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A molecular understanding of how protein function is related to protein structure requires an ability
to understand large conformational changes between multiple states. Unfortunately these states are
often separated by high free energy barriers and within a complex energy landscape. This makes
it very difficult to reliably connect, for example by all-atom molecular dynamics calculations, the
states, their energies, and the pathways between them. A major issue needed to improve sampling
on the intermediate states is an order parameter – a reduced descriptor for the major subset of
degrees of freedom – that can be used to aid sampling for the large conformational change. We
present a method to combine information from molecular dynamics using non-linear time series and
dimensionality reduction, in order to quantitatively determine an order parameter connecting two
large-scale conformationally distinct protein states. This new method suggests an implementation
for molecular dynamics calculations that may be used to enhance sampling of intermediate states.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702447]

I. INTRODUCTION

Proteins represent complex dynamical systems with mul-
tiple stable states. Sampling protein motions has shown itself
to be complicated by the multiple time scale problem1 with
many different wells and barrier heights being found. Despite
considerable effort, there is currently no rapid way to deter-
mine the range of stable states from a single structure or from
sequence alone. Because biological function is intrinsically
linked to the large scale conformational change of proteins,
an improved understanding of how conformational change in
the complex energy landscape of the protein is determined
will provide important insights on both biological and physi-
cal questions.

When the state change is connected by an obvious low-
dimensional reaction coordinate, specialized sampling meth-
ods have been developed that can reliably enhance the col-
lection of intermediate states and the understanding of the
relative free energy change.2–6 For example, the passage of
an ion through a channel, simple alchemical changes, cer-
tain types of conformational change where the movement is
mainly hinge-like or otherwise obvious on inspection fall into
this category.7, 8 But, for many biological problems, the low-
dimensional reaction coordinate that optimally predicts func-
tional behavior is not at all obvious from the structure. As
the set of solved x-ray structures has continued to grow, there
has been an increasing number of situations where alternative
structures for the same protein have been determined.9 Ide-
ally these alternate structures would also suggest the reaction
coordinate that connects one conformation to the other. But,
despite many outstanding efforts to design sampling methods,
a strong limitation is that an order parameter to enable sam-
pling has been difficult to determine from either single or pairs
of static x-ray structures.

Some groups have suggested, in this situation, that har-
monic analysis from diagonalization of the second derivative
matrix (the Hessian) would be sufficient to find the most im-
portant collective modes.10–16 The findings from the coarse-
grained model community, in particular, have suggested that
this approach can reveal important details about how a pro-
tein is connected to large conformational change.17 Other
groups have cautioned that the harmonic model is lacking
and have suggested instead focusing on determining effec-
tive collective modes from the covariance fluctuation matrix
(quasi-harmonic, essential dynamics, or principal component
analysis).18–22 These calculations has demonstrated that the
low frequency collective motions inferred from the covari-
ance matrix differ from the harmonic analysis. Recently there
has been considerable efforts towards further improving on
the linear assumptions in principal component analysis, using
such tools as kurtosis and quasi anharmonic analysis to fur-
ther elaborate on the deviations from Gaussian behavior that
are found in (MD) molecular dynamics trajectories.23–26

To directly sample on large-scale conformational change
there have been many methods proposed.27–36 The most well
known contemporary method is transition path sampling and
uses a small number of conformations along a candidate tran-
sition pathway with a Monte Carlo move set to anneal an opti-
mal prediction of intermediates in a conformationally chang-
ing system.37, 38 Alternative methods have used the RMS
differences between states as an order parameter to control
change,39, 40 directly adding a new force that biases motion
along the root mean square (RMS) gradient. We developed
a method, called dynamic importance sampling (DIMS)41–50

that uses concepts from stochastic differential equations51 to
create a family of independent transitions that together de-
fine the likelihood of different pathways and the kinetics of
the transition with sufficient sampling. However, similar to
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FIG. 1. Lowest frequency mode from PCA analysis for the inactive-state of
NtrC.

the RMS based methods, the DIMS method requires a
progress variable for use during the computed transitions and
to create the biasing and its correction for an unbiased esti-
mate of pathways, kinetics, and states.

In this paper, we describe the use of effective transfer
entropy for the determination of a reduced set of degrees of
freedom that can be used to define order parameters behind
large scale conformational change. Our approach combines
insights from the physics of non-linear time-series analysis,
dimensionality reduction, and the chemical physics of protein
motions on a complex energy surface to enable the dynamics
of the complex system to define an order parameter candi-
date. This improves on other methods for the determination
of order parameters where the candidate order parameter was
inferred from empirical analysis of the static structure or sim-
ply assumed to correlate with the RMS between two different
states. In the calculations to follow, we mainly use the receiver
domain of nitrogen regulatory protein C (NtrC) (Fig. 1), in
addition, we have performed steered molecular dynamics and
checks of the implementation on the glucose-galactose bind-
ing protein (GGBP).

II. PRINCIPAL COMPONENT ANALYSIS

The method of principal component analysis (PCA)
has been used in the analysis of protein motions for many
years.18, 22, 52–57 This approach depends on the determination
of a set of effective collective modes that define the complex
motions that have been seen in the dynamics.52 While the ini-

tial excitement over the method as a way to sample on longer
time-scales seems to have faded, there remains much effort to
use this approach as a tool for the analysis of conformational
change. A caution in that analysis has been the suggestion that
PCA may lead to significant systematic error when there are
multiple stable states separated by a large barrier.53

To compute the PCA modes a MD trajectory is used
along with the determination of the average fluctuations
in the simulation. Then, from the MD trajectory �q(t)
= (q1(t), q2(t), . . . , q3N (t))) of a protein with N atoms, the
covariance matrix σ is built as follows:

σ = 〈(�q(t) − 〈�q(t)〉)(�q(t) − 〈�q(t)〉)〉, (1)

where the brackets (〈. . . 〉) denote time averages. The or-
thonormal basis vectors (principal components/PC) �ηα are de-
termined by the eigenvalue problem λα �ηα = σ .

The lowest frequency modes from PCA are normally as-
sociated with slow, collective motions and have been used to
try and predict intermediate states.20 Figure 1 depicts the low-
est frequency mode obtained by applying Eq. (1) and, solving
the eigenvalue problem for our 600 ns trajectory of NtrC. On
this plot the porcupine spines are located at the Cα atoms and
their magnitude and direction shows the type of motion in-
volved in the mode.

To connect the PCA modes with conformational transi-
tions between two structures, we use the involvement coeffi-
cient. This is defined in the following way. For a given mode
α, the involvement coefficients (IC) is

να = ‖�ηα · (q̂A − q̂B )‖, (2)

where q̂A,B indicates the set of normalized coordinates (q̂A,B

· q̂A,B = 1) that represent the active-state and inactive-state
conformations, respectively. Therefore, the ICs measure the
amount of overlap between a principal component and the
direction defined by the displacement vector between struc-
tures. In the case of hinge-bending motions, PCA shows
higher values for the ICs compared to those from more com-
plex motions. For instance, in the case of Adenalyte Kinase
(AdK), the ICs for the first two modes are 0.49 and 0.63,
respectively,58, 59 thus it is possible to characterize most of the
transition just by using these two modes. In a previous study,
we explored the fact that the structural difference between the
apo and the holo states of AdK are almost completely cap-
tured by linear correlations within our DIMS framework in
order to elucidate ensembles of candidate pathways;41 in a
similar way, another study60 was able to obtain intermediate
states of the AdK transition by computing the normal modes
from an elastic network model during short simulations
(≈101 ps).

In the case of NtrC, the ICs are much lower (Fig. 4),
in consequence the directions of the first PCs of both stable
states are not pointing directly towards the other end state and
therefore are not characterized by linear correlations. What
is more, in another study, by using a set of order parameters
based on observations of both stable structures, it was possible
to obtain higher ICs values.59 These order parameters involve
only localized regions of the system and are proposed in an
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orderly series of events, that is, by using a single order pa-
rameter it is not possible to characterize the whole transition
between the two states.

One of the ideas behind our goal of looking for an order
parameter is that a few degrees of freedom dominate part of or
the entire transition, while the rest of the system would follow.
Therefore finding an order parameter is equivalent to locat-
ing such leading modes. In this paper, we use an information
theoretical approach to identify the leading modes by measur-
ing the transfer entropy between pairs of residues. The more
dominant residues are those that transfer the largest amount
of entropy to the rest of the system.

III. INFORMATION FLOW IN PROTEINS

The networks of interactions between atoms and residues
define the web of dependencies and patterns of dynamic cou-
pling between domains in a protein, characterized by the
directed flow of information spanning multiple spatial and
temporal scales. An initial application of transfer entropy to
DNA binding proteins was the first to apply the asymmetry
of information transfer to protein molecular motions.61 Let X
be the time series for the center of mass of the ith residue
and, p(X) its probability distribution. Therefore it is possible
to measure the average number of bits needed to optimally
encode independent draws by using the Shannon entropy
HX = −∑

xpxlog p(x),62, 63 where the sum extends over all the
states that X can reach.

A. Transfer entropies

For a residue j �= i with a center of mass Y and, prob-
ability distribution p(Y); one could say that its trajectory is
independent of that of residue i if

p(yn+1|yn) = p(yn+1|yn, xn), (3)

where p(yn + 1|yn) is the conditional probability to find residue
j at state yn + 1 given its past yn, . . . , y1 and p(yn + 1|yn, xn) is
the conditional probability to find residue j at state yn + 1 given
the past of both i and j. In the case where there is not a flux
of information from X to Y then Eq. (3) is correct. On the
other hand, in the event that there is flux of information in any
direction, the divergence from correctness of Eq. (3) can be
quantified by the Kullback-Leibler entropy64 hence defining
the transfer entropy,65

TX→Y =
∑

p(yn+1, yn, xn) log
p(yn+1|yn, xn)

p(yn+1|yn)
. (4)

The transfer entropy between i and j is minimum and
equal to zero when the two residues are independent and there
is a maximum and equal to the entropy rate,

hY = −
∑

p(yn+1, yn) log p(yn+1|yn), (5)

when the residues are completely coupled. In order to mini-
mize artifacts within the time series, we use the normalized

effective transfer entropy given by66, 67

T E
X→Y = 1

hY

(
TX→Y − 1

Ntrials

Ntrials∑
n=1

TXsurrogate→Y

)
, (6)

where the second term is the average transfer entropy from
Ntrials surrogated samples of X, to Y.

B. The set � of most dominant residues

The total flux between two residues X and Y, can be cal-
culated by the equation,

DX→Y = T E
X→Y − T E

Y→X. (7)

Residues are selected according to the following rules: i
is selected if DX → Y > 0, residue j is selected if DX → Y < 0
and, if DX → Y = 0 then no residue is selected. The set of most
dominant residues � is then defined as the set of residues that
follow the rules above and also that are above a fixed cutoff
|DX → Y| ≥ Dcutoff.

IV. EXPERIMENTS WITH GGBP

To verify that our implementation was correct, we per-
formed analysis of coupled chaotic Ulam maps, for Henon
maps and for autoregressive processes. In addition, as a more
challenging test case, we used the Glucose-galactose bind-
ing protein (GGBP).68 The two domains of GGBP exhibit a
0.5 rad hinge opening motion from one state to the other. The
structure of the open state for an unbound glucose-galactose
binding protein (GGBP) was crystallized by Borrock et al.
(PDBID:2FW0) (Ref. 68) at 1.55 Å. For the purpose of test-
ing we used both DIMS transitions and we applied a constant
pulling force along the line determined by residues Phe:142
and Leu:144 to create a system with a known directional
change (highlighted in green in Figure 2). The size of this
force was very small, sufficiently so that inspection of un-
steered versus steered simulations in visual molecular dynam-
ics (VMD)90 would look identical. Thus, the applied force
was meant only to enable us to simulate a situation with a
clear set of degrees of freedom that lead and others that should
lag, rather than a simulation that was dramatically and artifi-
cially shifted too strongly to a non-equilibrium situation.

FIG. 2. A pulling force is applied along the line defined by residues Phe:142
and Leu:144 (highlighted in green). The arrows in red represent the modes
determined from a PCA of the pulling trajectory.
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As a comparison point for our methods, we performed
a PCA analysis over the trajectory generated by this same
pulling along the residues Phe:142 and Leu:144. With the
transient nature of the pulling, it can be seen how PCA is
unable to detect the pulling direction (Figure 2). We now de-
scribe the data treatment and some results from our initial test-
ing for the transfer entropy analysis that we propose.

A. Time series treatment

The time series from MD describing the atomic mo-
tions of proteins are generally double precision real-valued
entries. Previous work on the application of time-series anal-
ysis has shown that to determine the joint probability densi-
ties in Eq. (4), from real valued data is not only computa-
tionally expensive but unnecessary. For example, it has been
shown that the amplitude of collective excitations, represent-
ing correlated global motions in the protein, samples multi-
centered distributions.20 Therefore, although single or double
precision arithmetic is necessary for the stability and accu-
racy of the simulations themselves, the accuracy of the anal-
ysis does not require this same level of precision. This can
greatly aid the determination of the probability distributions
while greatly reducing noise and increasing computational ef-
ficiency. We optimize our implementation by incorporating
high performance computing techniques (massively parallel
calculations extended over thousands of cores) and by apply-
ing dimensionality reduction and data mining techniques that
we briefly describe in the following sections. In other appli-
cations of transfer entropies61, 66, 67, 69, 70 discretization of the
data is performed mainly by using symbolization techniques.
In some cases the discretization maps the data to a single bit
time series (spikes), for example in the situations where this
analysis has been applied to data from neurophysiological in
epilepsy patients.

1. Piecewise aggregate approximation (PAA)

A time series �q(t) = (q1(t), q2(t), . . . , q3N (t))) of length
n can be represented by a second time series �Q(t ′)
= (Q1(t ′),Q2(t ′), . . . ,Q3N (t ′))) of length w < n, where each
element �Q(t ′) is computed according to71

�Q(t ′) = 1

�t

∫ t ′+�t

t ′
�q(t)dt, (8)

where �t = n/w. In other words, each vector of the time se-
ries �Q(t ′) is simply the average, over a time range �t, of
the time series �q(t). When �t is constant, PAA can be seen
as an attempt to approximate the original time series with a
series of linear functions. Other approaches of PAA include
using an adaptive mechanism to adjust �t according to cer-
tain rules, i.e., defining a threshold such that σ (t = T) < 〈q(t)
− 〈q(t)〉t = 1. . . T〉t = 1. . . T. For all calculations we set the time
range �t = 0.1 ns.

FIG. 3. Transfer entropies computed for DIMS trajectories for GGBP.

B. Transfer entropies from DIMS trajectories

In previous work, we generated a set of transi-
tions for GGBP;44 the simulations were carried out using
CHARMM27FF with crossterm map (CMAP)91 (Ref. 72)
with our implementation of DIMS and using an implicit sol-
vent model (ACE2).73 The rotational and translational degrees
of freedom were removed by rms fitting the target structure to
the evolving system and, the alignment atoms were selected
on the N-terminal domain (Residues 111 to 252 and, 293 to
305). By applying our transfer entropy analysis we were able
to identify the key residues in the DIMS transition (Figure 3).
The results show that the leading residues for the transition are
located in the three-segment hinge that connects the N- and
C-termini 3.

V. FINDING THE LEADING MODES ON NTRC

The structures of the inactive-state and active-state con-
formations of NtrC have been solved by NMR.74–76 At room
temperature NtrC samples both conformational states, how-
ever after phosphorylation the active states dominate the en-
semble set of populations. Recent studies suggest that the
transition pathway between the two conformations can be de-
composed in a series of segmented progress variables (order
parameters).59 For this study both states were solvated in box
of dimensions 20 Å × 20 Å × 20 Å with TIP3 waters, equili-
brated for 15 ns; the total number of atoms, including solvent
and ions, is 12 168 and 13 688 for the active and inactive states
respectively. Production runs were performed for 600 ns using
NAMD2.7 (Ref. 77) at NICS-Kraken. Analysis of the trajec-
tories was executed using our code at NCSA-Abe/Lincoln.

A. Computing the modes

A key insight is that the atoms with the strongest leading
effective transfer entropy can be used as a subset of degrees
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FIG. 4. Involvement coefficients for the two states of NtrC for different cut-
offs Dcutoff.

of freedom to define collective modes that are new candidate
order parameters. To accomplish this goal, once a cutoff and a
time-length for the interrogation of the dynamics has been de-
fined, is straightforward. The modes are determined by fluc-
tuations of the leading effective transfer components and to-
gether describe a set of collective motions.

For the residues in the set � we compute the covariance
matrix as in Eq. (1) over the full trajectory and obtain a set
of modes �η′

α . The involvement coefficients (Eq. (2)) for dif-
ferent values of the cutoff Dcutoff are presented in Figure 4. As
the cutoff increases fewer residues are selected as dominant,
however, the involvement coefficients are clearly increasing.
This suggests that the most dominant modes �η′

α are pointing
towards the end structure. Since the modes are transferring
entropy to the entire system biasing along these modes would
result in a collective bias for the entire system.

Since ηα is an orthonormal base we can define the cu-
mulative involvement coefficient μα of the first α principal

FIG. 5. Cumulative involvement coefficient as a function of time (ns) for the
first α = 20 modes.

components as

μα =
α∑

i=1

ν2
i , (9)

and measure how much of the overall difference is accounted
by the first α modes.

This last figure suggests that relatively short molecu-
lar dynamics simulations are converging onto the important
degrees of freedom determined by the effective transfer en-
tropy analysis (Fig. 5). It suggests that an algorithm for the
use of the effective transfer entropy modes can be readily
defined in CHARMM or other computer code. In that al-
gorithm the lowest frequency modes would be the direc-
tion of biasing that is applied through DIMS or another ap-
proach (e.g., transition path sampling or targeted MD). The
modes would be defined by a relatively short unbiased sim-
ulation and then followed by biasing for a similar amount
of time to the mode determination. For example, this fig-
ure would suggest that 5 ns of sampling for the effective
modes followed by 5 ns of sampling along the modes could
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be used to improve the confidence that the most important
intermediate states are being reached. This would then be re-
peated with unbiased sampling including light restraints on
the backbone atoms to define a new set of effective trans-
fer entropy modes. By continuing this process until the end
state is reached, a transition pathway would be defined. If this
process is then repeated for multiple starting points with var-
ious sampling windows and different random number seeds,
along with a random selection of cutoffs and mode selections,
then a good sampling of the intermediate space should be
obtained.

VI. COMPARISON TO OTHER METHODS
AND ASSUMPTIONS

It needs to be emphasized that the proposed method re-
quires dynamic information for the calculation. The time-
series comparisons that underlie the proposed method may
be sensitive to the system choice and the total amount of in-
formation that is captured. Our results in this paper suggest
that the total time needed to capture the leading and lagging
degrees of freedom is much less than we might have initially
assumed. But, the appropriate amount of time needed to col-
lect dynamic information before a calculation of the effective
transfer entropies is still an open question. It should be noted
that there should be no pulling forces applied or other biasing
if the suggestions for an order parameter are to correctly re-
flect motions from the unbiased state towards other directions.
In a similar way, though we have assumed that two confor-
mations are available for the calculation of the utility of the
approach for conformational change, there is no restriction to
two or more conformations for the calculation of the effective
transfer entropy. Instead, the method outlined suggests that an
effective order parameter that leads out from a particular con-
formational state may be defined by this approach and does
not require that the order parameter, by itself, lead towards
a specific endpoint. In that regard, then, the approach may
also be helpful for sampling on multiple intermediate states
that connect different larger conformational states. We have
yet to fully test the utility of this thought, so the directions
that the order parameter may lead could be coupled, as we
outlined here, to computational efforts for understanding con-
formational change between states, or for the purposes of en-
hancing sampling away from one state and towards other, yet
unexplored, states.

In addition, the method should be contrasted with other
approaches that have attempted to determine subsets of states
from long molecular dynamics data and then by extension to
define intermediates and their connections to the states.78 For
example, the Head-Gordon group has suggested using instan-
taneous normal modes to define changes in the AdK system.60

This relates to efforts using modes defined by essential dy-
namics analysis to sample on conformational change in the
same system,79 to work with Monte Carlo methods and col-
lective modes80, 81 as well as to efforts using amplified col-
lective modes.82 Our work on AdK suggests that the confor-
mational change is much simpler than in NtrC, and that the
optimal order parameter may be easier.41 Other groups have
emphasized that cracking of secondary structural elements

may be important for conformational change in AdK and
should be considered in conformational change.83 The current
approach does not make any assumptions about the nature of
the secondary structure of the domain motions needed for the
conformational change.

In a related way, there is research from the Pande and
other groups that is attempting to define Markov models based
on long-dynamics simulations. In principle, the Markov mod-
els should also define the reduced descriptors needed for tran-
sitions between the Markov defined states. In practice, the ap-
proach outlined in this contribution may help with improving
sampling between the states defined by the Markov models,
since the intermediates may well be undersampled relative to
the states themselves.84

Work within the Thorpe group has suggested that con-
formational change can be considered in terms of the peb-
ble game and degrees of freedom that are available from
a static structure.85 In that regard the current contribution
may be thought of as finding those most important subsets
of degrees of freedom that lead the change, as opposed to
defining solely the available subset. It may be fruitful to de-
fine more fully what types of correlated motions are most
likely to lead to order parameters and what less likely. This
would be another interesting extension of this work and would
complement work on static structural analysis. In a some-
what similar manner, simpler chemical systems have sug-
gested that algorithms can be designed to follow peaks and
valleys on adiabatic surfaces based on a single structure to
define transition states.86, 87 Others have suggested that an
improved understanding of the connections between tem-
perature and transitions would aid an understanding of the
intermediates.88

Finally, there is a growing body of work addressing the
limitations of principal component analysis and this suggests
that there may be connections between the effective transfer
entropy and the improved resolution of non-Gaussian anal-
ysis of long molecular dynamics trajectories.26 While the na-
ture of these connections remains to be understood, it suggests
that the non-Gaussian components of motion may be the most
important determinants of change out from the system. This
could also tie into work from the Clementi group that is try-
ing to find dimensionally reduced representations of dynamic
conformation space.89

VII. CONCLUSIONS

A molecular understanding of how protein function is re-
lated to protein structure will require an ability to understand
large conformational changes between multiple states. Unfor-
tunately these states are often separated by high free energy
barriers and within a complex energy landscape. This makes
it very difficult to reliably connect, for example, by all-atom
molecular dynamics calculations, the states, their energies,
and the pathways between them. A major issue needed to im-
prove sampling on the intermediate states is an order param-
eter – a reduced descriptor for the major subset of degrees of
freedom – that can be used to aid sampling for the large con-
formational change. In this paper, we present a way to com-
bine information from molecular dynamics using non-linear
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time series and dimensionality reduction, in order to quanti-
tatively determine an order parameter connecting two large-
scale conformationally distinct protein states. The results pre-
sented show that the leading modes can be computed from
short simulations. This new method suggests an implemen-
tation for molecular dynamics calculations that may dramati-
cally enhance sampling of intermediate states.
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