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Abstract
We introduce a new model for relaxing the assumption of a strict molecular clock for use as a prior in Bayesian methods for
divergence time estimation. Lineage-specific rates of substitution are modeled using a Dirichlet process prior (DPP), a type of
stochastic process that assumes lineages of a phylogenetic tree are distributed into distinct rate classes. Under the Dirichlet
process, the number of rate classes, assignment of branches to rate classes, and the rate value associated with each class are
treated as random variables. The performance of this model was evaluated by conducting analyses on data sets simulated
under a range of different models. We compared the Dirichlet process model with two alternative models for rate variation:
the strict molecular clock and the independent rates model. Our results show that divergence time estimation under the DPP
provides robust estimates of node ages and branch rates without significantly reducing power. Further analyses were con-
ducted on a biological data set, and we provide examples of ways to summarize Markov chain Monte Carlo samples under
this model.

Key words: divergence time estimation, relaxed clock, phylogenetics, Bayesian estimation, Markov chain Monte Carlo,
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Introduction
Zuckerkandl and Pauling (1962) were the first to propose a
model describing sequence evolution. Their clock hypothe-
sis for molecular evolution argues that nucleotide or amino
acid sequences accumulate substitutions at a constant rate
over time and predicts that the amount of divergence from
a common ancestor should be equal among the species de-
scended from that ancestor. This prediction can be tested.
In fact, a large number of tests of the molecular clock
hypothesis have been proposed. Many test for the equality
of rates using only three sequences (relative rates tests, see
Muse and Weir 1992; Tajima 1993; Gaut and Weir 1994),
whereas others use all the sequences in an alignment (e.g.,
Felsenstein 1981; Suchard et al. 2001). The molecular clock,
besides providing a compelling null hypothesis describing
sequence evolution, is potentially useful because it allows
biologists to date ancient speciation events on the tree
of life. Under the molecular clock model, if one assumes
a prior rate of substitution (perhaps inferred using fossil
information), the divergence time between two species
can be calculated using basic algebra by simply estimating
the number of substitutions that occurred during the
evolution between the two sequences. The simplicity and
usefulness of the molecular clock hypothesis make it an
appealing model of sequence divergence. Unfortunately,
models enforcing a molecular clock are often rejected when
they are fit to observed sequence data.

The fact that the molecular clock hypothesis does not
hold for most alignments of nucleotide or amino acid
sequences has not hindered the field of phylogenetics. The
usual method for accounting for nonconstancy of rates
on a phylogenetic tree is to allow rates of substitution to

change on the tree in a completely unconstrained manner.
Specifically, the expected number of substitutions per site,
ν , along a branch is treated as an independent parameter in
the evolutionary model. The branch length is the product of
the rate of substitution (r) and the length of the branch in
time units (t): ν = rt. Although this solution has allowed
evolutionary biologists to make progress on resolving the
phylogenetic relationships among species, it does not allow
one to date the speciation events on the tree of life. Even if
the branch length can be estimated without error, we can-
not separate the effects of rate and time because for any
possible rate, one can find a time that fits the branch length
perfectly (t = ν/r).

An alternative method for accommodating violation
of the clock assumption is to construct a model of rate
evolution that occupies a middle ground between the strict
molecular clock model and the unconstrained model. These
“relaxed molecular clock” models allow rates to vary over
time, but in a constrained manner such that divergence
times on the tree can be estimated. Models that attempt to
describe how substitution rates change over evolutionary
time share a common problem: How can one adequately
model rate change? Modeling substitution rate change
would appear to be in the domain of population genetics.
Population genetics theory can describe the mutation
and fixation (i.e., substitution) process as a function of
population size, mutation rate, the distribution of selection
coefficients for new mutations, etc. Unfortunately, the
information needed to parameterize a population genetics
model of substitution rate change is typically unavailable
in the context of phylogenetic analyses. Instead, biologists
have developed descriptive models, which do not contain
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population genetic parameters (for a detailed review, see
Thorne and Kishino 2005).

The nonparametric rate smoothing method described
by Sanderson (1997) was among the first approaches for
estimating divergence times while accounting for lineage-
specific rate variation (also see Sanderson 2002). Shortly
thereafter, Thorne et al. (1998) presented an innovative
model for relaxing the molecular clock, which assumes that
rates of descendant lineages of a phylogenetic tree are sim-
ilar to the rate of substitution of the ancestor: Specifically,
the descendant rates are lognormally distributed, with the
mean equal to the ancestor’s rate (also see Kishino et al.
2001). Their work stimulated further research on the appli-
cation of relaxed-clock models in a probabilistic framework,
and several other models have since been proposed (e.g.,
Huelsenbeck et al. 2000; Drummond et al. 2006; Lepage et al.
2006; Rannala and Yang 2007). Local molecular clock (LMC)
models that cluster the branches on a phylogenetic tree by
rate are of particular interest to this study (Hasegawa et al.
1989; Kishino and Hasegawa 1990; Yoder and Yang 2000;
Yang and Yoder 2003; Drummond and Suchard 2010).
Until recently, most approaches to estimating divergence
times while assuming an LMC model required a priori
specification of the number and locations of rate changes
and were thus impractical for data sets containing large
numbers of sequences. Drummond and Suchard (2010)
introduced a Bayesian method that overcomes previous
challenges to inference under local clock models. They use
Bayesian stochastic search variable selection to efficiently
sample over a broad range of possible “random local clocks”
under the assumption that subclades within a tree share
the same rate.

We describe a method for relaxing the molecular clock
that treats the number of distinct rates of evolution and the
assignment of these rates to branches of a phylogenetic tree
as random variables. Branch-specific substitution rates are
modeled using a Dirichlet process prior (DPP), under which
lineages are assigned to rate classes and branches sharing
the same rate are not required to be adjacent to one an-
other. The method can estimate divergence times when the
rates of evolution vary, and it can potentially identify “lo-
cal clocks” or distantly related branches with equivalent (or
nearly equivalent) rates. Like other relaxed-clock models,
our method does not attempt to explicitly model how rates
change in a species over time. Rather, the model is a descrip-
tive one, placing a prior distribution on the number of rate
classes on the tree. Importantly, we show that the method
is computationally tractable and provides robust inference
of species divergence times.

Model and Implementation
We are interested in the common situation, in which the bi-
ologist has sequenced and then aligned orthologous DNA
sequences for N species. We assume that the N species are
related to one another by a rooted phylogenetic tree, τ ,
which is considered to be known. The tips of this tree are
labeled 1, . . . , N. The interior nodes of the tree are labeled

N + 1, . . . , 2N − 1 in postorder sequence, with the root la-
beled 2N−1. The ancestor of any nonroot node i is denoted
σ(i). The age of the ith node, in units of millions of years, is
denoted ai. The time duration of the ith branch can be cal-
culated from the ages as ti = aσ(i) − ai.

We are interested in estimating the divergence times
(aN+1, . . . , a2N−1) on the phylogenetic tree in a Bayesian
framework. Our goal was to calculate the joint prob-
ability density of the divergence times conditioned on
the observed sequence data. To do this, we introduce
additional parameters to our phylogenetic model that
are part of a general time reversible (GTR) Markov
model that describes how nucleotide substitutions oc-
cur along the branches of the tree (Tavaré 1986). The
GTR model has six “exchangeability” parameters that al-
low the relative rate of substitution to differ between nu-
cleotides (θAC, θAG, θAT, θCG, θCT, θGT) and four parameters
(πA, πC, πG, πT) that allow the frequencies of the four nu-
cleotides to differ in the sequences. The rate of substitution
along the ith branch of the phylogenetic tree is denoted as
ri. The expected number of nucleotide substitutions that oc-
cur along the ith branch of the tree is the product of the sub-
stitution rate and the duration of the branch (νi = riti). We
allow rates to vary across sites in the alignment by consider-
ing the rate at a site to be a random variable drawn from a
mean-one gamma distribution with shape parameter γ and
a scale parameter equal to 1/γ (Yang 1993, 1994). Thus, site-
specific rates are assumed to follow a gamma distribution
with a mean equal to 1. This model of among-site rate varia-
tion combined with the continuous-time Markov model on
nucleotide substitutions corresponds to the GTR + Γ model
of sequence evolution.

Our phylogenetic model, then, has the following
parameters:

τ Rooted tree relating N
species (assumed to be
known)

(θAC, θAG, θAT, θCG, θCT, θGT) GTR exchangeability
parameters

(πA, πC, πG, πT) GTR stationary frequen-
cies

γ Shape parameter of
mean-one gamma on
site rates

aN+1, . . . , a2N−1 Ages of interior nodes of
tree

r1, . . . , r2N−2 Substitution rates for
branches of tree.

In our analyses, we assigned the following priors to the
parameters of the phylogenetic model, assuming a known
(fixed) rooted tree topology (τ ):

(θAC, θAG, θAT, θCG, θCT, θGT) ∼ Flat Dirichlet prob-
ability distribution

(πA, πC, πG, πT) ∼ Flat Dirichlet prob-
ability distribution

γ ∼ Exponential(2)
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aN+1, . . . , a2N−1 ∼ Birth–death process
prior, BD(λ, μ)

r1, . . . , r2N−2 ∼ DPP(α, G0).

The priors assigned to the parameters of the model of se-
quence evolution (GTR + Γ: including the exchangeability
parameters, stationary frequencies, and the γ-shape param-
eter of the mean-one gamma distribution on among-site
rate variation) are commonly employed priors in Bayesian
phylogenetic analyses; we focus our attention on prior den-
sities directly involved in estimating divergence times.

Birth–Death Prior on Node Ages
For this study, we assume node ages are distributed ac-
cording to a birth–death process (Yule 1924; Kendall 1948;
Yang and Rannala 1997) by applying the conditioned re-
constructed process described by Gernhard (2008). This
stochastic process models lineage diversification under a
constant rate of speciation (λ) and a constant rate of extinc-
tion (μ) while assuming complete sampling of extant taxa.
We treat the speciation and extinction rates as random vari-
ables, assigning a hyperprior to the net diversification rate
(λ − μ) and the relative extinction rate (μ/λ), following
Yang and Rannala (1997) and Gernhard (2008). Specifically,
we assume

λ − μ ∼ Uniform(0,∞)
μ/λ ∼ Uniform(0,1).

The birth–death process provides an appealing alternative
to more general prior distributions on node ages, such as
the flat Dirichlet (Kishino et al. 2001) or uniform (Lepage
et al. 2007) priors, because it explicitly models lineage speci-
ation and extinction (Yule 1924; Kendall 1948; Rannala and
Yang 1996). However, work by Lepage et al. (2007) indicates
that age estimates are sensitive to node time prior distribu-
tions and application of such priors should be conducted
judiciously.

DPP on Branch Rates
The Dirichlet process is a stochastic process under which
data elements are assumed to be clustered into distinct
parameter classes (Ferguson 1973; Antoniak 1974). In phy-
logenetics, this model has recently been developed for
modeling heterogeneity in the rate of amino acid replace-
ment (Lartillot and Philippe 2004), among-site variation in
the rates of nonsynonymous substitutions (Huelsenbeck
et al. 2006), the distribution of concordant gene trees (Ané
et al. 2007), and substitution rate variation across sites
(Huelsenbeck and Suchard 2007). In the context of diver-
gence time estimation, we use the DPP to model lineage-
specific substitution rates by assigning branches to rate
categories. Under this model, the substitution rate associ-
ated with each category is drawn from a single parametric
distribution (G0) and partitioning of branches into specific
rate categories is controlled by the concentration parame-
ter (α). Here, we specify G0 such that the rate value for each
class is drawn from a gamma distribution with constant
values for the shape (sG0 ) and scale (βG0 ) parameters. The
number of rate categories (k) and the number of branches

assigned to each category both depend on the concentra-
tion parameter. The prior probability of a given number of
substitution rate classes is conditional on the concentration
parameter and the number of branches:

Pr(k | α, 2N − 2) =
c(2N − 2, k) αk

2n−2∏

i=1
(α + i − 1)

,

where c( ∙ , ∙ ) is the Stirling number of the first kind. Small
values of α lead to fewer categories and greater homogene-
ity of branch rates, whereas large values indicate increased
partitioning. Thus, under the DPP, the rate values across all
branches, (r1, . . . , r2N−2), are dependent on α and G0, and
the prior probability that any two branches share the same
substitution rate is simply

Pr(ri = rj | α) =
1

1 + α
.

The global molecular clock (GMC) model (k = 1) and inde-
pendent rates model (k = 2N− 2) are both special cases of
rate category partitions that can arise under a DPP. The cal-
culation of the prior probability of a given number of rate
categories is useful for model comparison using Bayes fac-
tors. The Bayes factor in favor of one model (k1) versus an
alternative model (k2) can be computed by dividing the pos-
terior odds (for a given set of data, X) by the prior odds (Kass
and Raftery 1995):

BF(k1, k2) =
Pr(k1 | X, α, 2N − 2)
Pr(k2 | X, α, 2N − 2)

÷
Pr(k1 | α, 2N − 2)
Pr(k2 | α, 2N − 2)

.

Thus, under the DPP on lineage-specific substitution rates,
Bayes factors can be used to compare the relative support
for two different values of k or to evaluate the evidence in
favor of the GMC (k = 1) or the independent rates model
(k = 2N − 2). Additionally, Bayes factors can be calculated
to assess the support for two branches sharing the same rate
(Huelsenbeck and Andolfatto 2007):

BF(ri = rj, ri 6= rj) =
Pr(ri = rj | X)

1 − Pr(ri = rj | X)
× α.

When applying the Dirichlet process model to any problem,
consideration must be given to the value of the concen-
tration parameter (α). A hierarchical Bayesian approach
provides a means for accommodating uncertainty in the
value of α (Escobar and West 1995; Dorazio 2009), and
this is accomplished by placing a second-order prior dis-
tribution, or “hyperprior,” on this prior parameter. Escobar
and West (1995) specify a gamma-distributed hyperprior
on α, which leads to full conditional distributions that
can be easily sampled using Gibbs sampling. Following
their example, we assume that α ∼ Gamma(sα, βα),
where sα and βα are the shape and scale parameters of the
gamma distribution, respectively, such that the expected
value of the concentration parameter is: E(α) = sαβα.
We parameterize the hyperprior on α by first specifying a
prior mean number of rate categories, which leads to an
approximation of E(α) based on

E(k | α, 2N − 2) =
2N−2∑

i=1

α

α + i − 1
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(Liu 1996; McAuliffe et al. 2006; Jara et al. 2007). Thus,
the gamma-distributed hyperprior on the concentration
parameter is parameterized when provided with a shape
parameter value (sα) and a prior mean number of rate
categories for a given data set. This hierarchical approach
frees the user from the responsibility of specifying a precise
value for α, while accounting for uncertainty in the degree
of clustering. Moreover, a variety of studies applying the
gamma hyperprior have shown that data are typically very
informative about the value of the concentration param-
eter and the number of parameter categories (West et al.
1994; Escobar and West 1995; Gelfand et al. 2005; Dorazio
2009). Analyses under the Dirichlet process model can also
be sensitive to the characterization of the base distribution
parameter (McAuliffe et al. 2006), and it is possible to
place additional hyperpriors on the parameters of G0 (Teh
et al. 2006). However, this approach requires some further
investigation into appropriate hierarchical models and can
be computationally complex; therefore, we did not apply
hyperprior distributions to G0 in the present study.

The DPP on lineage-specific substitution rates and
the birth–death prior on speciation times were imple-
mented in the C++ program DPPDiv, available at http://
cteg. berkeley. edu/software.html. In this program, the
likelihood is calculated using the sum product algorithm
(Gallager 1962, 1963; Felsenstein 1981). We use Markov
chain Monte Carlo (MCMC) sampling to approximate the
posterior distributions of the various parameters and hy-
perparameters (Metropolis et al. 1953; Hastings 1970) and
obtain estimates of branch rates and divergence times. The
proposal mechanism for updating the lineage-specific sub-
stitution rates under the DPP is Algorithm 8 described by
Neal (2000) and implemented in other phylogenetic meth-
ods employing this prior (Huelsenbeck and Suchard 2007).
This approach uses Gibbs sampling to update the rate
class assignments for each branch by evaluating the relative
probabilities of all possible reassignments to existing classes
and to placement in new auxiliary classes (Neal 2000). The
number of auxiliary categories is fixed at four in this imple-
mentation to mitigate the computational burden of each
Dirichlet process update while still adequately searching
parameter space. An additional update is performed to
propose changes to the rate values associated with every ex-
isting category using a rate multiplier.

The program was tested for correctness by performing
numerous analyses on “empty” data sets so that the Markov
chains sampled only from prior distributions. Distributions
of MCMC samples obtained from these runs were exam-
ined in the program Tracer v1.5 (Rambaut and Drummond
2009), and the mean values of the various parameters were
compared with expected values.

Materials and Methods
We evaluated the performance of Bayesian estimation of
divergence times under the DPP on lineage-specific sub-
stitution rates by analyzing a previously published align-
ment of nucleotide sequences and using simulated data. We

FIG. 1. An example of substitution rate models for a single simu-
lation replicate. A birth–death tree was used to generate branch
lengths in units of substitutions/site under six different models: the
global molecular clock (GMC), local molecular clock (LMC), com-
pound Poisson process model (CPP), log-normally distributed auto-
correlated rates (AR-LN), gamma-distributed uncorrelated rates (IR-
G), and the Dirichlet process model (DPPR). Note that the global
clock tree (GMC) is proportional to the simulation tree, although the
branches are scaled by the clock rate.

compared the accuracy and power of node time and branch
rate estimates under the DPP with two alternative priors
(both special cases of the Dirichlet process model): the GMC
and gamma-distributed independent rates (IR-G).

Simulations: Data Generation
We simulated 100 ultrametric phylogenetic trees with
branching times under a constant-rate birth–death process
(Kendall 1948). These trees were generated using a general
sampling approach described in Hartmann et al. (2010) and
Stadler (2011) with a speciation rate equal to 0.01 and an ex-
tinction rate of 0.009. For each simulated birth–death tree,
we produced six molecular data sets under different models
of substitution rate variation. Lineage-specific substitution
rates were applied to each simulated tree producing model
phylogenies for generating nucleotide alignments such that
the branch lengths were in units of expected number of sub-
stitutions per site (fig. 1). In all six trees, the rate of sub-
stitution at the root of the tree was drawn from a gamma
distribution with a shape parameter equal to 2.0 and an in-
verse scale parameter of 4.0, so that the expected rate is
equal to 0.5: r2N−1 ∼ Gamma(2, 1/4).

Global Molecular Clock
Under a GMC, all branches share the same substitution rate
(Zuckerkandl and Pauling 1962). Branch lengths were sim-
ply the product of the rate at the root (r2N−1) and the
branch time, resulting in trees with an average total tree
length (the sum of all branch lengths) of 2.023 expected
substitutions/site (fig. 1: GMC).

Local Molecular Clocks
An LMC model assumes that adjacent lineages are more
likely to share the same substitution rate, and rate shifts oc-
cur relatively infrequently on the tree (Hasegawa et al. 1989;
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Kishino and Hasegawa 1990; Yoder and Yang 2000; Yang and
Yoder 2003; Drummond and Suchard 2010). We generated
branch rate heterogeneity under this model by traversing
the tree from the root to the tips. At each node, a rate shift
occurred with a probability equal to 0.15. If the event re-
sulted in a rate shift, a new rate was drawn for the lineage
from the initial gamma distribution; otherwise, the rate as-
sociated with the branch was equal to that of the parent
lineage. The 100 trees simulated under this model had an
average total tree length (the sum of all branch lengths) of
2.075 expected substitutions/site (fig. 1: LMC).

Compound Poisson Process
Huelsenbeck et al. (2000) described a complex model of
lineage-specific substitution rate variation, in which rate
changes occur along a branch according to a Poisson
process. At each rate change event, a new rate is obtained
by multiplying the previous rate by a gamma-distributed
random variable. For a given branch, rate change events
were sampled from a Poisson distribution on the time
duration of the branch. We assumed that the expected
number of rate changes along a single path from the root
of the tree to an extant descendant was equal to 2. At each
rate change, a new rate was obtained by multiplying the
preceding rate by a gamma-distributed random number.
Following Huelsenbeck et al. (2000), this gamma distribu-
tion was parameterized such that the expected value of the
logarithm of the rate multiplier is equal to 0. Accordingly,
rate multipliers were sampled from a gamma distribution
with a shape parameter equal to 20 and a scale parameter of
eψ(20), where ψ is the logarithmic derivative of the Gamma
function (Huelsenbeck et al. 2000). The weighted average of
rates along the branch was calculated to obtain the branch
length; trees generated under this model had an average
total tree length of 2.019 expected substitutions/site (fig. 1:
CPP).

Lognormally Distributed Autocorrelated Rates
Change in the rate of substitution occurs gradually over the
tree and closely related lineages have similar rates under the
model presented by Thorne et al. (1998) and Kishino et al.
(2001). At each descendant node, a new rate was drawn
from a lognormal distribution parameterized such that the
expected value of the new rate is equal to the parent rate
and the variance is equal to the product of the time duration
between the two nodes and a variance parameter, which
was fixed to 0.4 (Kishino et al. 2001). The substitution rate
applied to each branch was the average of the beginning and
ending rates and resulted in trees with a significant signal of
rate autocorrelation and an average total tree length equal
to 1.731 expected substitutions/site (fig. 1: AR-LN).

Gamma-Distributed Independent Rates
Lineage-specific rates are uncorrelated when the rate as-
signed to each branch is independently drawn from an
underlying distribution. This model was first described by
Drummond et al. (2006), and variants of the uncorre-
lated rates model are commonly used for divergence time

estimation in the program BEAST (Drummond and Ram-
baut 2007). For our simulations, the rates associated
with each branch were drawn from the distribution
Gamma(2, 1/4) and produced a set of trees with an average
total tree length of 1.925 expected substitutions/site (fig. 1:
IR-G).

Dirichlet Process Prior Rates
Under this model, rate values are assigned to lineages of
the tree according to the DPP model (Ferguson 1973; Anto-
niak 1974). Simulation under the Dirichlet process was per-
formed by selecting the first branch and assigning it to a new
rate category. Subsequent branches on the tree were placed
in an existing category with a probability proportional to
the number of branches already present in that category
or assigned to a new rate category with a probability pro-
portional to the Dirichlet process concentration parameter
(α = 1.28). The value of α chosen for these simulations
leads to approximately four branch rate categories for a tree
with 10 taxa (for our simulations, the median was 4, rang-
ing between 2 and 6 rate classes). The rate value assigned
to each category was drawn from Gamma(2, 1/4). Lineage-
specific rates generated under this model are not autocor-
related and distantly related branches can share the same
substitution rate. Under the Dirichlet process model (DPP-
R) model, the 100 trees had an average total tree length of
1.932 expected substitutions/site (fig. 1: DPP-R).

Each tree simulated under the birth–death process was
used to create six different phylograms using the models
of substitution rate variation described above. With the
600 model phylogenies, we simulated DNA sequence align-
ments, each with 2,000 nucleotides, under the GTR + Γ
model of sequence evolution (Tavaré 1986; Yang 1994) us-
ing the program Seq-Gen (Rambaut and Grassly 1997). The
parameter values for the GTR + Γ model (including the
exchangeability parameters, stationary frequencies, and
the γ-shape parameter of the mean-one gamma distribu-
tion on among-site rate variation) were drawn from the
following distributions for each data set simulation:

(θAC, θAG, θAT, θCG, θCT, θGT) ∼ Dirichlet(2, 2, 2, 2,
2, 2)

(πA, πC, πG, πT) ∼ Dirichlet(5, 5, 5, 5)
γ ∼ Gamma(8, 1/16).

Simulations: Analysis
We analyzed each of the 600 simulated data sets (100
replicate tree topologies × 6 rate models) under three
different prior models on lineage-specific substitution rate
variation: the DPP, the GMC, and independent branch
rates. For each analysis, we assumed the GTR + Γ model
of sequence evolution (the true model) and a birth–death
prior on the branching times. All analyses were run for 2
million iterations, sampling every 100 steps. To rule out
possible effects resulting from uncertainty in estimating
phylogenetic relationships, we fixed the topology to that
of the true tree for every run. We evaluated the perfor-
mance of priors on lineage-specific substitution rates in the
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absence of node calibrations, thus, all divergence times are
estimated relative to the age of the root.

In our implementation of Bayesian divergence time
estimation, a gamma distribution is used as a prior on
lineage-specific substitution rates. For the three types of
analyses performed in this study, we fixed the parameters
of this prior distribution to match the distribution used
throughout our simulations: Gamma(2, 1/4). Specifically,
this distribution is applied as a prior on the single rate un-
der the GMC, on individual branch rates under the inde-
pendent rates model, and on the category-specific rates
in the DPP model (G0). The analyses conducted using the
DPP used a gamma-distributed hyperprior on the concen-
tration parameter with a mean value of 1.9305 and a vari-
ance of 1.8634 (which leads to a prior mean number of rate
categories of 5).

Given that our study design involved 600 simulated data
sets and thousands of estimated parameters, it was not fea-
sible to assess convergence of all MCMC analyses, and it is
possible that some of the runs failed to reach convergence.
Nevertheless, since these models are compared under
identical implementations, the results of our analyses can
improve our understanding of the relative performance of
the three models.

Simulations: Accuracy Assessment
Analyses of simulated data provide straightforward ways
to assess the performance and power of Bayesian inference
methods. Statistics for every parameter sampled over the
course of the MCMC run can be calculated and compared
with the true simulated values. Specifically, we calculated
the mean and median for the height of each node and each
branch rate estimated in our analyses using the tools avail-
able in DendroPy (Sukumaran and Holder 2010). Addition-
ally, we approximated the 95% highest posterior density
interval by computing the 95% credible interval (CI) for each
MCMC sample. We evaluated the accuracy of node height
and rate estimates by computing coverage. The coverage
probability for a method is the proportion of replicates for
which the 95% CIs contain the true values. Coverage prob-
abilities can be computed across several nodes within a
single analysis or across simulation replicates. For our sim-
ulations, we computed coverage probabilities for node
heights and branch rates under each of our priors on sub-
stitution rate variation. Analyses with coverage probabili-
ties approximately equal to 0.95 are considered unbiased
and robust estimators. Additionally, for each estimate of
branch rate, we calculated the percentage error to quantify
accuracy:

% Error =
|r̂i − ri|

ri
× 100%,

where the absolute difference of the estimated (r̂i) and true
(ri) rates for a given branch (i) is divided by the true branch
rate and multiplied by 100%. Some estimators can sacrifice
power for accuracy, however. Thus, we measured the power
of an estimate by calculating the widths of the 95% CIs. Large
95% CIs indicate reduced power.

Analysis of Biological Data
We applied the DPP on lineage-specific substitution rate
variation to an empirical alignment of two mitochondrial
genes (cytochrome-b and cytochrome oxidase subunit II)
presented in a paper by Yang and Yoder (2003, TreeBASE
study ID S1021). This data set includes sequences for several
primate species with a specific emphasis on “cute-looking”
mouse lemurs in the genus Microcebus. Additionally, this
alignment contains several sequences outside of Primates as
outgroups. In their study, Yang and Yoder (2003) applied a
maximum likelihood method with a priori-specified LMCs
and a Bayesian method that assumed log-normally dis-
tributed autocorrelated rates (AR-LN) (Thorne et al. 1998;
Kishino et al. 2001; Thorne and Kishino 2002) to estimate
divergence times for this group. Based on unconstrained
branch length estimates, three substitution rate categories
were identified and placed on the Simiiformes clade (repre-
sented in this data set by Callithrix, Macaca, Pongo, Gorilla,
Pan, and Homo), the Microcebus clade, and the remaining
lineages, respectively, for analyses assuming LMCs (Yang and
Yoder 2003).

Using the topology and upper and lower bounds on
calibrated nodes presented in Yang and Yoder (2003), we
estimated branch-specific rates and divergence times under
the DPP for these data. We parameterized the gamma-
distributed hyperprior on α by setting specific values for
the prior mean number of rate categories (6.0) and the
shape parameter (sα = 2.0), so that the expected value
of the concentration parameter was equal to 1.396, with
a variance of 0.974 (βα = 0.698). Unlike the analyses of
Yang and Yoder (2003), which employed the Jukes–Cantor
(Jukes and Cantor 1969) or F84 + Γ (Hasegawa et al. 1985;
Felsenstein 1993; Yang 1994) models of sequence evolution,
we assumed a GTR + Γ model for this study. Uniform
distributions with soft bounds were used as priors on
fossil-calibrated nodes (Yang and Rannala 2006). We ran six
independent and identical MCMC chains, each for 3 million
iterations. The last 1 million samples from each run were
combined after convergence was assessed by evaluating
the marginal distributions and effective sample sizes of
relevant parameters in the program Tracer v1.5 (Rambaut
and Drummond 2009).

In order to evaluate the strength of support for the GMC
or independent rates models, we ran two separate analyses,
one with α fixed to 0.002 (which leads to approximately
1 expected rate category) and another with α set to 240.7
(approximately 59 expected rate categories). Moreover,
sensitivity to the hyperprior distribution on the Dirichlet
process concentration parameter was evaluated by con-
ducting additional runs with different expected values of α.
Each analysis applied a gamma-distributed hyperprior on α
with a shape parameter equal to 2.0, and the scale param-
eter was manipulated so that the expected value of alpha,
E(α), was equal to 0.476, 1.396, 9.184, or 240.7. Each of
these values respectively corresponds to an (approximate)
expected number of substitution rate categories (k): 3, 5, 18,
and 59, covering a wide range of values for α. Comparisons
of the marginal densities of prior and posterior samples of
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FIG. 2. The posterior mean lineage-specific rates estimated under the DPP model compared with the true branch rates for data sets with substi-
tution rates generated under different models of among-lineage rate variation: (a) the GMC, (b) LMCs, (c) the CPP, (d) AR-LN, (e) IR-G, and (f)
uncorrelated rates generated under the Dirichlet process. Each point represents a single mean branch rate estimate across all simulation replicates.
The solid line indicates the line of equality.

k were evaluated to determine if the data are informative
about the value of α and the number of rate categories.

Results and Discussion

Simulations
Estimates of branch-specific rates under the DPP are com-
pared with the true branch rates in figure 2. These results
show that as variation in the rate of substitution over the
tree increases, the variation in the error of branch rate esti-
mates also increases (fig. 2). However, on average, estimates
of branch-specific substitution rates are accurate and unbi-
ased under the DPP.

For each of the three different types of analyses, we cal-
culated the coverage probability for branch-specific substi-
tution rate estimates across all replicates for the six different
rate variation models used for simulation (table 1). Analyses
assuming either a DPP or independent rates relaxed-clock

models produced estimates of branch rates with high cov-
erage probabilities for all simulation treatments compared
with strict clock analyses (table 1). When variation in
lineage-specific substitution rate is introduced, analyses em-
ploying a GMC result in a high proportion of branches, in
which the true rate is not contained within the 95% CI. Pre-
dictably, both the DPP and the independent rates model re-
turned high coverage for rate estimates when the simulation
model matched that of the analysis model (DPP-R/DPP and
IR-G/independent rates, respectively).

Table 1 also shows that the coverage probabilities for
branch rate estimates are somewhat higher for analyses as-
suming an independent rates model when data are simu-
lated under the compound Poisson process model (CPP)
or AR-LN. However, when examining the percent error of
branch rate estimates for our simulations (fig. 3), we found
that the estimates produced by the independent rates
model are less accurate, on average, than rate estimates
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Table 1. The Coverage Probabilities for Branch Rate Estimates Across All Simulation Replicates.

Rate Variation Independent Global
Simulation Model DPP Rates Clock
Global molecular clock (GMC) 0.9878 0.9633 0.9200
Local molecular clocks (LMC) 0.9078 0.9078 0.3978
Compound Poisson process (CPP) 0.8067 0.8611 0.3178
Autocorrelated log-normal (AR-LN) 0.8006 0.8444 0.2572
Gamma-distributed independent rates (IR-G) 0.8739 0.9389 0.1256
Dirichlet process prior rates (DPP-R) 0.9117 0.9078 0.2917

under the Dirichlet process or global clock models for all
simulation models except for IR-G. This discrepancy is due
to the fact that analyses under our implementation of
the independent rates model result in branch rate esti-
mates with very large 95% CIs compared with those pro-
duced by the DPP or global clock analyses (fig. 4). In
figure 4, we binned the true branch rates across all simula-
tion replicates, so that each bin contained 200 values. For
each bin, we calculated the average 95% CI size for each
of the three different rate variation priors. This figure il-
lustrates the relatively low power of the independent rates
model. Furthermore, figure 4 demonstrates the flexibility of
the DPP on lineage-specific substitution rates. This model
behaves similarly to the global clock model when the data
are simulated under a single rate, and conversely, it per-
forms comparably with the independent rates model when
data are generated under uncorrelated substitution rates.
It is important to note that the precision of the indepen-
dent rates model can be improved if the underlying gamma
distribution has low variance, provided the prior is unbi-
ased. Alternately, a hyperprior applied to the parameters
of the gamma distribution from which rates are indepen-
dently drawn can improve the power of estimates under
this model, an approach, although not implemented here,
that can be applied to variants of the independent rates
model available in current versions of the program BEAST

FIG. 3. The percentage error calculated for branch rate estimates un-
der the DPP (gray), the GMC (white), and the independent rates
model (cross-hatched). Box plots indicate each sample minimum,
lower quartile, median, upper quartile, and sample maximum of the
percentage error in branch rate estimates across all simulation repli-
cates for each model of substitution rate variation: the GMC, LMC,
CPP, AR-LN, IR-G, and DPP-R.

(Drummond and Rambaut 2007). Moreover, in cases in
which the rate distribution is unknown, it may be best to ap-
ply a model averaging approach, where branch rates are es-
timated under a set of different models (Li and Drummond
2011).

A somewhat different pattern emerges upon evaluation
of the coverage probabilities for node height estimates
(table 2). We found that node height estimates under the
DPP resulted in higher coverage probabilities, compared
with the two alternative priors, for all but one of our sim-
ulation models. For data simulated under uncorrelated IR-
G, the analyses employing the independent rates model out
performed the DPP (table 2). These results were examined
further by comparing coverage probabilities for node height
estimates to the true relative node ages (fig. 5). For each
of the three different analyses, we binned the true relative
node heights so that each contained 100 nodes, then com-
puted the coverage probability for each bin. These results
show that the true node height was most often contained by
the 95% CI for very young nodes (fig. 5). This effect is particu-
larly evident for analyses under the global clock model. With
the exception of data generated under the IR-G model, as-
suming a DPP on substitution rate variation provided node
age estimates with greater coverage relative to the indepen-
dent rates model. Moreover, this effect was not a result of
larger 95% CIs (fig. 6). In figure 6, we compare the sizes of
the 95% CIs with the true relative node heights. We observed
that, for each of the six different simulation models, analy-
ses under the independent rates model produce larger 95%
CIs for node height estimates compared with analyses un-
der the Dirichlet process (fig. 6). Thus, the greater cover-
age probabilities for the Dirichlet process prior observed in
table 2 and figure 5 are not coupled with a reduction in
power compared the independent rates model.

Overall, we found that divergence time estimation un-
der the DPP results in reliable estimates of branch rate and
node age compared with the independent rates and global
clock models across a range of different simulation mod-
els for substitution rate variation. Additionally, when the
data were simulated under models that generated distinct
rate classes, specifically the LMC and DPP-R models, anal-
yses under the DPP accurately identified the true num-
ber of rate categories, with coverage probabilities of 0.94
and 0.97, respectively. Furthermore, inference under the
DPP provides a way to summarize the estimates of branch
rate and identify latent rate classes that may be present
in the data. Huelsenbeck and Andolfatto (2007) describe
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FIG. 4. The sizes of branch rate 95% CIs from analyses under the DPP (•), GMC (�), and independent rates models (×) plotted against the true
branch rates. Analyses were performed on data sets with substitution rate variation generated under six different models: ( a) the GMC, (b) LMCs,
(c) the CPP, (d) AR-LN, (e) IR-G, and (f) uncorrelated rates generated under the Dirichlet process. For each comparison, the true branch-specific
rates were binned, so that each bin contained 100 rate values and the average 95% CI range was calculated for each bin.

a number of approaches to summarizing MCMC samples
from analyses assuming a DPP. One such method identi-
fies amean partitioning strategy that involves calculating
partition distances (Gusfield 2002). In the context of diver-
gence time estimation, this is done by identifying the set of

branch partitions that minimizes the squared distance to all
the partition sets in the MCMC sample. Figure 7 illustrates
this using a single replicate from the simulations under
the LMC model. The true tree with branch lengths pro-
portional to the expected number of substitutions per site

Table 2. The Coverage Probabilities for Node Height Estimates across All Simulation Replicates.

Rate Variation Independent Global
Simulation Model DPP Rates Clock

GMC 0.9888 0.9513 0.9650
LMC 0.8812 0.8400 0.4850
CPP 0.8013 0.7700 0.5038
AR-LN 0.7425 0.6987 0.4363
IR-G 0.8712 0.9537 0.3025
DPP-R 0.9337 0.8337 0.4788
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FIG. 5. The proportion of node height estimates where the true value was sampled within the 95% CI (coverage probability) for analyses assuming
the DPP (•), global clock (�), and IR-G (×) models compared with the true relative node heights. Coverage probabilities are presented for data
generated under each rate variation model: (a) the GMC, (b) LMCs, (c) the CPP, (d) AR-LN, (e) IR-G, and (f) uncorrelated rates generated under
the Dirichlet process. For each comparison, the true node heights were binned, so that each bin contained 100 nodes and the coverage probability
was calculated for each bin.

shows three different rate categories: 0.02 (blue branches),
0.7 (black branches), and 1.2 substitutions/site/time (red
branches; fig. 7a). Divergence time estimation analysis, as-
suming a DPP on among-lineage substitution rate variation,
was conducted on a molecular data set generated on the
tree in figure 7a. The mean partition set was computed af-
ter a burn-in of 1,000,000 iterations. Figure 7b shows a plot
of the mean estimated rate and 95% CI for each branch.
The three different colors indicate the branch rate cate-
gories in the mean partition set identified by the Dirichlet
process analysis: a slow rate (blue lines), a moderate rate
(black lines), and a high rate (red lines). The analysis of this
data set under the DPP correctly identified three latent rate
classes. Our analysis also correctly partitioned all but one of
the branches (branch number 3) into their respective rate

categories. The single incorrect assignment was a partic-
ularly short branch and the 95% CI overlaps with rate
estimates for both the moderate and high rate categories,
indicating uncertainty in the rate estimate for this branch.
In spite of the misassignment of this branch, the analysis
provided accurate age estimates for both nodes subtend-
ing it (fig. 7c). The branch lengths in the tree in figure 7c
display the mean branch times estimated under the DPP,
with the gray bars representing the 95% CIs for the age of
each node and the yellow rectangles indicate the true rel-
ative node ages. This example illustrates the capacity of di-
vergence time estimation under the DPP to produce reliable
estimates of speciation times. Moreover, this method pro-
vides a unique way to summarize the analysis and identify
LMCs or latent rate classes.
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FIG. 6. The sizes of node height 95% CIs produced by analyses under the DPP (•), global clock (�), and IR-G (×) models compared with the true
relative node heights. Analyses were performed on data sets with substitution rate variation generated under six different models: ( a) the GMC,
(b) LMCs, (c) the CPP, (d) AR-LN, (e) IR-G, and (f) uncorrelated rates generated under the Dirichlet process. For each comparison, the true node
heights were binned, so that each bin contained 100 nodes and the average 95% CI width was calculated for each bin.

The model we have presented is similar to the random-
local clock (RLC) model of Drummond and Suchard
(2010). The RLC model identifies rate changes over the
tree and treats these events as random variables. One
marked correspondence with the Dirichlet process model
described here is that the GMC (0 rate changes) and
the independent rates (2N − 2 rate changes) models
are nested within the RLC model. The DPP departs from
the RLC model in that it clusters branches without re-
gard to their position in the tree. This flexibility allows for
identifying both LMCs and branch rate clusters that do
not correspond to the topological structure of the data.
The RLC model may, however, have comparable perfor-
mance to the Dirichlet process model since it can ap-
proximate this pattern by proposing multiple rate shifts
on the tree. Yet, we did not include this model in our

comparisons since its current implementation (in BEAST
v1.6; Drummond and Rambaut 2007) can induce long mix-
ing times for some data sets (Drummond and Suchard 2010;
Dornburg et al. 2011).

Biological Data
Consistent with the results of Yang and Yoder (2003), our
analyses do not provide support for the strict molecular
clock for the primate sequence data. When the concentra-
tion parameter was fixed to a very low value (0.002), Bayes
factor analyses showed very strong support for values of k
greater than 2. However, the Bayes factor in support of the
single-rate model could not be calculated using the ratio
of posterior odds to prior odds because k = 1 was never
sampled by the MCMC algorithm after the initial burn-in.
Likewise, when α was fixed to an extremely high value
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FIG. 7. An example of the results yielded from divergence time
analysis under the DPP. (a) The true tree topology and branch
lengths used to simulate the data set, with branch rates generated
under a local clock model. The branches are colored according to
their rate (black: 0.7; blue: 0.02; and red:1.2 substitutions/site/time).
Terminal branches/taxa are labeled with letters (A–B) and internal
branches/nodes are labeled with numbers (1–8). (b) The estimates of
lineage-specific substitution rate (in units of substitutions/site/time)
under the Dirichlet process model. Each estimate is labeled according
to its corresponding branch in the tree (a) and colored according

(240.7), values of k less than 68 were strongly supported by
Bayes factors because partition sets with greater than 63
rate categories were never sampled. Although the results
indicate strong support for the presence of lineage-specific
substitution rate clusters in these data, Bayes factor analysis
using marginal likelihoods would bolster these conclusions.
The marginal likelihood is used to quantify the fit of a partic-
ular model to the data, and the Bayes factor is the ratio of the
marginal likelihoods for two competing models. Recently in-
troduced methods for approximating marginal likelihoods
have made an important contribution to Bayesian hypoth-
esis testing in phylogenetics (Lartillot and Philippe 2006; Fan
et al. 2010; Xie et al. 2011). In their investigation of the diver-
sification of the Hymenoptera, Ronquist et al. (Forthcom-
ing) used the stepping stone method (Xie et al. 2011) to
perform Bayes factor comparisons of three different relaxed-
clock models: the independent gamma rates model also
called the “white noise” model by Lepage et al. (2007), the
CPP model (Huelsenbeck et al. 2000), and the AR-LN model
(Thorne and Kishino 2002). They found that, despite signal
for autocorrelation among branch-specific rates, Bayes fac-
tor comparisons favored the independent rates and the
CPP models, which allow for abrupt changes in rates over
the tree. In contrast, Lepage et al. (2007) used thermody-
namic integration (Lartillot and Philippe 2006) to estimate
marginal likelihoods and compute Bayes factors for three
different data sets and showed that autocorrelated models
outperformed uncorrelated models in every case. Although
model comparison methods using Bayes factors provide
powerful statistical tools for evaluating and understanding
the properties of priors employed in phylogenetic analyses,
due to the computational complexity of methods for cal-
culating marginal likelihoods, these analyses were not per-
formed for this study. However, we do believe that further
investigation of the statistical fit of relaxed-clock models to
biological data is an important direction for future work.

We found further support for lineage-specific rate
partitions when comparing estimates of k under different
hyperpriors on the α-concentration parameter. Figure 8
shows the probabilities of different values of k for samples
from both the posterior (dark bars) and prior (light bars)
distributions for each of the four analyses. Under each of
the four different hyperpriors, the median value of k was
3, 5, 18, and 59, respectively. However, when the Markov
chain sampled from the posterior distributions, the median
value of k ranged only from 4 to 9 rate categories across
the four different hyperpriors, indicating strong support
for partitioning of lineages into rate clusters. Moreover,

to the mean partition estimated under the DPP model. True rates for
each branch are indicated with inverted triangles, mean rates sampled
under the DPP model are represented with open circles, and 95% CIs
are shown with lines. (c) The average relative node ages estimated un-
der the DPP model. Gray bars indicate 95% CIs of node heights and
each branch is colored according to the mean partition estimated un-
der the DPP model. Yellow bars represent the true divergence time for
each internal node.
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FIG. 8. The posterior and prior probabilities of the number of rate categories (k) for analyses on a primate data set with different expected values
of the DPP concentration parameter (α). The histograms show the probability of values of k sampled by the MCMC algorithm when sampling
from the posterior distribution (top, dark bars) or from the prior distribution (bottom, light bars). Four separate analyses were conducted, each
with different parameterizations of the gamma-distributed hyperprior on α. The expected values of α are: (a) 0.476, (b) 1.396, (c) 9.184, and (d)
240.67. The median values of k and the 95% CIs are indicated for each E(α).

estimates of divergence times, rates, and branch partitions
were not overtly influenced by the hyperprior on the con-
centration parameter. This prior sensitivity analysis showed
that the data were distinctly informative about the number
of rate clusters and robust to the parameterization of the
hyperprior on α.

Figure 9 displays the phylogenetic relationships of the
primate sequences presented in Yang and Yoder (2003)
with branch lengths proportional to a) the expected
number of substitutions/site estimated under the Dirichlet
process model (νi = riti) and b) the mean estimated
substitution rate for each branch (ri). The branches in
figure 9 are colored according to a) the mean partition
categorization and b) the mean estimated branch rate (ri)
estimated under the Dirichlet process model. Although
our analyses also uncovered three distinct rate categories:
a high rate (fig 9a: red branches), a moderate rate (fig 9a:
black branches), and a low rate (fig 9a: blue branches), the
rate class assignments did not match those of the LMCs

described by Yang and Yoder (2003), which placed the
simians in the highest rate category, Microcebus in the
moderate (or next highest) category, and the remaining
lineages in a lower rate category. Some of the highest
rates were estimated for most of the Simiiformes lineages
(fig. 9b), however, which is consistent with the high rate
assigned to that clade by Yang and Yoder (2003).

In spite of differences between the divergence time anal-
yses conducted by Yang and Yoder (2003) and our study,
we found that the majority of node age estimates resulting
from the Dirichlet process analysis were consistent with the
ages presented in the previous study (fig. 10). The tree in
figure 10 shows the divergence time estimates obtained by
Yang and Yoder (2003) using a maximum likelihood LMC
method with calibrated nodes indicated by white circles.
The gray bars in figure 10 represent the 95% CIs of node
age estimated under the Dirichlet process model presented
here. We show that almost all the 95% CIs estimated using
the DPP overlap with the node ages obtained by Yang
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FIG. 9. Branch rate estimates from an analysis of primate mitochondrial sequences. (a) The topology with branch lengths proportional to the
number of expected substitutions per site with branches colored according to the mean partition estimated under the DPP. ( b) The topology
with branch lengths proportional to the mean rate estimated for each branch and colored according to a gradient where blue indicates the lowest
rate and red indicates the highest. The subclades designated with specific rates by Yang and Yoder (2003) are highlighted with gray boxes. In their
study, the Simiiformes had the highest rate and Microcebus had the next highest rate compared with the remaining lineages.

and Yoder (2003). This correspondence is likely a result
of the low variation in substitution rates across the tree
and the influence of informative priors on fossil-calibrated
nodes.

Conclusions
Accurate estimates of species divergence times are essential
for understanding many aspects of evolutionary biology,
such as historical biogeography, rates of diversification,
and variation in rates of molecular evolution. However,
obtaining reliable divergence time estimates is confounded
by the fact that both the rate of evolution and time affect
sequence divergence in the same way. To tease apart the
rate of substitution and time, we must adopt a model for
the rates of sequence evolution and how these rates change
across a tree. We have presented a flexible model for use
as a prior on lineage-specific substitution rates in Bayesian
divergence time estimation that performs well under a wide
range of conditions. Additionally, MCMC samples under
the DPP can be summarized using partition distances for
identifying lineages that share similar properties.

The Dirichlet process model is not entirely analogous to
a distinct biological model, and its adequacy for modeling
evolutionary processes requires further investigation. In
particular, some analyses under this model may be sensitive

to the parameterization of the base distribution (G0) and
the concentration parameter (Escobar and West 1995;
McAuliffe et al. 2006). Additionally, this nonparametric
model can have a tendency to induce clusters (Dunson
2009), particularly when the concentration parameter (α) is
very small or when there are branches with very similar rates,
thus explaining the lower coverage probabilities of age and
rate estimates under the DPP when data are simulated un-
der the IR-G model, compared with estimates resulting from
analyses assuming an independent rates model. Thus, it is
important to assess and parameterize prior distributions by
sensitivity analysis (McAuliffe et al. 2006), and future work
leading to the development and evaluation of hyperpriors
applied to the parameters of the DPP is required. Moreover,
it seems unlikely that processes of molecular evolution
would agree “exactly” with the Dirichlet process model. For
example, it may be more plausible that the rate of evolution
will be inherited by descendants, and that the rate of se-
quence evolution can change along a lineage anagenetically.
Both these complications may be modeled more naturally
by the CPP model of Huelsenbeck et al. (2000). However,
some evolutionary processes could generate patterns, in
which the rate of evolution changes substantially in at least
one daughter lineage. This might be the case if the effective
population size is a strong determinant of the rate of
substitution (e.g., if relaxed selection in small populations
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FIG. 10. A comparison of divergence times estimated under different methods. The branch lengths are divergence times estimated by the previous
study using a maximum likelihood local clock method (Yang and Yoder 2003). The gray bars show the node age 95% CIs obtained from the
divergence time analysis using the DPP on rate variation presented in this study. White circles indicate nodes calibrated by the fossil age estimates
presented in the original study.

cause the neutral mutation rate to be higher in these
populations). Speciation by the formation of peripheral
isolates could induce such a pattern. Thus, the DPP might
be an effective way to model sequence evolution in a group,
in which there were several widespread species with large
population sizes and several species with very restricted
ranges. Nevertheless, even if the model does not realistically
encapsulate all the complexities of sequence evolution,
the DPP is capable of approximating patterns present in
biological data and lends itself to efficient MCMC imple-
mentations. Furthermore, the model’s ability to handle
cases, in which the changes of rate are not well-described as
a local clock imply that the model can offer an alternative
perspective to many of the relaxed-clock models (e.g., CPP,
local clocks, or autocorrelated rates) that do assume some
form of inheritance of the rate of sequence evolution by
daughter species. The independent rates approaches also
share these advantages, but our simulations indicate that
introducing a new rate parameter for each branch can
result in a noticeable loss of power.
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Tavaré S. 1986. Some probabilistic and statistical problems on the
analysis of DNA sequences. Lectures Math Life Sci. 17:57–86.

Teh YW, Jordan MI, Beal MJ, Blei DM. 2006. Hierarchical Dirichlet pro-
cesses. J Am Stat Assoc. 101:1566–1581.

Thorne J, Kishino H. 2002. Divergence time and evolutionary rate esti-
mation with multilocus data. Syst Biol. 51:689–702.

Thorne JL, Kishino H. 2005. Estimation of divergence times from
molecular sequence data. In: Nielsen R, editor. Statistical methods
in molecular evolution. New York: Springer. p. 235–256.

Thorne J, Kishino H, Painter IS. 1998. Estimating the rate of evolution
of the rate of molecular evolution. Mol Biol Evol. 15:1647–1657.

West M, Müller P, Escobar MD. 1994. Hierarchical priors and
mixture models, with application in regression and density

954

http://beast.bio.ed.ac.uk/Tracer
http://evolution.genetics.washington.edu/phylip.html.


DPP for Divergence Time Estimation ∙ doi:10.1093/molbev/msr255 MBE

estimation. In: Smith AFM, Freeman P, editors. Aspects of un-
certainty: a tribute to D. V. Lindley. Chichester (UK): Wiley.
p. 363–386.

Xie W, Lewis PO, Fan Y, Kuo L, Chen MH. 2011. Improving marginal
likelihood estimation for Bayesian phylogenetic model selection.
Syst Biol. 60:150–160.

Yang Z. 1993. Maximum likelihood estimation of phylogeny from
DNA sequences when substitution rates differ over sites. Mol Biol
Evol. 10:1396–1401.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate meth-
ods. J Mol Evol. 39:306–314.

Yang Z, Rannala B. 1997. Bayesian phylogenetic inference using DNA
sequences: a Markov chain Monte Carlo method. Mol Biol Evol.
14:717–724.

Yang Z, Rannala B. 2006. Bayesian estimation of species divergence
times under a molecular clock using multiple fossil calibrations
with soft bounds. Mol Biol Evol. 23:212–226.

Yang Z, Yoder AD. 2003. Comparison of likelihood and Bayesian meth-
ods for estimating divergence times using multiple gene loci and
calibration points, with application to a radiation of cute-looking
mouse lemur species. Syst Biol. 52:705–716.

Yoder AD, Yang Z. 2000. Estimation of primate speciation dates using
local molecular clocks. Mol Biol Evol. 17:1081–1090.

Yule GU. 1924. A mathematical theory of evolution, based on the con-
clusions of Dr. J. C. Wills, F. R. S. Philos Trans R Soc Lond B Biol Sci.
213:21–87.

Zuckerkandl E, Pauling L. 1962. Molecular disease, evolution, and ge-
netic heterogeneity. In: Kasha M, Pullman B, editors. Horizons in
biochemistry. New York: Academic Press. p. 189–225.

955


	Birth�Death Prior on Node Ages
	DPP on Branch Rates
	Simulations: Data Generation
	Global Molecular Clock
	Local Molecular Clocks
	Compound Poisson Process
	Lognormally Distributed Autocorrelated Rates
	Gamma-Distributed Independent Rates
	Dirichlet Process Prior Rates





	Simulations: Analysis
	Simulations: Accuracy Assessment
	Analysis of Biological Data
	Simulations
	Biological Data

