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Renal stem cells: fact or science fiction?
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The kidney is widely regarded as an organ without regenerative
abilities. However, in recent years this dogma has been challenged
on the basis of observations of kidney recovery following
acute injury, and the identification of renal populations that
demonstrate stem cell characteristics in various species. It is
currently speculated that the human kidney can regenerate in
some contexts, but the mechanisms of renal regeneration remain
poorly understood. Numerous controversies surround the potency,

behaviour and origins of the cell types that are proposed to
perform kidney regeneration. The present review explores the
current understanding of renal stem cells and kidney regeneration
events, and examines the future challenges in using these insights
to create new clinical treatments for kidney disease.
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INTRODUCTION

The kidney has several essential roles that include metabolic waste
excretion and the maintenance of fluid and electrolyte balance.
Kidney diseases originate from congenital, acute and chronic
causes that eliminate renal function. Kidney diseases affect
epidemic numbers worldwide and have risen in incidence over
recent years, thus representing a burgeoning global healthcare
burden [1,2]. Cellular damage to the functional units of the kidney,
known as nephrons, is a common attribute among diverse kidney
diseases. Progressive destruction of nephrons culminates in
kidney failure. Fortunately, dialysis treatments provide life-saving
renal replacement therapy to patients with abrogated kidney
function. Although effective, dialysis is grueling, expensive and
the only medical option for patients during the lengthy wait
(sometimes >10 years) to obtain an organ transplant. Patients
that receive a kidney transplant can face numerous health
complications that require ongoing medical care. Thus the
limitations to current treatments for kidney disease are not trivial
and pose challenges in terms of managing medical resources and
high economic costs [1,2]. There is an urgent need to find new
therapies to promote kidney health in the wake of continued
escalations in renal disease. Research aimed at finding ways to
facilitate renal regeneration has recently gained significant interest
[3].

Historically, the kidney numbers among those body parts
thought to lack regenerative powers. This notion is certainly
supported by the prevalence and dire outcomes of kidney diseases.
Scientific observations about the events of kidney development
and rates of cellular turnover in the adult organ have supported
the idea that the mammalian kidney is deficient in regenerative
properties. For example, nephrogenesis (nephron production)

ceases during human gestation (at approximately week 36),
whereas mouse nephrogenesis continues until birth and then
rapidly attenuates [4,5]. Examinations of uninjured adult mouse
kidneys hinted at the presence of some endogenous cell
proliferation [6], but these findings were interpreted to represent
a negligible contribution to organ homoeostasis. Reports that
mammalian nephrons exhibited extensive cell regeneration after
injury were published at the turn of the 20th century [7]. These
findings were not integrated into mainstream knowledge about
the kidney, and surprisingly little attention was given to this
phenomenon for another century [7]. As aresult, the long-standing
dogma has been that kidney organs are endowed with a set number
of nephrons that can only decline in activity from injury/disease
and cannot be repaired during the lifespan of an individual.

The phenomenon of kidney regeneration has been increasingly
re-evaluated over the past two decades for several reasons. First,
a number of studies observed cell proliferation and restoration
of kidney function in mouse and rat models of renal injury
following ischaemia or the exposure to a chemical toxin [8—11].
Secondly, both the scientific and medical communities have come
to a new appreciation for the role of adult stem cells in human
body homoeostasis, heralded by the ongoing identification of
resident stem cells in organs that were long believed to lack
substantial cell production during adulthood. Taken together,
these findings have spurred a search for endogenous renal stem
cells, igniting an intense reappraisal of adult kidney cells and
their properties. In addition, increased attention has been paid
to delineating the molecular programme of kidney development,
with the connection being that knowledge about how renal
lineages arise from mesoderm progenitors may provide clues
about the characteristics of renal stem cells that will facilitate their
identification. There is pervading excitement about these recent
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Figure 1 Composition of the adult mammalian kidney

(A) The mammalian kidney is comprised of an outer cortex and inner medulla, and urinary waste
from the collecting ducts is drained into the respective calyxes and then funneled through the
renal pelvis to the ureter. (B) The functional units of the kidney are situated throughout various
strata in the cortex, and many tubules elongate throughout the medulla region. Each nephron
consist of three main components: a renal corpuscle (1), a tubule with many discrete functional
segments in respective proximal, intermediate and distal regions (2), and lastly a collecting
duct (3). Sites that have been proposed to house adult renal stem cells are indicated with an
asterisk (*).

trends in kidney research, founded in the hope that such studies
will eventually lead to the creation of innovative treatments for
kidney diseases [12].

The search for renal stem cells has produced controversial
findings in many regards [13-18]. To date, several intrarenal
cell populations have been found that demonstrate stem cell-like
characteristics. There is also evidence that differentiated tubular
epithelial cells in the nephron undergo a dedifferentiation process
and then proliferate to replace damaged neighbouring cells.
The potency and activities of these different renal regeneration
cell sources remain debatable. Interestingly, the adult kidney in
several lower vertebrates houses renal stem cells that produce
new nephrons in response to damage [19,20], which further
begs the question of whether analogous cells (or residual stem
cell properties) are conserved in humans. The present review
examines the current state of knowledge about the renal stem cell
populations that exist during kidney organogenesis and adulthood,
and the mechanisms of kidney regeneration in various damage
settings. Finally, we address the future outlook and challenges in
the search for reparative treatments for kidney disease.

KIDNEY COMPOSITION AND DISEASE

The mammalian kidney performs numerous physiological
functions: it collects metabolic waste for excretion by filtering
the circulation, maintains fluid homoeostasis by co-ordinating
salt and water levels, regulates acid/base balance and secretes
hormones that serve numerous endocrine functions [21,22]. As
such, it is unsurprising that this organ is architecturally complex.
The human kidney is organized into an outer cortex and inner
medullary pyramids that culminate in renal papilla which drain to
the bladder (Figure 1A) [23]. The nephron functional units are spe-
cialized epithelial tubes located in the cortex and medulla, packed
in tiered arrays that enable them to interface at opposing ends to
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Figure2 Kidney dysfunction: disruptions to the embryonic and adult kidney

Kidney disorders that interfere with healthy kidney functions can be generally characterized
into CAKUT conditions with affect renal development (left) and conditions that injure
the normally developed organ (right). Left: kidney development defects can lead to the
absence of one or both kidneys, termed agenesis (top), a significantly smaller kidney
termed hypoplastic (middle), or a kidney with malformed or cystic (fluid-filled and enlarged)
kidneys (bottom). Right: post-natal to adult disruptions in kidney function arise from acute
injuries (top), fromwhich complete or partial function can be restored through to regeneration and
chronic injuries (bottom) which progressively scar the organ and are thought to be irreparable.

a capillary and the central drainage system (Figure 1B) [23]. The
number of nephrons varies between mammals, ranging from many
thousands (in rodents such as the mouse) to millions (in humans).
Within a species, the number of nephrons varies widely among
individuals; for example, humans can possess from 200000 to
upwards of 1.8 million nephrons in a given kidney [24-26].
Kidney health depends on the net functionality of the nephrons
and their component parts. Nephrons are organized into three
major segments, a renal corpuscle, a tubule and a collecting duct,
which are conserved among vertebrates [27]. The renal corpuscle
is the site of blood filtration and consists of a glomerulus that filters
the blood, and the Bowman’s capsule that collects the filtrate. The
filtrate passes from the capsule into the tubule and later into
the collecting duct. The tubule is comprised of multiple segments
that are specialized for different secretion and/or reabsorption
tasks: for example, the proximal segments reabsorb amino acids
and electrolytes, whereas distal segments make fine adjustments
in urinary salt content [21]. Overall, the daily volume of filtration
and fluid regulation performed by the kidney is immense: the
kidneys in a healthy adult human filter on the order of 170 litres of
blood each day, typically excreting between 1 and 2 litres of fluid
[28]. Because of this high workload, the abrogation of nephron
activity has dramatic consequences on body homoeostasis.
Kidney diseases affect millions of individuals worldwide,
and arise from conditions that alter nephron development or
trigger nephron damage during neonatal, juvenile and adult stages
(Figure 2). CAKUT (congenital and acquired diseases of the
kidney and urinary tract) conditions are anomalies that lead to
absent kidneys (agenesis), reduced kidney size (hypoplastic) or
malformed nephrons [29-32]. The nature of the developmental
defect dictates the physiological deficiency, with the most
severe being renal failure and premature death [33]. Increasing
evidence has also supported a link between nephron endowment
and long-term health: reduced nephron numbers correlate with
the development of hypertension, chronic renal failure and
predisposition to heart disease [34]. In addition, AKI (acute kidney
injury) or chronic disease can disrupt nephron function. Particular
nephron cell types tend to incur the highest rates of damage and
are a common site of primary insult that can lead to nephron
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Figure 3 Definition and identification of the stem cells

Middle and right: stem cells are operationally defined by having the ability to self-renew
upon division and produce more differentiated offspring. Often, the immediate offspring are
transit-amplifying cells that have great proliferative capacity and exhibit the ability to make
multiple differentiated cell types. Left: stem cells can be assessed by multiple criteria that gauge
stemness, or stem cell-like qualities of a cell. Stemness attributes fall into two broad categories:
(1) their phenotype on the basis of gene expression, epigenetic signature and a label-retaining
ability indicating rare division events, and (2) their functionality on the basis of analysis of their
ability to give rise to cells in culture and in vivo, such as measured by lineage tracing.

degeneration. These include the podocytes, which are subject to
strain from the sheer rate of high-pressure fluid forces at the
glomerulus and toxic pharmacological compounds in the
filtrate [35]. The proximal tubule epithelial cells also incur a
high rate of damage, as they similarly receive intense exposure
to filtrate compounds and are also very sensitive to ischaemia.
Although some patients can recover from AKI, suggesting
that renal regeneration occurs, chronic kidney diseases involve
irreversible accumulation of scar tissue [36—38]. With progressive
fibrosis, renal function declines and culminates in ESRD (end-
stage renal disease) where life must be maintained by dialysis or
organ transplantation.

STEM CELLS AND REGENERATIVE MEDICINE

Regenerative medicine using stem cells has received a flurry of
attention. Many have proposed that stem-cell-based therapies
could be a revolutionary solution to combat numerous human
diseases, including those facing nephrology today [39]. There
has been an incredible interest in identifying stem cells and their
characteristics in embryonic and adult contexts partly for this
reason. Much of the focus has revolved around the idea of using
knowledge about stem cell biology to generate replacement tissues
in vitro or in vivo through the use of various patient- or donor-
derived cell sources [40].

A stem cell is defined as a cell that, upon division, can self-
renew and give rise to differentiated cell types or their precursors
(Figure 3) [41]. The earliest cells present during mammalian
development are totipotent, with the capacity to make all cell
types of the fetus, as well as contribute to the extra-embryonic
tissues associated with the maternal placenta; this potential is
progressively restricted as development proceeds [41,42]. Cells
isolated and cultured from the early embryo can retain pluripotent
abilities, such that they possess the ability to produce cell lineages
from all three germ layers, and are termed ES (embryonic stem)
cells [41,42].

After development is complete, many adult tissues contain
stem cells that remain immature and multipotent, harbouring the
capacity to self-renew and produce progeny with several distinct
differentiated phenotypes [43]. These tissue-specific or adult stem
cells have markedly less capacity for self-renewal and potency
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compared with early embryonic or pluripotent ES cells. Upon
division, adult stem cells typically produce a transit-amplifying
progenitor, a cell that acquires a more differentiated state, but
exhibits a high capacity for growth. Adult stem cells support
homoeostasis in tissues with high rates of turnover, including the
blood, skin and intestine, as well as tissues with low rates of
turnover such as the lung and brain [43,44]. They reside in unique
anatomical microenvironments, or niches, which provide trophic
support and also modulate their behaviour [43,44]. Adult stem
cells can often respond dynamically to regenerate damaged tissue
[43,44]. For example, haemopoietic stem cells undergo migratory
behaviour in response to blood loss or congenital anaemia, exiting
from their bone marrow niche and colonizing the spleen where
additional blood is made [45].

Medical treatments using stem cells are in their infancy.
Currently, only adult haemopoietic stem cells are used routinely
in the clinic for bone marrow transplantation, although clinical
trials are underway to test other stem cell therapeutics. There
are significant challenges to be faced in devising regenerative
medicine strategies to treat the kidney, but nonetheless there is
a great impetus to tackle these hurdles. Many have envisioned
that the current void of therapies to ameliorate kidney disease
could be filled at the level of restoring functionality to individual
nephrons if endogenous renal stem cells were identified or if
renal stem cells could be grown and manipulated in vitro. Thus
some major questions in the nephrology field include whether
endogenous renal stem cells or some other cell type exists that can
regenerate the kidney, whether renal regenerative powers could
be exacerbated with the right signals, and whether exogenous
cell therapies could be successful by producing and delivering
replacement cells to the kidney of a patient. To explore these and
other questions, researchers have undertaken strategies to identify
renal stem cells on the basis of the criteria that are used to define
adult stem cells.

IDENTIFICATION OF ADULT STEM CELLS

Across diverse tissues, adult stem cells are defined by hallmarks
of so-called ‘stemness’, a constellation of traits that typify the
state of being a stem cell (Figure 3) [46,47]. The working
definition of stemness includes the properties of cellular
immaturity, multi-lineage potency and self-renewal capacity,
and also encompasses characteristics such as gene expression
profiles and cell behaviours which correlate with these traits.
In theory, the intersection of stemness attributes is analogous
to a molecular fingerprint that can readily identify stem cells
in vivo; in actual practice, however, the biometrics of fingerprint
matching for stem cells has been an enigmatic task and represents
a significant obstacle in current stem cell research. Distinguishing
the relationships between stem cells and their progeny is not
straightforward, and it is further complicated by attempts to
appreciate the dynamic flux and heterogeneity present among
populations [48].

Stem cell identification studies have relied on an arsenal
of cellular and molecular strategies to collect information that
would indicate the respective stemness of the cells residing in a
tissue of interest. The use of histological characteristics, such
as cell ultrastructure, to identify stem cells is relatively rare,
although niches have been associated with locales that protect
the resident stem cells from environmental damage and provide
access to resources such as a vascular supply [49]. Adult stem
cells often share gene expression and epigenetic profiles with
the stem/progenitor cells that give rise to the organ during
development [50,51]. This phenomenon probably represents their
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Table 1

Proposed renal stem, progenitor and regenerative cell types in the mammalian kidney

Cells exhibiting one or more stemness attributes have been characterized in both the developing and adult mammalian kidney. The cells have been found in mesenchymal and epithelial compartments,

and the origins of several isolated by fractionation technigues have yet to be precisely determined.

Contribution in kidney

Location Molecular and cell characteristics Potency in vitro Potency in vivo injury or disease model Reference(s)
Embryonic kidney
CM Six2*, self-renewing Nephron [74,75]
SM FoxD1+ Interstitium [72,73]
UB Collecting duct [62-64]
Adult kidney
Nephron
PEC stem cell (CD24+(CD133+, PDX— Proximal and Podocyte Yes; gave rise to both [96,97,103,104]
distal tubule podocytes and tubule
cells
PEC progenitor (CD24+(CD133+, PDX* Podocyte Limited; rare podocyte [103]
contribution
Tubule differentiated epithelia Tubule cells marked by eGFP or Six2-reporter = Tubule [127,128]
Tubular stem cell-proximal VIM* , from proximal tubule (S3 segment) [133]
Tubular stem cell-proximal NFATc1 ~ lacZ*, proximal tubule [134]
Tubular stem cell CD24+(CD133+ Multipotent [135]
Tubular stem cell CD24+ CD133+ AldhMo" from renal cortex Multipotent [136]
Tubular stem cell CD133+, heterogenous Multipotent Tubule Yes [138]
Renal papilla
Papilla stem cell BrdU label retention in tubules and interstitium [129,133,139]
Papilla stem cell Nestin+ CD133+ Multipotent Multipotent [142]
Whole kidney fractionation
Fractionation by antigens, behaviour Sca-1+Lin~ Multipotent Tubule [143]
Fractionation by side population Sca-1+, musculin®, noted to reside in interstitium Yes [144]
Fractionation by side population Sca-1+ Multipotent Yes [145,146]
Long-term proliferation in culture Oct4, Pax2 Multipotent Tubule Yes [148]
Long-term proliferation in culture Myh9~ GFP*, Pax2, Oct4, Wt1 Multipotent Tubule Yes [149]

shared common ontological origins and the congruous usage
of genetic and molecular processes to direct the production of
cell types in a specific tissue or organ. Interestingly, there are
many markers common to diverse lineages that approximate
a category of universal stem cell traits. For example, adult
stem cells express similar cohorts of cell surface proteins, such
as c-Kit, Sca-1 (stem cell antigen-1), CD34 and CD133; the
presence of these antigens is used to isolate stem cell fractions
with flow cytometry [52]. Stem cells also exhibit low vital
dye staining due to the expression of membrane pumps of the
ABC (ATP-binding cassette) transporter family [52]. Because
of these transporter proteins, stem cells actively efflux high
levels of the fluorescent DNA-staining dyes Hoeschst 33342 and
Rhodamine 123 compared with other cells, and distribute in a side
population upon flow cytometry [52]. These efflux properties are
hypothesized to be a mechanism to protect stem cell integrity from
cytotoxic compounds, thus promoting long-term survival [52].

Adult stem cells share archetypal behaviours that are closely
tied to their potency and self-renewal. For example, many adult
stem cells are quiescent, sharing the property of infrequent
cell division over long periods of time. This may represent
a mechanism to limit the accrual of mutations during DNA
replication, thus staving off the potentially deleterious con-
sequences of replicative aging [53]. Cell turnover can be gauged
by providing a pulse of a nucleotide analogue, such as BrdU
(bromodeoxyuridine), which is incorporated into dividing cells.
Over time, adult stem cells tend to be LRCs (label-retaining
cells) because they do not proliferate (in normal conditions) at
a rate that dilutes the label, whereas transit-amplifying progeny
rapidly dilute such labels.

Regardless of its gene expression and proliferation dynamics, a
stem cell assignation is only indisputably determined by assessing

functionality, i.e. by operational tests that can reveal which
progeny can be produced and over what period of time [54].
Functionality can be probed through many assays, which can
be broadly categorized into in vitro or in vivo tests. Putative
stem cells are isolated, typically on the basis of complements
of cell-surface markers, then cultured in vitro to observe their
activities in different conditions, namely to perform clonal assays
to assess self-renewal and find out which other cell types can
be produced [43]. The operational activity of a putative stem
cell is most stringently evaluated by tracking its progeny in vivo.
Some tissues are amenable to transplantation techniques where
prospective stem cells are isolated from a donor, re-introduced
into a genetically distinct (but compatible) recipient, and then
tracked by various methods [55]. Serial transplantation enables
the assessment of long-term self-renewal and is necessary to
functionally distinguish stem cells from their transit-amplifying
offspring. Lineage tracing using genetic fate mapping in the mouse
model has been invaluable to assess stem cell progeny production
[56]. Genetic fate mapping is performed by creating transgenic
animals in which subsets of cells (on the basis of tissue-specific
promoter activity) can be marked at a desired time by inducing
the stable genetic expression of a reporter such as GFP (green
fluorescent protein). The offspring of the labelled cells inherit the
reporter expression, enabling their fate to be tracked over time.
To date, the search to find renal stem cells and discover
if/fhow kidney regeneration works has occurred on two related
fronts that have implemented the scientific tools that gauge
stemness parameters. Research to identify renal stem cells
during development has provided a new understanding of lineage
relationships in the kidney, and delineated a multipotent renal
stem cell that generates the nephrons. Meanwhile, adult kidney
populations have received intense scrutiny to re-evaluate their
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Figure 4 The mammalian kidney develops from distinct pools of renal progenitors

(A) Top left: the mammalian embryo will form a series of three kidney structures from the intermediate mesoderm (indicated in grey and purple) in a caudal region of the trunk. Enlargement: the three
kidneys from along the rostral—caudal axis in an archetypal order, with the pronephros first, followed by the mesonephros and finally the metanephros. The pronephros and mesonephros consist of
simple tiered arrays of nephrons. The pronephros is vestigial, whereas the mesonephros functions for a short time and then degenerates upon metanephros formation. (B) The metanephros develops
when the nephric duct (grey) is induced to form the UB outgrowth by the MM (purple). Branching morphogenesis of the UB generates a highly branched collecting duct system. (C) The MM gives
rise to two mesenchymal compartments, the CM which caps the UB branch points, and the SM, which is loosely distributed in the vicinity. The CM is a Six2* self-renewing stem cell compartment,
and adjacent to each UB branch points forms a PA, which initially maintains Six2 * and will become a nephron. The PA progresses to form an epithelial RV that is Six2 ~ Wnt4 *, and grows to make
various shapes, including an S-shaped body that will eventually proliferate and elongate to make nascent nephrons that connect to the UB ductal network.

properties in the context of normal homoeostasis and disease,
identifying a cast of stem and progenitor cells that are the subject
of ongoing research and debate. Putative adult renal stem cells
have been proposed to exist in several adult kidney sites (shown
by an asterisk in Figure 1B, and see Table 1). We first consider
renal stem cells in development and then discuss the evidence for
adult renal stem cells.

RENAL STEM CELLS AND MAMMALIAN KIDNEY ONTOGENY

Kidney organogenesis is a unique developmental phenomenon
that progresses through a sequence of stages wherein a renal
structure is formed and later replaced with a more intricate organ
configuration [57,58]. Each kidney derives from the mesoderm
and is comprised of nephron tubules, although whether the
nephrons become functional and how long they persist varies
by species. Mammals form a pronephros, then a mesonephros
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and finally a metanephros that becomes the adult kidney
(Figure 4A). The mammalian pronephros is a rudimentary
vestigial structure. The mesonephros exists for a short time
and has limited functionality, degenerating with the onset of
metanephros formation. Nephron arrangements in pro- and meso-
nephric kidneys are simple, with nephrons few in number. These
early kidneys have a pair of nephric (or Wolffian) ducts, derived
from mesoderm that coalesces to form an epithelial tube, and form
nephrons from surrounding mesenchyme called the nephrogenic
cord. The pronephros forms anteriorly, with the mesonephric
tubules located more posteriorly. The nephric ducts later grow
caudally along the trunk, where the bilateral metanephric kidneys
will be induced.

The characterization of renal stem cells during mammalian
development has been focused on the metanephros because it
becomes the permanent organ and is much more substantial
in size. Many questions remain about the genetic programmes
and signalling pathways that direct pro- and meso-nephros
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specification, and the molecular relationships between renal
progenitors of these and metanephric kidneys. During
metanephros formation, discrete populations of mesodermal
derivatives interact to generate the arborized arrangement of
nephrons and collecting system [59,60]. The collecting duct
system originates from the nephric duct, which in the course
of its caudal growth will be induced to evaginate by a specialized
MM (metanephric mesenchyme) and form an outgrowth known
as the UB (ureteric bud) (Figure 4B) [61]. Classic cell association
and retroviral labelling studies demonstrated that the MM could
generate nephrons, whereas the UB epithelium could make
collecting ducts [62—-64]. The UB undergoes a reiterative process
of branching morphogenesis during which nephrons are induced
from the MM located adjacent to the UB branch points, generating
an arborized nephron array. Over time, these events beget a dense
periphery of nephrogenesis activity, called the nephrogenic zone.
Elaborate reciprocal signalling between the MM and UB underlies
the repeated cycles of UB branching and growth.

As the MM and UB interact, the MM is subdivided into the CM
(cap mesenchyme) and SM (stromal mesenchyme), representing
a bifurcation in kidney lineages (Figure 4C and Table 1) [65,66].
The CM is a condensed mesenchyme that encapsulates the UB and
is broadly defined by expression of the homeobox transcription
factor Six2 (sine oculis-related homeobox 2 homologue) after
UB invasion [67,68]. A subset of the CM that flanks each
branch point will become a PA (pretubular aggregate) that
maintains Six2 expression and is induced to undergo an epithelial
transition, forming a circular RV (renal vesicle) in which
Six2 expression is lost (Figure 4C). Each RV proliferates
to make a nephron, expanding into a comma-shape, next an
S-shape and then elongates further to make convolutions and fuse
with the collecting duct system [69-71]. The elongating nephron
is polarized along its proximal—distal axis such that podocytes
always arise from the nephron progenitors furthest from the point
of fusion, and the intervening progenitors develop into the tubule
[69-71]. In stark contrast with the CM, the SM is a loose cellular
array situated between the UB branches and growing nephrons.
The SM is defined by expression of the forkhead transcription
factor FoxD1 (forkhead box D1) and these cells will contribute to
the interstitial population [72,73].

Previous studies have demonstrated that the CM contains a
self-renewing group of nephrogenic stem cells. Genetic fate
mapping has shown that the CM is specified early, when the UB
first enters the MM [74,75]. On the basis of gene expression
and functional studies, CM specification probably involves a
series of cues originating from the signalling of BMPs (bone
morphogenetic protein) acting through the Alk3 (activin-like
kinase 3) receptor, and transcriptional activities mediated by
the Hox11 paralogues, Osrl (odd-skipped-related 1) and Pax2
(paired box gene 2), all of which guide MM patterning [65,76—
78]. CM cells are defined by the continued expression of the
Hox11 paralogues, Osrl and Pax2, as well as the transcription
factors Citedl {CBP [CREB (cAMP-response-element-binding
protein)-binding protein]/p300-interacting transactivator, with
Glu/Asp-rich carboxy-terminal domain 1}, Eyal (eyes absent
homologue 1), Salll (sal-like 1), Six2 and Wt1 (Wilms tumour 1)
[59,60,69-71]. Following its specification, the CM is not believed
to receive additional cell contributions, but rather self-renews to
perpetuate the expanding nephrogenic zone [74,75]. Among the
genes associated with CM identity, Six2 activity is essential
to propagate the stem cell population. In the absence of Six2,
nephrogenesis terminates rapidly after it is initiated because
the CM compartment is not maintained [75]. Clonal analysis
of Six2-expressing CM has demonstrated that at least a subset
of these cells can contribute to multiple nephron segments,
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suggesting that the CM contains a multipotent population [75].
During the progressive rounds of nephrogenesis, the CM is
heterogenous, containing a self-renewing pool of Six2* cells
and a subgroup in transit to the nephron fate that is marked by
expression of Wnt4 (wingless-type MMTYV integrator site family,
member 4) [75]. Recent findings suggest that Wnt9b (wingless-
type MMTV integrator site family, member 9b)/B-catenin
signals positively regulate Six2* CM self-renewal, although
the precise molecular relationship of these factors has yet
to be resolved [79]. The phenomenon of CM self-renewal is
transient, and the cessation of nephrogenesis is associated with
CM disappearance. Further work is needed to address how the CM
compartment is terminated, as it is unclear whether this is due
to the active commitment of cells to nephrogenesis and/or an
exhaustion of self-renewal properties [75]. Elucidation of how
the CM is regulated could provide valuable insights into the cell-
autonomous and environmental signalling pathways that influence
kidney lineage self-renewal.

OVERVIEW: THE HUNT FOR ADULT RENAL STEM CELLS

Searches for renal stem cells in the adult mammalian kidney
have not identified a multipotent cell that can self-renew and
make the >20 specialized renal cell types. However, distinct
locations within the nephron and elsewhere in the kidney appear
to house cells that exhibit various degrees of potential to make
differentiated cell types during normal turnover and following
injury. These sites include the renal corpuscle, the nephron tubule
and the renal papilla. The spectrum of regenerative cells includes
immature stem-like cells and mature differentiated cells. In the
following sections, we discuss renal regeneration at these distinct
sites and the features of the cells that are purportedly involved.

EVIDENCE FOR A PODOCYTE STEM CELL IN THE RENAL
CORPUSCLE

The renal corpuscle is made up of several cell types: fenestrated
endothelial cells that form the capillary network, mesangial cells
interspersed between the capillary loops, glomerular podocytes
(or visceral epithelial cells) and the PECs (parietal epithelial cells)
of Bowman’s capsule (Figure 5) [80]. Of these cell types, the latter
three derive from kidney mesoderm during development, with
the origin of angioblasts not yet resolved [80]. The endothelial
cells and podocytes sit in apposition, attaching on either side of
the GBM (glomerular basement membrane) to form the blood
filter. The podocytes are octopus-shaped cells with long axonal-
like extensions. They connect to neighbouring podocytes with
interdigitating projections (called foot processes) that create small
spaces for fluid to pass through. Foot processes are joined by the
slit diaphragm, a dense velcro of elaborate protein complexes at
the cell membrane that are harnessed to the interior cytoskeleton
[81]. As such, podocytes are highly specialized differentiated
cells, and are thought to be mitotically quiescent, except in certain
pathological conditions [82—-84]. The integrity of the blood filter
depends on the ability of podocytes to retain their connections with
the GBM and adjacent podocytes. This intact barrier prevents the
leakage of high-molecular-mass proteins and cells into the tubule.

Proper development and survival of podocytes is essential
for kidney health [35,82]. Podocyte disruption has catastrophic
consequences, for the majority of patients who develop ESRD,
the primary pathological insult is glomerular disruption that
causes proteinuria and progresses to scarring and loss of nephron
function [35,82]. Surprisingly, podocytes are shed at a low
frequency in the urine of healthy individuals [85]. They can be
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Figure 5 Glomerular injury and source(s) of replacement cells
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The renal corpuscle is composed of (1) a glomerulus, which is a ball of capillaries made of fenestrated epithelial cells that are surrounded by a GBM and podocytes, and (2) the Bowman’s
capsule, which is an epithelium that encapsulates the glomerulus and serves as a collecting space for fluid filtered through the glomerulus. Current evidence is consistent with the epithelium at the
urinary pole, the so-called PECs, containing a podocyte stem cell that is CD24+ CD133+ PDX~. The PEC stem cell gives rise to transitional offspring that are podocyte progenitor cells; these
transitional cells express CD24 + CD133+ PDX* and are speculated to migrate around the capsule and later enter the glomerulus (pathway indicated by green arrows), where they differentiate into

(D24~ CD133~PDX ™ podocytes.

recovered from the urine and even cultured, where they display
hallmarks typical of normal podocytes [85]. It is thought that
the mechanical forces of fluid flow disrupt podocyte attachments,
leading to their effacement even though they are otherwise viable.
Podocyte excretion is dramatically elevated in the setting of many
renal diseases, probably reflecting a harmful environment [85].
There are some data suggesting that compensatory podocyte
hypertrophy can occur to counteract shedding, and that
podocytes hypertrophy in a number of disease states [86—88];
in vitro, podocytes have been observed to undergo hypertrophy
in response to glucose and mechanical stretch [89,90]. The
observations of podocyte loss and absence of proliferation are
at odds with the ability to maintain sufficient podocyte numbers
and renal function with age. In addition, a reversal of glomerular
scarring and regression of renal disease was reported in patients
with diabetes that had pancreatic transplants and in patients with
chronic nephropathy that received ACEi (angiotensin-converting
enzyme inhibitors), suggestive of podocyte regeneration [90-94].

A re-evaluation of the cells at the renal corpuscle revealed that
some PECs showed stem cell characteristics [95-97]. In biopsies
from normal adult human kidneys, researchers detected a subset
of PECs that express the surface antigens CD24 and CD133,
which mark several adult stem cell types [96]. The PEC subset
was purified and grown in culture, where individual cells exhibited
clonogenic self-renewal and could generate multiple progeny with
characteristics of proximal and distal tubule epithelia [96]. In a
mouse model of AKI, tubular regeneration occurred in animals
that received an injection of the human CD24*CD133+ PEC
fraction, but not with CD24~CD133 -~ PECs [96]. Interestingly, in
developing human kidneys CD24*CD133* cells were identified
in the renal vesicles and S-shaped bodies, and were later restricted
to the urinary pole of Bowman’s capsule [97]. The embryonic
CD24+CD133* PECs gave rise to cells with phenotypes
comparable with the adult PEC source when grown in culture or
administered to the same mouse AKI model [97]. Taken together,
these results suggested that the CD24* CD133* PECs could be
multipotent nephron progenitor descendents.
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Interestingly, previous studies had reported morphological
heterogeneity in the PEC of Bowman’s capsule on the basis
of histological analyses. In human glomeruli, cells close to
the urinary pole have a flat epithelial shape, whereas cells
close to the vascular pole exhibit a podocyte-like appearance
with long cell processes, and were termed parietal podocytes
[98,99]. Examinations of Bowman’s capsule in sheep described
heterogeneity as well, reporting a unique cell type located near
the vascular pole on the basis of prominent cytoplasmic granules,
and these were called peripolar cells [100,101]. The mixture
of morphological phenotypes in Bowmans’ capsule, along with
multipotency of CD24+CD133* PECs, are suggestive that the
PEC population is comprised of several cell types with various
roles, some of which might serve to replace podocytes. This
hypothesis has been supported by clonogenic analysis and lineage
studies [102—-104].

Further molecular characterization of CD24+CD133* human
PECs revealed that this group is heterogenous, and includes
cells that express markers typical of differentiated podocytes,
like nestin and PDX (podocalyxin) [103]. Human PECs are
spatially organized in a continuum along the capsule, with
CD24+CD133*PDX~ cells present closest to the urinary
pole, CD24*CD133*PDX™" cells concentrated towards the
vascular pole, and differentiated podocytes exhibiting a
CD24~ CE133-PDX™* character (Figure 5) [103]. After sorting
of CD24+CD133" PECs into PDX~ and PDX™ fractions, only
the individual PDX ™ cells exhibit multipotency in vitro on the
basis of the ability to generate tubular cells and podocytes [103].
Furthermore, injection of the CD24+*CDI133*PDX~ fraction
produced podocytes and tubular cells in mice with adriamycin-
induced renal injury (a model of the human podocyte disease
known as focal segmental glomerulosclerosis), and was associated
with reduced proteinuria [103]. A similar infusion with the
CD24+CD133*PDX™ fraction, in contrast, only gave rise to
rare podocytes [103]. These findings support the notion that
CD24+CD133*PDX™ cells are transitional cells with limited
proliferative capacity that express progenitor and podocyte
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markers, and do not replace injured podocytes [103]. Genetic
labelling has been used to mark the PECs and irreversibly track
their progeny in newborn and adolescent mice, demonstrating
that PEC offspring become podocytes during the completion of
nephrogenesis in the postnatal period and during rapid kidney
growth in juveniles [104].

These findings provide compelling evidence that a podocyte
stem cell resides among the PECs. The ability of cultured PECs
to contribute to the tubule could indicate a broader potency of
PECs, but future experiments are needed to determine whether
the PEC is multipotent in vivo. Genetic tracking is also needed
to assess the extent to which the PEC progenitor pool can self-
renew in adults over the long-term. Furthermore, the mechanisms
of progenitor migration are unresolved. The gradient of cell
phenotypes along the capsule is consistent with a cycle wherein
podocytes gradually shift towards the glomerulus as shedding
occurs (an example pathway is indicated by green arrows in
Figure 5) [95,96,103,104]. Differentiating podocytes might also
take a more direct route to the glomerulus [95,104], on the basis
of the observation of cell bridges or so-called tuft-to-capsule
adhesions, where chains of cells link the glomerulus and
capsule [105]. Finally, the developmental pathways essential
to specify the PEC podocyte progenitor are largely obscure.
In a recent study, the removal of B-catenin signalling during
the late S-shaped body stage of nephrogenesis resulted in the
abrogation of PECs and a replacement with parietal podocytes
[106]. This phenotype could reflect a number of possibilities,
such as a requirement for S-catenin in PEC self-renewal,
PEC survival or a lineage conversion event. Understanding
the signals that modulate PEC development will be vital in
understanding disease pathology, as exemplified by reports that
PEC progenitors contribute to cell lesions in several glomerular
diseases [107,108] and can be enhanced by activating Notch
signalling [109]. Interestingly, a recent report provided evidence
that ACEi moderates renal progenitor dynamics using a rat
model of progressive glomerular injury [110]. In this setting,
treatment with ACEi was associated with improved glomerular
architecture and linked to moderated progenitor activation [110].
These findings suggest that moderating the cellular response to
renal damage may confer renoprotective effects.

NEPHRON TUBULAR REGENERATION AND STEM CELLS?

Cellular regeneration in the nephron tubules was noted as far
back as the late 19th century, and was suggested to arise from
surviving cells within injured tubules [7]. Since this time, both
intra- and extra-renal cell sources have been proposed to support
nephron tubule regeneration (Figure 6). Genetic fate-mapping
studies have shown that intratubular cells restore nephron integrity
following acute injury, although the origin of the cells is disputed.
Putative stem cells have been located in the tubules themselves,
and the collecting ducts and interstitium of the renal papilla,
but the identities and behaviours of these cells are controversial.
Although extrarenal cells such as BMSCs (bone marrow stem
cells) and MSCs (mesenchymal stem cells) were once thought to
make direct cell contributions to renal regeneration, they are now
thought to provide humoral support. In the following sections we
address the lines of evidence concerning the proposed contributors
to tubule regeneration.

Intratubular cells and maintenance of nephron integrity

Nephron tubule epithelia residents are highly specialized and
differentiated, with distinct cuboidal or columnar shapes, and are
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polarized along their apical-basal axis [21]. As such, a reasonable
expectation is that these cells are quiescent, similar to podocytes;
however, several lines of evidence indicate that tubule cells have
a low basal turnover rate. Early cell division studies using a
pulse—chase of tritiated thymidine reported incorporation of the
label throughout the proximal, distal and collecting tubules of
healthy male rats [6]. Furthermore, antibody staining with the
cell-division markers PCNA (proliferating-cell nuclear antigen)
and Ki67 detected positive tubule cells in adult human kidneys
[111]. Later, proliferation was documented using mitotic figures,
BrdU pulse—chase experiments, and cell-cycle markers in juvenile
rat kidneys (as the rate of cell division was noted to range between
2 and 4 %, higher than the 0.4 % seen in adults) [112—114].
Proliferating cells were reported in both proximal and distal
tubules [111]. This investigation found that mitotic cells in the
proximal tubule had differentiated traits, as they co-expressed
markers of the brush border and showed proper distribution
of several polarity proteins, suggesting that dividing cells were
differentiated epithelia [112]. Interestingly, a high incidence of
cells in both juvenile and adult tubules were positive for cyclin
D1, indicating that many tubular cells were poised in G,-phase
[114].

Over the past decades, studies of AKI from ischaemia or
nephrotoxin exposure have chronicled a prototypical sequence of
cellular changes that precede a full restoration of nephron tubule
integrity [113-123]. The descriptions have primarily centred
on the proximal tubule because the prominent feature of these
particular acute injuries is damage to the proximal epithelial
cells. Following injury, damaged and apoptotic tubule cells slough
into the lumen, denuding the basement membrane. The exposed
basement membrane is then progressively covered by cells with
mesenchymal features, including a flattened elongated appearance
and the expression of proteins that are characteristic of motile
mesenchyme. High rates of intratubular proliferation ensue soon
after injury (within 12-36 h), and several studies have found that
the dividing cells have features of differentiated cells, as in the
cycling cells of healthy kidneys [112,113]. Eventually, tubular
integrity is re-established as the mesenchymal cells transition
to become epithelial, with regeneration complete in as fast as
2 weeks. The regenerating cells express renal development genes,
including Pax2, NCAM (neural cell adhesion molecule) and
Lhx1 (Lim homeobox 1), supporting the hypothesis that tubule
regeneration may recapitulate some developmental processes
[124-126].

The source of the replicating mesenchyme has been the
subject of intense debate between multiple hypotheses: first,
that differentiated cells regenerate the tubule; secondly, that a
rare stem cell population interspersed between the differentiated
epithelia facilitates repair; and thirdly, that extrarenal stem cells
contribute a proliferating pool (the latter two are discussed in
subsequent sections) [127,128]. The model for the first hypothesis
is that differentiated tubule cells undergo a dedifferentiation
process (Figure 6B). Dedifferentiation includes a transition
from the epithelial to mesenchyme state [EMT (epithelial—
mesenchymal transition)] and a re-entry into the cell cycle, with
the mesenchymal progeny eventually transitioning back to an
epithelial state [MET (mesenchymal—epithelial transition)]. The
positive correlation between differentiated tubule markers and
mitosis markers in healthy kidneys supports the idea that resident
tubule epithelia could fuel regeneration. The dedifferentation
hypothesis is also attractive due to the precedence set by nephron
development, i.e. that the tubule arises from mesenchyme that is
induced to become epithelium.

Several strategies have been used to track the origins of
regenerated tubule cells by re-examining the events associated
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Figure 6 Tubular injury and source(s) of replacement cells

(A) Injury models that damage the proximal tubule by ischaemia/reperfusion or nephrotoxins have been most extensively used to study tubular regeneration. These analyses have led to a current
debate between several cellular sources of regeneration that have converged to focus on (1) differentiated tubule epithelial cells (labelled with Six2-reporter expression) and (2) intratubular stem cells
(labeled by BrdU and CD24+ CD133* Aldh™@" in various studies). A third cell source, the extratubular compartment, which over the years has been speculated to include kidney-resident interstitial
fibroblasts, BMSCs and MSCs, has been negated by evidence of intratubular sources of regeneration. (B) The scenarios of tubular regeneration are proposed to involve either a dedifferentiation
(1, top panel) or a stem cell mechanism (2, bottom panel). Dedifferentiation includes events through which the tubular epithelium oscillates between a mesenchymal phenotype (EMT and then MET),
with the mesenchyme purported to show migration and division to replace lost tubular cells. A tubular stem cell has been proposed to share hallmarks with its differentiated neighbours, and replace

lost cells through division that may or may not involve transit-amplifying progenitors.

with ischaemia/reperfusion injury. In mice where tubule epithelia
were mosaically marked with eGFP (enhanced GFP) using
the Ksp (kidney-specific)-cadherin promoter, eGFP* cells
incorporated BrdU and co-stained with differentiated markers
during regeneration, suggesting an intratubular source of
regeneration [127]. Another study used the Six2 promoter to
stably mark the entire differentiated tubular epithelium with a
reporter, and then determined whether regenerated tubules had
a ubiquitous or diluted reporter pattern [128]. In this transgenic
system, the Six2 reporter marks the tubule cells that arise
from the CM during nephrogenesis. Following kidney repair, no
dilution of the Six2 marker was observed, evidence that Six2
descendents were the primary regeneration source. Interpretation
of this data does hinge on the transgenic marking strategy: any
re-expression of Six2 during regeneration would trigger stable
reporter expression in those cells and their descendents that
would be indistinguishable from the adult tubule population. By
several measures, the authors did not detect Six2 re-expression at
the timepoints they examined, although a rapid pulse of Six2
activity could always be possible [128]. Overall, these data
provide strong evidence in favour of an intratubular regeneration
source.

© 2012 The Author(s)

In a subsequent study, proximal tubule regeneration was tracked
in mice with a two-step sequence of nucleotide analogue pulses
after ischaemia [first CldU (5-chloro-2-deoxyuridine), and then
1dU (5-iodo-2-deoxyuridine)] that were administered close in time
to one another, with the hypothesis being that the offspring of a
stem cell that divided to make a transit-amplifying progenitor
would retain both labels [129]. The researchers observed low
co-labelling, concluding that these data illustrate a stochastic
process of tubular proliferation among differentiated cell types.
These findings provide an intriguing snapshot into tubular cell
dynamics during the time window defined by the labelling pulses
(between 24 and 45 h post-injury). Additional analysis of earlier
time windows could potentially be informative, since they noted a
rise in tubular proliferation starting at 12 h post-injury [129], and
similar rapid escalations in division were observed in studies of rat
ischaemic injury [130]. Future studies tracking individual cells are
needed in order to definitively resolve cell dynamics during tubule
regeneration. Taken together, the cell-tracking studies performed
to date are consistent with the model that an intratubular cell
source fuels regeneration, and that this source has differentiated
traits. However, the remaining questions revolve around how to
interpret this combination of the differentiated traits: are they
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the sign of mature cells, or are tubular stem cells scattered in
nephrons?

Evidence for tubular stem cells

Several groups have proposed the existence of rare tubular stem
cells on the basis of the observation of stemness attributes in
a minor subset of the resident tubule population. For example,
cell-cycling differences among tubular cells have been suggested
by a cohort of pulse—chase experiments. Individual rat kidney
tubule cells were shown to incorporate BrdU and retained the label
during a short (2 week) chase [130]. When a viable subset of the
BrdU* cells was isolated, they retained low Hoeschst staining;
in addition, they could be cultured in vitro to generate tubule-
like structures, and contributed to nephrons and collecting ducts
when transplanted to a growing metanephros [131]. These studies
characterized cells that retained BrdU over just a short chase, and
thus may represent a pool of transit-amplifying cells and/or stem
cells. In a much longer pulse—chase study, infrequent BrdU™*
proximal tubule cells were detected after 35 weeks following
BrdU administration in normal newborn rats [112]. Rare cortical
nephron labelling was reported in a similar chase, but with 3-
day-old rats examined after 2 months [132]. The low number of
BrdU™ cells observed after these much longer chases is consistent
with the existence of a tubule stem cell that divides relatively
infrequently.

Prospective tubule stem cells in the rodent kidney have also
been identified from gene expression and functional assays.
One group microdissected a single nephron from an adult rat
kidney and established a cell line from the proximal segment
with expansive growth potential, designated rKS56 [133]. rKS56
cells co-expressed mesenchymal and epithelial markers, such as
the intermediate filament VIM (vimentin) and the water channel
aquaporin respectively, a phenotype likening them to immature
tubule cells. rKS56 cells also expressed c-Kit and Sca-1, markers
associated with an immature progenitor state. Consistent with
this comparison, rKS56 differentiated into mature epithelium
in vitro and after transplant into the post-ischaemic adult kidney.
In the mouse, a proximal tubule progenitor-like population was
identified through studies of NFATc1 (nuclear factor of activated
T-cells cytoplasmic 1), a transcription factor expressed in cortical
nephron tubules [134]. An NFATcl-LacZ reporter labelled a
subset of proximal tubule epithelia that expanded in the day
following toxin exposure, and then contracted in number within
several days. NFATcl-labelled cells were resistant to apoptosis,
suggesting that they were fated to survive the renal injury. Lineage
analysis of these cells using an NFATc1-Cre reporter revealed a
subpopulation of proximal tubule that divided after renal injury,
with the progeny reconstituting large tubule stretches [134].

Corroborating findings from several reports have suggested
that a multipotent CD24+CD133" tubule cell is present in the
human kidney. This nephron population was first identified by
searching for CD133* cells in tubular fractions on the basis of
the correlation between this antigen and the PEC glomerular stem
cell [135]. A subset of the CD133* tubular cells was found to co-
express CD24 and, by clonogenic analysis, the CD24*CD133*
tubule population could differentiate into multiple cell types
in vivo. This tubule population also had a similar gene signature
to CD24*CD133* glomerular cells by microarray. Polarized
tubule cells expressing both CD24 and CD133 were found in
proximal and distal segments, although the frequency was not
quantified. More recently, another research group discovered and
characterized a human CD24*CD133* multipotent tubule cell
using an entirely different regime of stem cell traits [136]. The
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initial isolation strategy in this case was on the basis of the
precedence that high ALDH (aldehyde dehydrogenase) activity
is associated with stemness [137]. Kidney cells with ALDH"
activity were isolated from the renal cortex and had an increased
capacity to form sphere-like clusters of epithelial cells in culture,
and were capable of anchorage-independent growth features seen
in several types of multipotent stem cells. By whole-genome
expression profiling, the ALDH"#" cells showed high levels of
CD24, CD133, VIM, and cytokeratins 7 and 19. Localization
studies showed that CD24* CD133 " cells were rare tubule cells
(only occasionally found in pairs), and cells in the parietal
region of the renal corpuscle, the latter in keeping with previous
studies [96,103,104]. CD133*VIM™ co-expressing cells were
interspersed in a similar fashion throughout the healthy tubules;
in human acute renal damage biopsies, these were expanded
into long stretches of CD133* VIM ™ cells, suggesting that they
expanded during regeneration. Interestingly, a previous study
isolated CD133* cells from the adult human kidney cortex that
also expressed Pax2 [138]. The CD133* cells produced both
renal epithelial and endothelial cells in culture, and integrated into
nephron tubules in mice with AKI. The expression of CD133 is
a characteristic of haemopoietic stem cells and endothelial cells.
Thus the isolated CD133* fraction in this case may represent
a heterogenous population that has been suggested by some to
include interstitial cells [14].

Taken together, these findings support the hypothesis of
a tubular stem cell, but the evidence remains incomplete
and requires much more investigation. The very idea of the
tubular stem cell hypothesis is at odds with a long history
of studies that examined tubule cells by ultrastructural and
molecular methods, and never reported a minor population
of ‘different’ cells in tubular segments. To reconcile all of
these findings, one must reason that tubular stem cells are
very rare, and have been overlooked by many methods. Tubule
stem cells could also look like differentiated cells, possessing
traits of apical-basal polarity that are actually needed for
them to physically reside in the tubule, but which make them
hard to discriminate from bona fide differentiated neighbours
with the typically used repertoire of markers. The analysis
of NFATcl™ cells in the mouse and CD24*CDI133* cells
in humans has now delineated several unique markers that
set some tubule cells apart from their neighbours. Future
comparative studies will be valuable to learn more about the
identity and correspondence between these cell types. Moving
forward, more markers are absolutely essential. Genetic tracking
using validated indicators of differentiated epithelium or tubule
subtypes is vital to unequivocally distinguish the mechanisms of
tubular regeneration. Finally, it will be interesting to determine
whether a generic tubular stem cell type possesses ‘tubule-wide’
multipotency and can make epithelial cells of multiple segments,
or whether different nephron segments house more specialized
tubular stem cell residents.

STEM CELLS OUTSIDE THE NEPHRON PROPER: STUDIES OF THE
RENAL PAPILLA

The renal papilla, or inner medulla, is the apex of the medullary
zones and contains tracks of collecting ducts, intermediate
nephron segments (the loops of Henle) and intervening interstitial
cells (Figure 7) [21]. The renal papilla is a hypoxic hyperosmotic
tissue where the business of water conservation is transacted
through a countercurrent exchange system made possible by
this special local environment [21]. The existence of stem cells
in the renal papilla was first proposed after the discovery of
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RENAL PAPILLA: cell proliferation-but stem cells?
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Figure 7 The renal papilla and its proliferative compartments

The renal papilla is a zoneof the kidney that contains collecting ducts, nephron tubule portions that include the intermediate and distal segments, and interstitial fibroblast cells. BrdU-labelled LRCs
have been found in all three cellular compartments, although whether these represent self-renewing stem or progenitor cells is not known. In addition, interstitial cells that are Nestin+ CD133+ have

been detected and are speculated to represent a potential stem cell compartment.

label-retaining populations in this region. Pulse—chase studies us-
ing BrdU in the healthy rat kidney showed that LRCs were present
in the papilla after 2 months, mostly in the interstitium, but also in
tubules [132]. Independent pulse—chase experiments have shown
that the tubular fraction includes the collecting duct and loop
of Henle cells [129]. Following ischaemia, proliferating cells
were found concentrated in the upper-most papillary regions,
and then, several months later, these regions were largely devoid
of LRCs [132,139]. These findings were surprising because
transient ischaemia was not damaging to the cells within the
renal papilla, although of course is well-established to trigger
destruction of the nephron proximal tubule cells. On the basis
of these observations, the renal papilla was hypothesized to be
a source for tubular regeneration, and cells generated from the
papilla region were proposed to migrate into damaged nephrons
throughout the medulla and cortex [132,139].

Currently, there are several conflicting reports surrounding the
idea of papillary migration. Evidence in favour of renal papilla
migration was provided by labelling mouse papillary cells with a
pulse—chase of a vital dye and then inducing an ischaemic injury;
post-ischaemia the labelled cells were found in a redistributed
pattern, and some were even associated with unlabelled tubules,
suggesting that local movement and nephron integration occurred
over time [139]. Cell redistributions toward the cortex following
ischaemia were also observed in a Nestin” GFP* transgenic
mouse, although Nestin™ cells probably included a widely
heterogenous population of labelled cell types in the papilla
[140]. In contrast, other time-course studies have failed to detect
a change in the distribution of nucleotide analogue label-retaining
papillary cells after injury [128]. Genetic tracing of papilla
epithelial cells marked using mTert (mouse telomerase reverse
transcriptase), an enzyme expressed by ES cells and several
adult stem cells, also failed to detect cells of papillary origin
moving to the outer medulla or cortex following ischaemia [141].
In this study the label-retaining papilla interstitial cells were
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not marked, therefore migrating interstitial cells could not be
evaluated [141].

Given these sets of conflicting data and the strong genetic
evidence that intratubular cells regenerate nephrons, it seems
unlikely that the renal papilla serves as the primary source
for the bulk of cortical nephron regeneration. However, this
does not preclude the existence of a renal papilla stem cell
pool, especially when one considers the label-retention capacity
and the in vitro behaviours attributed to subsets of papillary
cells. In particular, more research is needed to resolve the
identity and true potency of the papillary interstitial cells. For
example, a recent study found a fraction of Nestin* CD133* co-
expressing interstitial cells in the human renal papilla, which is
intriguing given the traits associated with CD133* cells in the
renal corpuscle [142]. These Nestin®CD133* interstitial cells
showed expression of mesenchymal and ES cell markers, and
contributed to tubulogenesis in a three-dimensional culture assay
and when transplanted into developing mouse kidneys. Future
genetic-tracking studies will be critical to determine the fates
of this interstitial compartment after renal injury, and additional
work is needed to delineate the identity and phenotypes of the
heterogenous interstitial population.

ISOLATION OF OTHER ENDOGENOUS PUTATIVE RENAL STEM
CELLS

Several groups have sought to identify renal stem cells ‘at large’
without focusing on any one area of the kidney. A common
approach has been to isolate particular cell fractions using
a stemness marker(s) and then ascertain the multipotency of
the isolated fractions in vitro. On the basis of the precedence
that Sca-1 marks adult stem cells across several mesodermal
derivatives, one group isolated and characterized a Sca-1*Lin~
fraction from the adult mouse kidney [143]. Clonally derived
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lines of Sca-1*Lin~ cells were capable of differentiating into
myogenic, osteogenic, adipogenic and neural lineages in vitro,
and adopted a tubular phenotype when injected into the renal
parenchyma following ischaemic injury. Immunohistochemistry
studies detected Sca-1 on numerous cell types in the kidney,
which included tubule and renal papilla interstitium, suggesting
that the clonal lines could represent heterogenous origins within
the kidney.

A second stemness trait used to fractionate the kidney has been
the SP (side population) assay. Several groups have reported the
isolation and characterization of SP cells from mouse and
human kidneys [144-147]. The SP isolated from adult mouse
kidneys was initially reported to be Sca-1* with >95% of
the SP expressing the basic helix—loop-helix transcription factor
musculin, which has been linked to promoting a dedifferentiated
fate [144]. When mice with AKI from the nephrotoxin cisplatin
were given an injection of the kidney SP, they displayed renal
function improvement on the basis of creatinine excretion levels.
Interestingly, musculin®™ cells were shown to reside in the
interstitial space of the kidney. Subsequent expression profiling
of kidney SP from embryonic and adult mouse kidneys reported
similar Sca-1, but not musculin, positivity [145,146]. Functional
assays have found that the kidney SP can exhibit multipotency
in vitro, contribute to UB and MM structures in metanephric
organ culture, and engraft into adriamycin-damaged kidneys at
a low frequency [145]. Molecular and functional analyses of the
human kidney SP have not yet been reported.

Yet another strategy used to locate renal stem cells has been to
select them on the basis of their ability to propagate in long-term
culture. One group dissociated adult rat kidneys and grew the
cells for several weeks, mimicking the culture conditions used
to previously isolate adult stem cells from the bone marrow
[148]. The surviving cells were termed MRPCs (multipotent
renal progenitor cells), and were defined by co-expression
of the transcription factors Pax2 and Oct4 (octamer-binding
transcription factor 4). The MRPCs could produce multiple
lineages in vitro, ranging from hepatocytes to endothelial cells and
neurons, and contributed to tubular cells when injected into normal
and ischaemically injured kidneys. The researchers also identified
rare Oct4™ cells in tubules of the adult kidney, suggesting a
possible tubular origin of the MRPCs. A recent study examining
mouse kidneys took a similar long-term culturing tactic using a
transgenic line in which the Myh9 (myosin heavy chain 9) gene
was disrupted with a GFP cassette, marking several differentiated
cell types in nephrons, as well as the interstitium [149]. After
culturing the GFP* cells for 8§ weeks, the surviving cells adopted
a similar morphology and showed self-renewal characteristics,
and were designated MKPCs (mouse kidney progenitor cells).
Traits shared by the MKPCs included expression of Pax2, Oct4,
Wtl and VIM, suggesting parallels with pluripotency and renal
progenitors during development.

Taken together, these studies could indicate that the kidney
could house one or more multipotent cell types. However, there
are several caveats and future questions to consider with regard
to these findings. One consideration is whether an isolated cell
type/line is representative of a cell that normally resides in the
kidney. Some of the procedures used to isolate renal cells could
capture rare (stem) cells from other tissues that are able to survive
in culture. Some procedures could also favour the selection and
expansion of genetically altered cells that are not representative
of the normal kidney. The relationships between multipotent cells
from these various reports have not been defined, nor has their
relationship to cells such as the PEC-podocyte stem cell. For
example, a multipotent cell line might actually be the derivative
of PECs. Another consideration is whether the cells underwent
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genetic or epigenetic changes in the course of their manipulation.
Thus althogh these findings are intriguing, the contribution of
these cells to renal homoeostasis and their impact on renal disease
remains unclear.

CONCLUSIONS AND FUTURE PERSPECTIVES

Research to find stem cells in the kidney suggests that a number
of previously unappreciated renal cell types exist, thereby raising
a multitude of questions for future work. Ongoing research
is needed to further delineate the respective activities and
relationships between the PEC-podocyte stem cell, the tubular
regeneration source(s), papillary cells and the growing category
of ‘other’ renal stem cell-like types. It is particularly intriguing
that the cells for which there is the strongest evidence of
regeneration, the podocytes and the proximal tubule, are the most
susceptible and most frequently damaged in human kidneys. The
observation of regeneration in these renal compartments begs
the question as to why such mechanisms are remiss in obviating
injuries to these cell types. To begin to understand this puzzle,
we will need to know more about the long-term capacities for
regeneration of the various renal stem cell compartments, as there
is very little data on the mechanisms that control self-renewal
properties of each cell type. Knowledge about these mechanisms
could provide insights into understanding the parameters of stem
cell exhaustion, such as how the aged environment might effect
stem cell maintenance and behaviour. Tools for genetic fate
mapping will be essential to evaluate the progeny of these cells and
the long-term homoeostasis of the stem cell compartment(s). For
example, an explanation for different AKI outcomes in patients
may reside with their past history of renal damage (over a lifetime
of damage/regeneration cycles) and its cumulative effect on the
replicative capacity of the resident kidney stem cells. In addition,
there is a poor understanding of the niches that are inhabited
by these cells, and an increased understanding of their various
microenvironments would provide valuable information.

One additional source of insight into renal stem cell properties
may come from research in non-mammalian species [150,151].
Interestingly, multipotent renal stem cells with seemingly high
replicative potential throughout adult life have been described
in several vertebrate species, including the elasmobranchs and
teleost fish [152,153]. In these species, the adult renal stem cells
function in a unique regard: they make entirely new nephrons in
the adult through a process termed neonephrogenesis [152,153].
For example, in a model of AKI in the adult zebrafish, widespread
proximal tubule injury was rapidly followed by the generation
of new nephrons [153]. Neonephrogenesis was induced from
renal stem cell clusters that were defined by the expression of
the transcription factors Pax2, Lhx1 and Wtl, genes that mark
the kidney lineage during development [153]. Renal stem cell
functionality was assessed using serial transplantation, which
revealed that these clusters could sequentially generate new
nephrons up to three recipients, suggesting that they possessed
self-renewal properties [153]. While the adult fish kidney is
a multi-nephron mesonephros that differs from mammals in
its architectural arrangement of nephrons and collecting ducts,
these findings add further weight to the notion that vertebrate
kidney cells can possess striking regenerative powers. There are
fundamental differences, however, between the physiology of
fish and humans: species such as the zebrafish are characterized
by continual growth in adulthood, thus the lifelong growth of
the kidney probably enables renal functions to keep pace with the
increasing demands of the biomass. Nonetheless, future studies
that uncover the workings of the renal stem cell properties in other
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species could provide clues for how to enhance stem cell activity
in the human kidney.

There are clearly numerous challenges to surmount in order
to apply knowledge about renal stem cells towards clinical
therapies. The renal disease(s) amenable to stem cell therapeutics
probably depend on the nature of the disease and its stage/severity.
Patients with AKI may be more amenable to treatment compared
with those with chronic kidney disease, who may be refractory
to cellular interventions due to long-term inflammation, the
deposition of widespread fibrotic lesions and other tissue
pathologies. To circumvent this issue, the identification of
biomarkers that can diagnose early stages of chronic conditions
is crucial to better facilitate early diagnosis and enable successful
intervention(s). In treating these kidney conditions, the ability to
trigger reparative behaviours with endogenous renal cells (stem
or other) using small molecules would be ideal, as this eliminates
the complications in generating and delivering cells. Exogenous
cell sources, such as those derived from pluri-or multi-potent
embryonic or adult cell lines, may prove viable if safety concerns
can be met, such as ensuring the quality and identity of the cells.
Interestingly, there are data to suggest that the adult kidney will
be a permissible environment to receive exogenous renal cells.
Experiments in mice showed that the metanephros could continue
to grow when transplanted into the renal cortex post-development,
suggesting that the adult kidney may be able to receive and/or
support cellular growth [154].

In conclusion, the discovery of renal cells with stemness
attributes has heralded a new and exciting chapter in kidney
biology. The continued study of these renal populations may one
day lead to the creation of regenerative medicine treatments for
the kidney.
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