJ component remains (sup-
plementary fig. 14C, Supplementary Material online).

Using synthetic data, we also seek to measure the effect
of ascertaining SNP targets in one population and collect-
ing them in another when the two are divergent. We sim-
ulate two large populations (P1 and P2) of 300,000 haploid
individuals exponentially expanding from 10,000 individu-
als 200 gbp. The two groups merge 1,300 gbp, resulting in
an FST of 0.18, comparable to the FST measured between
HapMap 3 Chinese and Nigerian samples (supplementary
table 2, Supplementary Material online), the most extreme
population difference of the continental groups. All FST in
the table were computed using the Eigenstrat software
package (Price et al. 2006), with resulting values that are
consistent with previous analyses of the HapMap data

(International HapMap Consortium 2005). We sample
500 haploid individuals from each population to simulate
a realistic chromosome with the GENOME algorithm (de-
scribed previously). We ascertain markers from each of the
two populations, independently selecting synthetic SNPs
with MAF greater than 0.05 such that the total in each pop-
ulation corresponds to the HapMap 3 chromosome 22
data. We run GERMLINE with minimal parameters ‘‘-er-
r_hom 0 -err_het 0 -bits 50’’ on the samples from popula-
tion P1, first using the set of markers ascertained in P1, and
then using the alternate set of markers independently as-
certained in P2. We observe a mild fluctuation in the IBD
length distributions between the two scenarios (supple-
mentary fig. 9, Supplementary Material online, bottom),
suggesting that the ascertainment of common markers
from P2 moderately influences IBD discovery due to the
difference in allele frequencies from two highly divergent
populations. We repeat the experiment under the same
conditions for two populations merging at 250 gbp, match-
ing the FST of 0.02 observed between the AJ and CEU sam-
ples. In this instance, there is no difference in the IBD length
distributions between the two scenarios (supplementary
fig. 9, Supplementary Material online, top), demonstrating
that SNP ascertainment has negligible effect on IBD discov-
ery in these two populations and is unlikely to affect our
conclusions regarding the AJ bottleneck.

Population Clustering
To allow for population-wide analysis, we build a graph
model where each individual is represented with a vertex,
and the amount of IBD sharing between two individuals
corresponds to a single weighted edge. The weight of an
edge between a pair of individuals is proportional to the
sum of the length (in centiMorgan) of the IBD segments
shared between the individuals. To account for the higher
informativeness of rarely shared regions, the sum is normal-
ized by the region specific frequency of sharing in the entire
population. More formally, given a set of n ordered SNPs
s 2 f1::ng, we define a function to represent the normal-
ized length of an interval between two SNPs as follows:

FðsÞ5 f lðs; s þ 1Þ
pðs; s þ 1Þ
0 otherwise

ifpðs; s þ 1Þ 6¼ 0;

where l(s,sþ1) is the length of the segment [s,sþ1], and p
(s,sþ1) is the number of individuals sharing the segment
[s,sþ1]. The maximum normalized length (all SNPs being
shared by a pair of individuals) is then:

Wtot 5
Xn

s5 1

FðsÞ;

For each pair of individuals i and j sharing a set of seg-
ments K, we compute a raw edge weight normalizing the
total shared length by the maximum normalized segmental
length:
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Wij 5
1

Wtot

X

r2K

Xkrpe � 1

t5 krpi

FðtÞ;

Where krpi and krpe are the first and the last SNPs in the seg-
ment r.

The obtained value is representative of the total sharing
between the two individuals and ranges between 0 (i.e., no
sharing) and 1 (i.e., sharing of the whole genome). To ac-
count for the exponential decrease in the segmental length
that occurs with the number of meioses, we use the weight
wij5logWij on the edges in our clustering calculations.

The clustering is performed on this relatedness graph
using the Markov Cluster Algorithm (MCL), detailed in
(Stijn Van 2008). MCL detects clusters based on the recur-
rence of a random walk across a weighted graph. We
run MCL with default parameters as well as the ‘‘force-
connected’’ flag which adjusts the output clusters to ensure
that they are connected components. We perform the clus-
tering in an iterative procedure that seeks to find the un-
derlying population structure as well as identify genetic
regions that are shared between clusters. We begin with
all shared segments longer than 3 cM and perform the
following analysis in each iteration:

� Compute the sharing graph from the current set of shared
segments. This weighted graph is then provided as input
for MCL, which identifies clusters of increased relatedness.

� Calculate the distribution of sharing between the
identified clusters as it fluctuates across the genome (as
in fig. 1). We analyze this distribution and identify any
genomic regions that are enriched for cross-cluster sharing
(1 standard deviation [SD] above the mean genome wide).

� As with regions of low information content, we excise all
enriched cross-cluster regions as well as any affected
matches that overlapped these regions and were short-
ened below 3 cM. The un-excised data are used as input
for the next iteration.
This iterative process is performed until the cluster

membership converges at which point all excised regions
and final clusters are reported.

Inference of Haplotype Frequency Using
Pairwise Haplotype Sharing
The locus-specific chance of sharing (fig. 1) can be used to
infer bounds on the frequency of haplotypes. For a region
that presents a chance of sharing f, the maximum fre-
quency reached by an underlying haplotype is:

F5
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4fNðN � 1Þ

p

2N
:

Considering the sharing graph (e.g., fig. 2) for the locus,
this quantity corresponds to K

N, where K is the cardinality of
the maximal complete subgraph that can be formed from
fNðN�1Þ

2 edges (pairs of sharing individuals). In the case of N
haploid individuals, considering the minimum haplotype

frequency corresponding to a chance of sharing f, given
that

f 5
ð K2 Þ NK
ðN2 Þ

we have

F5 f � f þ 1

N

In the case of diploid individuals

f 5
ð K2 Þ NK
ð N=2

2 Þ
and

F5
fðN � 2Þ� 4

4N

Significance Testing of Known Annotations
Significance in the overlap of elevated sharing with known
annotations was calculated through permutation testing. In
all instances, segments of length corresponding to the test
set were randomly placed along the genome and tested for
overlap against features in the annotation databases. For
structural variants, the permutations were performed across
regions identified in 30 individuals from HapMap using array-
based comparative genome hybridization (Iafrate et al. 2004;
Perry et al. 2008). A segment was considered positive when
the simulated region overlapped either partially or entirely
with a reported variant. The number of permutations which
result in as many or more positive segments than the test set
are reported. Regions of positive selection previously re-
ported in Voight et al. (2006), Sabeti et al. (2007), and Pickrell
et al. (2009) were similarly tested for overlap with loci en-
riched for IBD segments. Permutations were performed con-
sidering regions of overlap (three regions for Sabeti et al.
(2007): P , 0.0034; two regions for Voight et al. (2006):
P , 0.0439; seven regions for Pickrell et al. (2009): P ,

0.0027; and eight regions considering the union: P, 0.0017).

Sharing Graph Visualization
We have developed ShareViz, a publicly available Java appli-
cation for visualizing and navigating large data sets of related
individuals (as in figs. 2 and 3). ShareViz uses a traditional
force-directed graph visualization algorithm to lay out indi-
viduals (as nodes) based on their pairwise connections and
contains flexible representation options such as color-coded
individuals, graphical clusters, and weighted edge thickness.

Potential Insights from Sharing Graph
The ShareViz software used to visualize the sharing graphs
is provided as a supplement to this paper, as well as three
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self-loading data sets: ‘‘HapMap3 by population’’ which lays
out sharing between individuals in HapMap3 and clusters
according to self described population status (supplemen-
tary fig. 10, Supplementary Material online); ‘‘HapMap3 by

cluster’’ which lays out sharing according to the groups au-
tomatically generated by the iterative clustering procedure
detailed previously (fig. 2B); and ‘‘HapMap3 close relatives’’
which shows sharing between individuals identified as

FIG. 1. Manhattan-style plots of IBD segment sharing in worldwide populations. Fraction of pairs of individuals IBD, on the y axis, at a locus
shown as a function of the genomic position at the locus (A) within Ashkenazi/European cohorts, (B) within HapMap cohorts, and (C)
between HapMap continents/populations (scale not consistent with A, B). Panel c highlights enriched regions, consistent with intrapopulation
sharing. Within populations, the normalization factor was equal to the number of unique pairs; between populations, the normalization factor
was the product of the respective cohort sizes.
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avuncular or closer relatives, primarily from the MKK co-
hort (supplementary fig. 11, Supplementary Material on-
line). Further information on running and using ShareViz
is described in the attached documentation.

Comparison of Principal Component Analysis and
Multidimensional Scaling Visualizations
The use of IBD to investigate population structure may
complement existing methodologies, such as principal

FIG. 2. Graph plot of IBD sharing in HapMap populations and resultant clusters. Nodes denote individuals, color-coded by cohort, and edges
represent normalized genome-wide IBD sharing. (A) Initial clusters from unfiltered sharing—{GIH},{LWK},{JPT,CHD,CHB},{CEU,TSI} segregate.
(b) Final clusters after cross-cluster edges have been iteratively removed—{TSI},{CEU} newly segregated.

FIG. 3. Graph plot of IBD sharing between samples of Ashkenazi (blue/dark) and European (green/light) origin. Each colored vertex represents
a sample from the respective population, edges represent IBD sharing between incident individuals, and edge width represents total amount of
sharing genomewide. Ashkenazi samples form ‘‘giant connected component’’ and no edges longer than 100 cM to the European population.
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component analysis (PCA). This is illustrated in supple-
mentary figure 12, Supplementary Material online, where
we simulated a population of 50,000 individuals that sep-
arate into two populations of 49,000 and 1,000 individuals,
the latter expanding to 5,000 in 50 generations. The GE-
NOME software package was adopted for all simulations,
for which we used the same parameter previously de-
scribed for the simulation of AJ population expansion. Fifty
diploid samples are extracted from each population, and
their internal genetic structure is investigated through dif-
ferent methods. We compare the visualization obtained by
PCA using the Eigenstrat (Price et al. 2006) software pack-
age and the multidimensional scaling (MDS) plots obtained
using the IBD and IBS distance matrices for all samples. The
MDS plots were obtained using the Matlab Toolbox for Di-
mensionality Reduction. The distance between two indi-
viduals for the IBD matrix was computed as the fraction
of the Genome that is not shared IBD, whereas the Plink
Software package was used to compute the IBS distance
matrix. This simulated scenario shows how haplotype-
based analysis of relatedness may provide a more detailed
insight into recent events of diversification among popu-
lations that are difficult to distinguish using unlinked
markers.

Results
In a homogeneous population, a random pair of individuals
has a chance p to demonstrate genetic relatedness, where p
depends on the demography (chance of coalescence) and
the required threshold for relatedness. We can therefore
define the relatedness graph G, with nodes corresponding
to individuals and edges to genetic relatedness such that
across a cohort of size n, one expects p(n choose 2) edges.
Under various assumptions, graph theory essentially guar-
antees that in a random graph, if pn . 1 þ e (where e is
a fixed constant), the majority of nodes will be transitively
linked in what is known as a ‘‘giant’’ connected component
(William et al. 2000). We set out to test this prediction.

We first examined the Idb of 903 New York Health Study
participants (see Materials and Methods and table 1). After
filtering five samples to eliminate closely related pairs, an
average pair of samples has a chance of one-third of sharing
at least one IBD segment (123,173 pairs share a total aver-
age of 35.4 cM). Analyzing the relatedness graph, only 424
of the 898 nodes (fig. 3) are spanned by a large connected
component. This result represents a consistent deviation
from the theoretical expectation for the case of a random
graph, where such strong node partitioning is very unlikely
to be maintained (P value ,, 10–100 under a hypergeo-
metric distribution). The cohort is indeed structured, and
the node membership in the connected component is
highly correlated with self-identification as AJ (99.7% of
Ashkenazi individuals are spanned by the connected com-
ponent, constituting 91.5% of the component’s nodes).
Overall, the total genome-wide sharing for an average pair
of AJ samples (54.25 cM) is considerably higher than that of
EU samples (1.81 cM). Examining specific relationship

types, we also see that the AJ samples are enriched within
‘‘intermediate’’ relatives, accounting for 85.6% of the total
77,676 such pairs and, accordingly, depleted within ‘‘re-
mote’’ single-segment relatives, accounting for only
18.5% of the total 45,497 such pairs.

To investigate whether this increased intermediate relat-
edness amongst AJ is specific to Idb, we compared sharing
to 400 additional AJ samples from the Hebrew University
Genetic Research (HUGR). We observed the two AJ cohorts
to have similar levels of sharing within each data set, as well
as across data sets, with the HUGR samples exhibiting the
highest amount of sharing internally and to other AJ sam-
ples (supplementary table 3, Supplementary Material on-
line). On average, a pair of AJ samples from HUGR
stands out as having larger percentage of the genome
shared (1.94%—table 1 ‘‘HUGR AJ’’) compared with the
non-AJ European population on the same platform
(0.06%—table 1 ‘‘Idb EA’’).

Looking forward, we briefly consider the implications
that this abundance of recent sharing may have for infer-
ence from high-throughput sequencing (Kaiser 2008).
Probabilistic models of more distant relatedness have been
successfully used to infer missing genotypes from a subset
of individuals genotyped at high resolution (Chen and
Abecasis 2007). We contend that IBD shared segments be-
tween sequenced and genotyped individuals can also be
used for such inference. In the HUGR samples, where
1.73% of the genome is shared between an average pair,
we would expect a single individual to share 82.2% of
the genome with at least one other sample from a cohort
of 100. This shared fraction would then be used for infer-
ence of uncommon variants if the remaining 99 individuals
are sequenced. Analyzing this inference potential in prac-
tice, we perform a similar empirical calculation on 100
HUGR samples. Over 100 iterations, we exclude a single in-
dividual from the pool and calculate the percentage of its
genome that is shared with at least one of the remaining 99
samples. We find that an average individual shares 68.8%
(SD 10.8%) of the 2.78 Gbp genotyped genome with at least
one other sample. This deviates from the expectation due
to the nonuniform distribution of sharing we have demon-
strated previously but still represents significant inference
potential. We caution that this analysis assumes fully accu-
rate inference within a single shared segment and repre-
sents only an upper-bound estimate.

The large number of segments shared between AJ sam-
ples facilitates analysis of the length distribution of these
segments; particularly the exponential decay along the seg-
ment-length range of 3–25 cM (fig. 4A, supplementary ta-
ble 4, Supplementary Material online), which accounts for
.99.97% of the shared-segment pairs. In an idealized pop-
ulation bottleneck where all individuals concurrently coa-
lesce to the same MRCA, the observed exponential decay of
0.671 per cM (SD 0.055) is consistent with a bottleneck
event around 20 generations before present, followed by
a rapid expansion (Materials and Methods). We used ex-
tensive simulations to perform grid search in a richer pa-
rameter space (timing of the bottleneck, ancestral
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population size, and current population size) using an ex-
ponential expansion model. We observe the effect of the
ancestral population size on the frequency of short IBD seg-
ments, whereas the current population size mainly affects
the longer segments (supplementary fig. 13, Supplementary
Material online). The timing of the bottleneck affects the
entire distribution, with stronger effects on midrange seg-
ments. Our grid search suggests a rapid expansion of about
950 diploid individuals 23 generations ago to the current
hundreds of thousands (supplementary fig. 6, Supplemen-
tary Material online). Furthermore, summary statistics on
haplotype sharing length obtained from a constant-size
population model are not compatible with the empirical
distributions (fig. 4A, Materials and Methods). More com-
plex models may be required to explain the deviation ob-
served for segments shorter than 5 cM. The estimated
timing is consistent with a model of AJ population struc-
ture inferred from historical data (Slatkin 2004) and can be
reconciled with previous analysis of rare mutations (Risch
et al. 2003) and mithocondrial data (Behar et al. 2006). Al-
though significant admixture can be shown to influence
the sharing distributions (supplementary fig. 8, Supplemen-
tary Material online), our use of a single-population model
seems reasonable due to the limited amount of recent shar-
ing observed between European and Ashkenazi samples
(table 1) and by the strong similarity of the length distri-
butions for AJ individuals sampled in Israel and USA
(Idb.AJ and HUGR, see Materials and Methods). In other

populations, the number of shared-segment pairs is smaller
(fig. 4B) and does not yet allow for robust inference of de-
mography, thought we still provide measures of exponen-
tial decay for comparison.

In order to examine locus-specific phenomena, we focus
our analysis on local segment sharing due to intermediate
and remote relatedness rather than genome-wide sharing
between close relatives. IBD sharing is detected everywhere
along the genome, averaging population-specific background
levels (fig. 1A and B). We analyze the physical distribution
of IBD sharing (Materials and Methods) within and across
populations, observing regions with a much higher amount
of sharing than expected (fig. 1A and B). Analyzing AJ sam-
ples, the most prominent such region is the human leukocyte
antigen (HLA) locus (fig. 1A). The entire segment of chromo-
some 6, between 25 and 35 Mb, is shared among individuals
unrecombined at least 4-fold more than any other region
in the genome (4.2-fold in Idb, 5.1-fold in HUGR). This is
in accordance with previous observations of complex haplo-
type structure along the HLA locus (de Bakker et al. 2006).

Examining the regions of intense sharing within HM3
populations, HLA still exhibits a very high sharing density
for some of the populations: Western Europeans (CEU),
Gujarati Indians (GIH), Luhya Kenyans (LWK), and Yoruba
Nigerians (YRI). Additional regions along the genome ex-
hibit notably high sharing densities within populations. In-
terestingly, many of these tend to also recur across
unrelated individuals of different geographical origin

FIG. 4. Relationship between segment length and amount of sharing in real and simulated data. We compute the expected number of IBD
segments shared within each population (y axis, logarithmic scale) for the discrete segment length range of 3 to 30 cM (x axis). (A) AJ and EU
populations shown with dot and line, solid lines show simulated coalescent data rawn from a Wright–Fisher model (WF—dark/light gray) and
a bottleneck model (BN—highlight). (B) HapMap populations shown in solid colors. Y-intercept correlates to ancestral population size, decay
loosely correlates to population growth. For both figures, only data points at which sharing is more than 1 in a 1,000 pairs of individuals (varies
by population) are shown.

The Architecture of Long-Range Haplotypes · doi:10.1093/molbev/msr133 MBE

483

http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr133/DC1


(table 2 and fig. 1C). Segments at the recurrently shared
regions in chromosomes 2, 4, and 8 are shared even
across different continents of origin. Of particular interest
may be the most commonly shared region, on chromo-
some 8p23.1, overlapping 5 Mb of a common inversion
polymorphism—the third longest reported structural
variant in the entire genome (Iafrate et al. 2004).

Demonstrating the ability of IBD networks to recon-
struct population structure across a diverse cohort, we
have implemented a clustering method that recapitulates
broad geographical origin (fig. 2, Materials and Methods).
The network of shared segments in HM3 (supplementary
fig. 10, Supplementary Material online) is dense within pop-
ulations and geographic regions and sparse between them.
We can immediately observe an abundance of recent shar-
ing within the cohorts, particularly in the MKK and LWK
Africans; the GIH Indians. Moreover, this high level of shar-
ing is homogenous across most of the population and not
suggestive of individual cryptic relatives. Looking across
populations, only the JPT, CHD, and CHB East Asian groups
exhibit a large number of shared segments, particularly be-
tween the two Chinese populations. The few remaining
segments are also overwhelmingly within continental
groups, particularly between CEU and TSI. To refine these
networks, we use the observed unlabeled clusters (fig. 2A)
to guide the filtering of shared regions, excluding regions
that are recurrently shared between clusters. We iteratively
repeat this procedure of filtering and clustering, until con-
vergence, which occurs after three iterations in HM3 (Ma-
terials and Methods). The final clusters demonstrate
improved resolution between populations (fig. 2B), with
six cross-cluster regions remaining (supplementary table
5, Supplementary Material online).

In total, the 16 cross-population commonly shared
regions span only ,35 Mb (,0.92%) of the genome
but account for 9.6%, 16.1%, and 18.1% of sharing within

populations, between populations, and between conti-
nents, respectively. We note that these regions are not
correlated to SNP density and would be unaffected by
slight changes in the information content filtering (Mate-
rials and Methods; supplementary fig. 5, Supplementary
Material online). Although sharing of a region may indi-
cate recent common ancestry, the agglomeration of
shared segments at 16 loci is highly nonrandom. Biological
factors or recent positive selection are possible causes of
the observed reduction in haplotype diversity (Discus-
sion). Some of the identified loci correspond to previously
reported regions of recent positive selection. In particular,
8 of the 16 regions were reported: 1p34.3, 2q32.3 (Voight
et al. 2006); 4p15 (Voight et al. 2006; Sabeti et al. 2007;
Pickrell et al. 2009); 4q32.1, 17q22 (Sabeti et al. 2007;
Pickrell et al. 2009); 10q21.1, 21q21.1, 22q11.22 (Pickrell
et al. 2009), an overlap not expected by chance (P ,

0.0017, Materials and Methods). Further evidence for bi-
ological retention of unrecombined ancient haplotypes,
rather than random retention of new ones, comes from
examining annotation for these 16 commonly shared seg-
ments. Seeking commonalities, we observe 12 of these
segments to overlap structural variants that are common
and long enough to have been detected in the HapMap by
CGH (table 2; Iafrate et al. 2004; Perry et al. 2008). Such
overlap is not expected by chance (P 5 0.00052 in 100
longest; Materials and Methods).

Discussion
We have presented novel analysis of long-range haplotypes of
several centiMorgans shared among individuals within and
across populations. The prominence of the HLA locus as
a commonly shared region is likely a manifestation of the
known unique structure of variation at that genomic land-
mark: multiple, very divergent haplotypes (Miretti et al.

Table 2. Annotated Regions Enricheda for IBD Sharing between HapMap Populations.

Sharing Pairsb Chromosome Region Peak (Mb) Region (Mb)
Structural
Variationc Number of Samples

44,774 4d p15.1–p14 33.1 31.0 36.0 319,772 CNV 23
2,833 8d p23.1–p22 12.2 11.1 13.3 5,081,341 INV 30
1,694 1 p36.21–p36.13 16.6 15.4 17.8 719,648 CNV 23
1,537 17 q22–q23.2 55.5 53.1 57.0 703,400 CNV 17
1,501 2d q32.3–q33.1 196.0 192.9 199.0 221,355 CNV 9
1,195 16 p13.11–p12.3 16.5 15.9 17.1 1,863,800 CNV 27
1,133 21 q21.1 16.4 15.7 17.0
1,022 9 p24.3 1.5 1.3 2.0
929 2 p25.1 9.3 8.7 9.8
928 1 p34.3 37.1 35.1 37.3 266,949 CNV 1
927 1 q42.3–q43 234.8 234.5 235.2 35,528 CNV 1
927 5 q23.1 117.4 116.2 118.1
882 4 q32.1 158.7 157.8 160.70 230,401 CNV 2
822 4 q32.3–q33 170.9 170.2 171.3
813 22 q11.22–q11.23 21.4 21.1 21.9
796 10 q21.1 59.5 58.7 60.3 340,232 CNV 12

a Sharing density . mean þ 2 � SD.
b Population mean 5 191.2; SD 5 284.8.
c Permuted P value: 0.00052 in largest 100 structural variants.
d Appears in cross-continent analysis.
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2005; de Bakker et al. 2006). At the HLA, this deviation from
Wright–Fisher population genetics has been attributed to
mate selection (Zahavi 1975) or positive selection (Suzuki
and Gojobori 1999).

Indeed, multiple methods rely on haplotype homozygos-
ity for detecting positive selection (Sabeti et al. 2002, 2007;
Voight et al. 2006; Pickrell et al. 2009) with results that over-
lap with significance the 16 regions we identify as enriched
for IBD sharing across individuals of different geographical
origin. However, despite the similarities between our work
and previous work on positive selection, there are two key
differences between these methodologies: a technical dif-
ference and, as a result, a second, quintessential one. First,
there is a power difference between these methods across
different haplotype frequencies. Although current method-
ologies for the detection of positively selected regions are
limited to haplotypes that reached relatively high frequen-
cies (more than 30%) (Pritchard et al. 2000), our locus-
specific measure of pairwise sharing highlights (typically
longer) haplotypes and combinations thereof at very low
frequencies (Materials and Methods). Secondly, and as
a consequence of this difference, it is harder to interpret
shared IBD regions across populations as sites of recent
positive selection, as this interpretation depends on using
haplotype length as a surrogate for recent origin (Sabeti
et al. 2002). As we work with longer segments, such inter-
pretation would suggest they originate later than popula-
tion splits, which is inconsistent with long haplotypes being
shared across multiple populations (e.g., 2q32.3-q33.1,
4p15.1-p14, and 8p23.1-p22). One would need to assume
more complex scenarios of demographic history, with ad-
mixture, migrations, and selection occurring at multiple
places, to explain such regions. An alternative interpreta-
tion accepts the conjecture that haplotypes in these re-
gions are indeed old, explaining their abundance and
geographic spread, with their long span as unrecombined
stretches being the outlier data point. The retention of
such unrecombined, ancient haplotypes may be explained
by reduced inter-haplotype recombination, or selection
against recombinants, which is not necessarily directional.
The observed enrichment for structural variations (P 5

0.00052 among 100 longest segments) may suggest a mech-
anism for such selection, if incompatible structural alleles
are less likely to recombine.

Zooming out from local regions to a genome-wide per-
spective, the abundance of long-range recurring haplotypes
indicates widespread unreported relatedness, providing in-
sight into recent population structure. Our bottom-up ap-
proach to studying population structure may complement
existing methodologies such as PCA (Menozzi et al. 1978;
Price et al. 2006) or Bayesian clustering (Pritchard et al.
2000), which seek linear patterns and trends that are
data set wide (Methods, supplementary fig. 12, Supplemen-
tary Material online). Additionally, our analysis of IBD
distributions provides estimations of the recent effective
population size and demographic history that are robust
to many simulated genealogical scenarios. Practically,
this understanding may prove useful when considering

high-throughput sequencing of population panels and
evaluating their expansion to represent most individuals
through sequenced relatives and therefore saturating our
knowledgebase of human variation.

Supplementary Material
Supplementary tables 1–5 and figures 1–14 are available at
Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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