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Abstract
The current paradigm of human genetics research is to analyze variation of a single data type (i.e.,
DNA sequence or RNA levels) to detect genes and pathways that underlie complex traits such as
disease state or drug response. While these studies have detected thousands of variations that
associate with hundreds of complex phenotypes, much of the estimated heritability, or trait
variability due to genetic factors, remain unexplained. We may be able to account for a portion of
the missing heritability if we incorporate a systems biology approach into these analyses. Rapid
technological advances will make it possible for scientists to explore this hypothesis via the
generation of high-throughput omics data – transcriptomic, proteomic and methylomic to name a
few. Analyzing this ‘meta-dimensional’ data will require clever statistical techniques that allow
for the integration of qualitative and quantitative predictor variables. For this article, we examine
two major categories of approaches for integrated data analysis, give examples of their use in
experimental and in silico datasets, and assess the limitations of each method.
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One of the primary goals of current human genetics research is to elucidate the genetic
architecture of complex heritable traits, such as drug response. Technological advancements
have been crucial in driving the direction of these studies. For example, affordable high-
throughput SNP genotyping has made the genome-wide association study a popular analysis
strategy for finding genetic variants that associate with a specific phenotype. While genome-
wide association studies have been successful at finding SNPs that point to novel biological
underpinnings of disease [101], almost all have very small effect sizes and cumulatively
account for only a small proportion of the estimated heritability of the trait. This
phenomenon has led many scientists to hypothesize where the remainder of the heritability
might lie. One idea is that traditional analytical methods that examine the effect of one
variant at a time are not robust to the complexity of the genetic architecture of these traits
[1]. For example, if the true genetic model involves SNPs in different genes with little or no
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effect when they occur individually but a very large effect when they occur together,
traditional single locus analysis would likely fail. This concept of complex genetic etiology
also encompasses the possibility that the true model involves variation at different levels of
biological regulation, or a ‘meta-dimensional’ model. For example, if a susceptibility model
includes both the hypermethylation of a gene and a particular allelic variant at a SNP to pass
the threshold for the trait to occur, detection would require an analytical method that can
integrate gene expression and genotype data.

Recent advancements in high-throughput techniques for measuring quantitative variables
across their respective ‘omes’, such as gene expression [2, 3], protein expression [4], and
methylation patterns [5], allow for meta-dimensional analyses to be carried out. There are
several key reasons performing a meta-dimensional analysis would allow for a more
thorough and informative interrogation of risk etiology than a single data type analysis.
Several reviews go over these arguments in detail [6–9] with the main ideas being:

▪ Multiple datatypes may compensate for missing or unreliable information in any
one data type;

▪ Different sources of data that point to the same gene or pathway are less likely
to be false positives and could indicate functionality;

▪ The full biological model may only be detected if different levels of regulation
are considered in an analysis.

One limitation to meta-dimensional analyses for human genetics studies is that data
acquisition and quantification of RNA and protein levels is not as straightforward as for
germline DNA sequence. Confident genotype calls can be made from relatively small
quantities of DNA acquired from a variety of tissue types that have been stored properly for
an extended period of time [10–12]. Conversely, gene- and protein-expression levels are
dynamic and, in part, dependent on the tissue from which they were extracted [13, 14].
These sources of variability make the process of collecting samples to generate data more
complex. However, this complexity is also a strength of meta-dimensional analyses in that
the dynamic nature of specific datatypes reflects the true nature of biology and may allow
for discoveries that would be missed by only examining DNA sequence variation.

One potential and rapidly expanding source of meta-dimensional data for
pharmacogenomics research is the biobank [15, 16]. Biobanks are repositories for biological
specimens that will be stored for an extended period of time for future clinical or research
use. Currently, there are enormous efforts underway to create population-based biobanks
with specimens linked to clinical and environmental data [17–19]. Careful collection,
handling and storage of blood and other tissues in these banks [20–22] would allow
scientists to gather information from different levels of biological regulation on numerous
subjects without the added cost and effort of standard recruitment.

Another possible source for multiple high-throughput datatypes are immortalized
lymphoblastoid cell lines (LCLs) [23]. Genotype, gene expression and drug-response
phenotype data on a number of established LCLs, such as those derived from the individuals
that participated in the International HapMap Project, have already been generated and been
made publicly available [24–27]. In addition, many of these cell lines are commercially
available through the Coriell Institute for Medical Research making it possible for scientists
to perform in-house functional experiments [102]. While several interesting findings have
come about from LCLs, such as mapping the determinants of human gene-expression
variation within and between human populations [28–35], there are some critical limitations
to this model. A number of reviews have examined in detail the strengths and weaknesses of
using immortalized LCLs for human genetics research [36–41]. For example, one strength
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of this model is that pharmacological experiments using highly toxic drugs may be done
using cell lines that would be difficult or unethical using human subjects [38]. Conversely, a
major weakness to this approach is that LCLs have been shown to consistently express only
approximately 50% of known genes [37]. If the true disease etiology consists of altered
expression levels for genes that are not expressed in LCLs, these variables would be missed.

Data integration is a broad topic and the user-specific definition will be crucial in deciding
which analytical method to use. The key focus of this article is integration of different types
of high-throughput data for detecting biological models that associate with a complex
human phenotype. Thus far, two main categories of analytical techniques have been used to
integrate different datatypes:

▪ Determine the correlation of the independent variables with each other and with
the trait of interest to map disease loci (multistage approach);

▪ Combine all of the data initially and then allowing the computational method to
find meta-dimensional models (simultaneous analysis).

Table 1 lists the studies that have integrated high-throughput qualitative (genotype) and
quantitative (gene or protein expression) datatypes specifically to detect biological variation
that underlies complex human traits. By far, the multistage approach has dominated the field
of integrated analyses. The goals of this article are to assess the benefits and limitations of
the techniques that have been used for the multistage approach and to describe promising
computational methods for simultaneous analysis of meta-dimensional data.

Multistage approach
Triangle model

The main objective of the multistage approach is to divide the analysis into steps to find
associations between the different datatypes and also with the datatypes and the trait. When
the datatypes of interest are genotypes and gene-expression levels, this method is essentially
mapping expression quantitative trait loci (eQTLs) to find ‘functional’ SNPs that are
associated with the trait. The most commonly used integration technique thus far has been a
three-stage or triangle method. Figure 1A illustrates the triangle method where SNPs are
associated with the phenotype and filtered based on a genome-wide significance threshold;
SNPs deemed significant from Step 1 are tested for association with gene-expression levels
with a less stringent threshold owing to fewer statistical tests; and gene-expression levels
detected in Step 2 are tested for correlation with the outcome of interest. Most of these
analyses have been performed using genome-wide SNP genotypes and baseline gene-
expression levels of HapMap LCLs to find associations with drug cytotoxicity measured as
the IC50 [42–46].

In Choy et al., a variation of the triangle method is used in which each SNP was tested for
association with baseline gene-expression levels and each gene-expression level was tested
for association with drug response (Figure 1B) [40]. Next, eQTL SNPs from genes that were
associated with both were tested for association with drug response. Finally, the correlation
between the strength of each SNP association with drug response and gene expression was
measured. The main difference between these two method variations is the level at which
stringent filtering occurs. In the first method, SNPs that do not pass a genome-wide level of
significance will not make it to Step 2. In the second method, the stringency lies in the fact
that genes must associate with both a SNP and drug response. The impact of these two
methods on power and Type I error rate is not immediately clear; however, more statistically
significant results have been found with the first method (Figure 1A). For example, in
Huang et al., the first method was used to find genetic variants that associate with the
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cytotoxicity of the chemotherapeutic agent daunorubicin. Six SNPs representing six
different genes were detected using Utah residents with Northern and Western European
ancestry HapMap samples (CEU), two of which were validated in an independent, non-
HapMap LCL sample [44]. On the other hand, in the study that used the second method, the
authors state that no eQTLs were significantly associated with any of the five drugs tested,
but three were nominally associated [40].

Pathway analysis
Another multistage approach that has been employed by several researchers is a pathway-
based analysis. This method involves utilizing the pattern in which associated genotype and
gene-expression variables fall into annotated genes within biological pathways to find
modules that are over-represented for the phenotype of interest. This method was first
utilized in gene-expression data analyses to identify genes that were coexpressed and may
represent a functional unit associated with the outcome of interest [47]. Recently, this
method has been applied to genome-wide SNP data by first mapping the SNPs to genes and
then genes to pathways [48]. The primary benefits of a pathway analysis over the more
traditional SNP association studies are improved power to find small effects, a more direct
indication of the underlying biology, and the ease of replicating an entire pathway versus a
single SNP [49]. Because the utility of this method was first shown in expression data and is
now being applied to SNP data, using pathway analysis to integrate the two heterogeneous
datatypes is a logical next step.

Notably, the three meta-dimensional examples shown in Table 1 that applied this approach
used different human tissue to generate gene-expression data instead of LCLs [50–52]. The
meta-dimensional pathway analysis by Emilsson et al. used correlation matrices of
differential gene-expression levels in adipose tissue to detect transcriptional networks [50].
The network detected was found to be highly conserved in mouse and was enriched for
genes in the inflammatory response and macrophage activation. Next, they integrated the
pathway data with genotype data by selecting the strongest cis-eQTL for the genes in the
network and tested them jointly for association to BMI and percentage body fat. They found
modest levels of association with BMI. Edwards et al. integrated genotypes and gene-
expression data from brain tissue to find over-represented pathways associated with
Parkinson’s disease [52]. Their approach was simpler than the previously described study in
that they searched for Kyoto Encyclopedia of Genes and Genomes pathways that were
enriched for significant SNPs or gene-expression variables and then selected the pathways
that were included in both sets for further testing. The top three pathways found were for
axonal guidance, focal adhesion and calcium signaling. Finally, the study by Hsu et al.
attempts to dissect the genetic architecture of osteoporosis-related traits by integrating
expression data from both human and animal tissues with genome-wide genotype data to
prioritize loci based on their potential functionality [51]. The prioritized loci were
subsequently tested for enrichment of annotated biological pathways. Using this method,
they were able to identify three novel regions and one previously identified locus that
associated with these traits in women. They also found significant clustering of the
prioritized loci in cell adhesion pathways.

Limitations of multistage approach
While these approaches are novel in their use of functional data to add information to the
genotype data, there are still some limitations that should be considered. First, they are
biased towards finding SNPs with large main effects on gene expression and phenotype
variation. Models that include SNPs with small independent effects that interact with one
another to affect the outcome would be missed [53]. Another limitation is that this approach
would not detect models with SNPs and gene-expression levels acting independently to alter
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the phenotype. For example, models would be missed if they included a SNP that affected
protein conformation but not expression levels, or if they included gene-expression levels
that affected phenotype owing to epigenetic factors such as methylation or acetylation.
Finally, a weakness specific to the pathway analysis is its reliance on previous biological
knowledge from annotated databases. For example, in Hsu et al., two of the prioritized loci
were not included in the pathway analysis owing to a deficit of biological annotation [51].
Annotated databases can be extremely useful by allowing researchers to overlay
interpretable biological knowledge onto their often agnostic, genome-wide studies, but this
may result in sacrificing information about previously undiscovered biology [54].

Simultaneous analysis
Owing to the relatively nascent stages of using novel data mining techniques to find the
etiology of complex human traits in high-throughput genetic and genomic data,
simultaneous analyses are far less common than the multistage approach, which typically
uses more traditional statistics. An effective simultaneous approach must be able to
efficiently move through the search space to select the important quantitative or discrete
variables and put them into a predictive model without bias towards either data type. For this
section, we will go over one study that has applied a machine learning technique to meta-
dimensional data and then discuss other methods that show promise for a simultaneous
meta-dimensional analysis.

Tree-based methods
Owing to the extremely large number of variables associated with high-throughput data and
the expansion of the search space as higher order models are considered, nonexhaustive data
mining techniques, or methods that search for important patterns in the data without testing
every possible combination of variables, are an attractive approach. Reif et al. perform an
analysis to find meta-dimensional models that include both SNP genotypes and proteomic
data in the form of serum cytokine levels to predict adverse reaction to smallpox vaccination
[55]. First, they use Random Forests™ (RFs) to filter their data [56]. Briefly, RFs are a
collection of classification or regression trees (Figure 2). Each tree is trained using a
bootstrap sample of individuals from the dataset. For each tree node, the attribute, or
independent variable, is selected from a subset of all attributes based on how well it reduces
an impurity measure. Individuals not used for tree generation (‘out-of-bag’ individuals) are
used to calculate tree prediction error and assign an ‘importance’ constant to each variable
based on the effect of permuting the values [57]. This internal validation method helps to
prevent overfitting. As the authors state, RFs are an appealing method because they can
handle quantitative proteomic data and discrete genotype data. Notably, the fact that RFs
rank the importance of each variable allows this method to be used for efficient variable
selection. After RF filtering, the authors build decision trees from the most important
variables to generate a more interpretable model. The final best tree from their analysis
contained three proteomic variables and one SNP variable and had 75% prediction accuracy
based on tenfold crossvalidation. Although the proteomic variables overall had higher
importance values and dominated the best model, it is unclear whether RFs are biased
towards one data type or if this is owing to the large role cytokines play in immune
response.

One limitation to decision trees and RFs is that they do not scale up to high-throughput,
genome-wide data. To address this issue, Random Jungle (a faster version of RF) was
developed [58]. Another limitation is that, although RFs are more robust to models that
include interactions than single trees, for the initial split to be informative, at least some
marginal effects are necessary.
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Bayesian networks
A Bayesian network (BN) is a directed acyclic graph that represents the joint probability
distribution of random variables. BNs are appealing for meta-dimensional analyses for
several reasons. First, BNs allow for the representation of conditional relationships and can
be used to distinguish between indirect and direct associations, as shown in Figure 3. This is
useful for the integration of genotype and gene-expression data where the genotypes may be
operating directly on the phenotype or indirectly through gene expression. This aspect of the
BN may also help in inferring causality [8]. Also, BNs assign probabilities to the variables,
which provide a level of confidence or belief about the network. In addition, Bayesian
methods are flexible in that they can be relatively agnostic by using noninformative priors or
they can incorporate information from previous biological knowledge into the prior
distribution to assist the network search [59]. Finally, similar to RFs, they are able to handle
both quantitative and discrete input variables. Bayesian methods have been used to analyze
genetic data to detect interacting networks of genes that associate with human traits [60].

One of the main drawbacks of BNs is the computational burden of evaluating networks
across the search space [61]. To address this, Bayesian techniques often apply simulation
techniques, such as the Gibbs sampler employed by the WinBUGS program [62], to allow
for faster integration. Even with these faster methods, high-throughput data analysis may
require a filtering technique to be computationally feasible.

Evolutionary computation methods
The final technique we will discuss that shows potential for meta-dimensional analysis is the
use of evolutionary computation, either genetic programming (GP) or grammatical evolution
(GE), which takes advantage of characteristics of biological evolution in order to optimize
specific types of computer programs [63]. For meta-dimensional analyses, these computer
programs will be in the form of solutions that contain quantitative or discrete variables that
are modeled to predict a phenotype. The two types of solutions that will be discussed here
are symbolic regression formulas and artificial neural networks (ANNs). The basic GP
algorithm is as follows:

▪ A random population of solutions is generated and tested using the data to
assign a ‘fitness’ to each network;

▪ The fittest solutions undergo evolutionary operations such as mutation,
crossover and reproduction so that their ‘genes’ carry on to the next generation;

▪ This process is repeated for a prespecified number of generations so that,
optimally, the final generation contains very fit (or highly predictive) solutions.
Often this process is done using n-fold crossvalidation to prevent overfitting.

Symbolic regression solutions are mathematical formulas that map patterns in the input
variables (SNPs and expression variables) back to some output (phenotype) [64–66]. These
formulas are traditionally optimized using GP to find variables and mathematical operators
that come together to form predictive models. These models can be very simple or complex
depending on the operators used to initialize the process. Symbolic discriminant analysis is a
method that uses evolutionary computation to optimize symbolic regression formulas to
discriminate between values of a dichotomous outcome [64]. Symbolic discriminant analysis
has been applied to the analysis of high-throughput gene-expression data [67]. In the review
by Reif et al., symbolic discriminant analysis was used to analyze in silico data that included
genotypic and proteomic variables with varying levels of interactions between the datatypes
[6]. The classification errors for all models were lowest when the model included some main
effects. Notably, the data was simulated with very few variables and does not represent a
high-throughput scale.
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The ANN is a pattern recognition method that was originally designed to model learning
processes in the brain. In short, ANNs are directed graphs that consist of an input layer,
hidden layers and an output layer. The input layer nodes are independent variables; the
hidden layer nodes are processing elements that send their signal to other hidden layer nodes
or the output node (Figure 4). The arcs connecting the nodes are all associated with a weight
constant [68]. Traditionally, ANNs are optimized using a gradient descent algorithm such as
back-propagation that iteratively alters the weights until fitness is no longer improved. Back-
propagation requires that the user prespecifies the input variables and the structure of the
network. Using GP to optimize ANNs allows for simultaneous variable selection,
architecture, and weight optimization [69].

The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) is a
software package that uses GE to optimize symbolic regression formulas and ANN (i.e., GE
+ ANN: GENN). Both methods have been able to detect various types of genetic models,
including highly epistatic interactions, using in silico genotype data [70–75]. GENN has
been used in biological data to find interactions between eQTLs [76] and to model
environmental and SNP genotypes to predict age-related macular degeneration [77]. Both
GE symbolic regression formulas and GENN can accept quantitative and categorical
variables to predict binary or continuous outcomes.

Using GP or GE to optimize either of these methods (symbolic regression or ANN) would
be useful for meta-dimensional analysis because there is no need for a priori model
specification, it performs a nonexhaustive search of the solution space, it can be easily
parallelized for faster computation, and it allows for the discovery of any genetic model,
including those with no main effects. One of the main weaknesses of GP is that, unlike BNs,
it is not clear how to distinguish between indirect or direct effects in the final model. Also,
there are no values generated that can be interpreted as probabilities or importance measures
for the variables. Together, these limitations make the GP models less interpretable and
harder to map back to specific biological functions. Also, as with the other two methods, the
search space becomes infinitely large with high-throughput data and a filtering method
should be used to increase the likelihood of model detection.

Future perspective
In the realm of biological research, the technology is advancing faster than the methods we
use to analyze the data it generates. This requires that any new computational technique be
flexible enough to adapt to different types of high-throughput data. Many of the methods
discussed here use microarray data for gene expression and SNP genotypes for DNA
variation; however, other measures of biological variability, such as copy number variation,
RNA-sequence data and whole-genome sequence data, should be taken into consideration
during the method development process.

Of note, there are computational methods not mentioned in this review that should also be
considered as potential candidates for meta-dimensional disease analysis. For example,
interactome network topology methods, which examine specific features of networks
generated from meta-dimensional data that are significantly different from a null network,
could be used to detect biological modules that correlate with a particular human trait [78].
Other types of methods that could be used are clustering or coclustering techniques that
attempt to reduce the complexity of the data by generating new subgroups, or clusters, with
similar attributes both within and between high-throughput datatypes [9]. Association
between the subgroups and the complex human trait of interest could then be analyzed.

Models found by any of the methods reviewed in this article need to be validated statistically
using independent datasets and functionally at the bench using in vitro and in vivo
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techniques. Exact statistical replication of the complex models resulting from some of the
data mining techniques is extremely unlikely owing to environmental effects and genetic
heterogeneity. Therefore, validation will require a more liberal interpretation of finding
models with a high level of similarity across studies. Functional validation will be crucial to
provide additional evidence that these are ‘true’ findings. Ultimately, comprehensive
knowledge about the etiology that underlies complex human traits will allow for better
treatment and prevention strategies in the future.

Executive summary

Complex human trait etiology

▪ Genome-wide association studies have found many loci that associate with
complex human traits, but most of the estimated heritability remains
unexplained.

Meta-dimensional data analysis

▪ A study that combines different types of high-throughput data into one
analysis may be able to find disease models that would not have been
discovered with single data-type analysis.

Multistage approaches

▪ Triangle model: find expression quantitative trait loci that associate with
complex traits.

▪ Pathway approach: use genotype and gene-expression data discovering more
about the biology by finding annotated pathways that are over-represented.

Simultaneous analysis approaches

▪ Tree-based approaches: Random Forests™ and decision trees.

▪ Bayesian networks

▪ Evolutionary computing methods.
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Figure 1. Variations of the triangle method
eQTL: Expression quantitative trait loci
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Figure 2. Decision tree example
For the SNP variables, the genotypes are represented as: 0: no minor alleles; 1: one minor
allele; and 2: two minor alleles. The up and down dashed arrows indicate increased and
decreased gene expression, respectively.
EXP: Gene expression
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Figure 3. Bayesian network example with direct and indirect effects
EXP: Gene expression; PHENO: Phenotype.
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Figure 4. Single-layer artificial neural network
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