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Trait-based approaches have long been a feature of physiology and of ecology. While the latter fields
drifted apart in the twentieth century, they are converging owing at least partly to growing similarities
in their trait-based approaches, which have much to offer conservation biology. The convergence of
spatially explicit approaches to understanding trait variation and its ecological implications, such as
encapsulated in community assembly and macrophysiology, provides a significant illustration of the
similarity of these areas. Both adopt trait-based informatics approaches which are not only providing
fundamental biological insights, but are also delivering new information on how environmental change
is affecting diversity and how such change may perhaps be mitigated. Such trait-based conservation
physiology is illustrated here for each of the major environmental change drivers, specifically: the con-
sequences of overexploitation for body size and physiological variation; the impacts of vegetation
change on thermal safety margins; the consequences of changing net primary productivity and
human use thereof for physiological variation and ecosystem functioning; the impacts of rising temp-
eratures on water loss in ectotherms; how hemisphere-related variation in traits may affect responses to
changing rainfall regimes and pollution; and how trait-based approaches may enable interactions
between climate change and biological invasions to be elucidated.
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1. INTRODUCTION
The investigation of traits lies at the heart of physiology.
Although no physiologist imagines that traits can be
considered independent of the organisms in which they
are manifest, the complexity of physiological investi-
gations and the dictates of experimental biology mean
that traits typically form the foundation of investigations
[1–4]. This trait-based focus extends to evolutionary
physiology and to macrophysiology, which seek to
explore the evolution of physiological variation and its
ecological implications over a range of spatial and
temporal scales [5,6]. It is also entirely characteristic
of mechanistic physiology, which includes investiga-
tions of the genetic and biochemical foundations of
physiological traits [7,8]. In consequence, a trait-based
approach is typically neither considered unusual,
nor controversial in physiology. Moreover, it is widely
appreciated that to understand how an organism func-
tions in a given setting, and how variation in that
functioning may affect birth and death rates, so ultimately
determining fitness, various trait-based approaches must
be integrated [2,9].
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Perhaps reflecting both the origin of ecology as a
sub-discipline of physiology [3] and their subsequent
partial separation, trait-based approaches have, like-
wise, long been a feature of ecology [10–12], but a
more controversial one. Recent calls for a further focus
on trait-based approaches [13], and contemporaneous
discussions of how such approaches need better
integration [14,15], but may still fail to live up to expec-
tations that have been built around them [16], illustrate
the point. Nonetheless, considerable attention is now
being given to trait-based approaches in ecology. Several
areas stand out in this regard. In no particular order
these are functional diversity, its measurement and
demographic implications [12]; trait-based community
ecology [17,18]; community phylogenetics [19,20];
and phylogenetic niche conservatism [21]: all of which
are variously concerned with trait variation and
its implications.

Although the emphasis of physiology and ecology
usually lies either at different levels in the biological
hierarchy or on different traits, the latter often
simply reflects either interest or data availability [8].
In consequence, it is obvious that much scope exists
for integration of the ecological and physiological
trait-based approaches, especially to inform conserva-
tion biology. At times such integration is almost a
matter of routine (e.g. the integration of metabolic
rate data into the Pantheria database of life-history
This journal is q 2012 The Royal Society
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Figure 1. Various theoretical representations of the relationship between the environment, some form of trait or species source
pool and the final set of traits or abundances. (a) The relationship between trait distributions and performance filters used by
Webb et al. [14]. (b) The approach taken by Kearney & Porter [29] to illustrate the relationship between species distribution
models (a statistical description of what goes on inside the black square), and mechanistic niche modelling, which is explicit

about the internal processes. (c) The macrophysiological approach described by Chown et al. [30]. (d) The relationship
between isolation and time and how this may influence community assembly and phylogenetic relationships among species.
The different coloured dots represent different species, and the coloured island the filter to colonization of such an isolated
area (adapted from Emerson & Gillespie [19]).
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traits [22,23]). However, much insight into the
mechanisms underlying variation in biodiversity may
be gained by taking a more formal approach to such
integration. This could be done in several ways, but
a useful illustration thereof can be provided by consi-
dering the trait-based theoretical framework for
understanding community structure and function
proposed by Webb et al. [14].

Their framework comprises an underlying trait
distribution (from the regional pool of individuals),
a performance filter which relates to sorting of individ-
uals and natural selection in a given environmental
context, and subsequent community structure and
function. Spatial or temporal variation in the envi-
ronmental context may then lead to variation in
community structure and ecosystem functioning. The
performance filter is considered as the relationship
between the environmental context and performance
(e.g. water-efficient organisms perform better in an
arid setting). In the context of mechanistic and environ-
mental niche modelling, the effects of the filter are
equivalent to those described by the form of species
response curves to indirect, direct and resource environ-
mental variables, which result in variation through space
Phil. Trans. R. Soc. B (2012)
in abundance and distribution [24,25]. Likewise, the
effects of the performance filter are directly comparable
with the entry, exit and transformation rules described
for macrophysiology [3]. In this case, the entry rules
describe how the performance filter might prevent or
allow access to a new assemblage (through differential
probabilities of dispersal, establishment, growth and
spread, not co-incidentally also representing the stages
typical of biological invasion models [26]), or enable
access through speciation. The exit rules consider
extinction, which might take place because of a change
in the environmental context, and the transformation
rules describe the responses by organisms, either
within generations (usually in the form of phenotypic
plasticity [27]) or across generations, to the environ-
mental context or changes therein. How fast such
transformations might take place and what that means
for community structure and function is well explored
in a context that is being recognized as closely allied to
trait-based community ecology [28]. The similarity
thereof to community phylogenetics [19] can be readily
discerned (figure 1).

These approaches are concerned with environment–
assemblage relationships [18] and are thus focussed on



Table 1. A matrix of species (i) by sites ( j) indicating how physiological variables may be included in such a matrix and can

provide insight into intraspecific, interspecific and assemblage-level variation [30]. The variable is critical thermal minimum
(CTmin) [32]. The italicized variables indicate intraspecific variation across space. Interspecific variation (entries in bold) is
calculated as a mean value for the species at the centre of their latitudinal range, while assemblage characteristics are the
mean (bold-italic) and the variance of a trait across all species at a given site.

species by sites matrix for critical thermal minimum (8C) interspecific variation

i sites/j species site A (408 S) site B (388 S) site C (358 S) site D (308 S) mean CTmin mean latitude (8 S)

species 1 4 5 6 8 5.8 35.8

species 2 3 4 7 4.7 37.7
species 3 3 4 3.5 39.0
species 4 2 2.0 40.0
mean assemblage value 3 4.3 6.5 8

assemblage variance 0.7 0.3
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what might be considered one of three levels that can be
investigated when examining spatial variation in trait
diversity—intraspecific, interspecific and assemblage
[31]. In a spatially explicit context, the relationship
between the three levels can be readily comprehended
[30] (table 1). Comparative physiology is most usually
undertaken at the intraspecific and interspecific levels,
with assemblage-level analyses being much less
common [3]. By contrast, trait-based ecological investi-
gations focus on the assemblage level [18] and how
variation among individuals and the contributing species
pool might result in assemblage level characteristics.
Other areas of ecological endeavour also adopt a similar,
trait-based approach, but mostly at the intraspecific level
to understand environmental variation in abundance and
its dynamics. Most recognizable in the former case is
mechanistic niche modelling [29], while spatially explicit
population viability analyses or individual-based animal
population models are characteristic of the latter
[33,34]. The spatially explicit approach may also take
several other forms [35,36], though all readily familiar
as trait-based approaches that seek to understand some
composite measure of the assemblage (e.g. abundance
or species richness). Indeed, in at least some instances,
the relationships between these approaches are simply
taken as given, to assess the extent to which particular
modelling approaches may provide insights into commu-
nity composition or changes in species distributions
through time [24,37]. These various developments
clearly underline a growing recognition of the signifi-
cance of trait–environment relationships in all aspects
of biology, including applied areas such as the origins
of wine chemodiversity [38]. Much scope exists for
their integration, especially across the physiological and
ecological arenas (figure 1).

At least from the physiological perspective, a key
feature of discussions of trait-based, spatially explicit
approaches is the claim that they will not only improve
understanding of current ecological patterns, but will
also facilitate the development of ecological fore-
casting, especially of the responses of species and
ecosystems to environmental change [25,39–41].
While the major drivers of environmental change are
now reasonably well understood (habitat alteration,
overexploitation, climate change, pollution, species
introductions) [42], forecasting the biodiversity out-
comes thereof, and especially of interactions among
Phil. Trans. R. Soc. B (2012)
these drivers, remains among biology’s greatest chal-
lenges [25,43–45]. In consequence, the main focus
of this review is to show that this claim is largely
being borne out, and a consequence of doing so is
the development of science that is of considerable sig-
nificance in conservation policy. Importantly, this
significance does not only flow from evidence that is
both robust and widely agreed, to use the IPCC
language [46]. Rather, it also emerges from the identi-
fication of findings where evidence is more limited and
where agreement remains low. The approach taken
here will be to examine, from a trait-based perspective,
the vulnerability of diversity (sensu [45]) to the major
environmental change drivers, with the predominant
focus being on sensitivity and to a lesser extent
adaptive capacity.
2. OVEREXPLOITATION
Human overexploitation of biodiversity is now widely
appreciated, although the significant consequences of
the reduction of populations of once common species
perhaps less so [47]. Nonetheless, it is clear that
exploitation can be rapid (figure 2), and that larger
bodied species and larger individuals of those species
are often singled out. One recent survey of the out-
comes of human predation revealed that of the 297
cases examined, declines in size attributes of on aver-
age 18 per cent had occurred in 95 per cent of them,
and at rates typically much faster than under circum-
stances of natural change [50]. The selection of
larger individuals and species is widely recognized
both in terrestrial systems, such as in the case of hunt-
ing and specimen collection, where large trophies or
individuals are preferred or are more valuable
[49,51,52] (figure 2), and in aquatic systems, notably
fisheries, where larger individuals and species tend to
have shown the most substantial declines associated
with human interventions [53–55]. More generally,
the phenomenon is known as trophic skew [56]. More-
over, although the relationship between extinction
probability and size is complicated by several factors,
including previous size-based extinction filters
[57–59] and human assessments of species’ ecology
[60], and a positive relationship not always found [61],
on average, an association between body size and
extinction probability is typical of a wide range of
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Figure 2. (a) The trade in ivory through Durban harbour (South Africa) over time in the 1800s. Note how rapidly the supply
from across the eastern parts of the sub-continent was diminished (redrawn from data in McCraken [48]). (b) The relationship
between body mass and US dollar prices for various African mammal families (redrawn from Johnson et al. [49]).
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groups [62]. Thus, large-bodied species and individ-
uals not only have been differentially affected by
extinction, but are also, in several instances, most
prone to on-going threat. Through ecological time,
such relationships between size and extinction prob-
ability may have been driven by underlying
relationships between size and abundance, and size
and intrinsic rates of increase [63], but additional
pressures are now clearly being brought to bear that
are not typical of circumstances prior to the evolution
of organized human society [50].

From a conservation physiology perspective, the
implications are straightforward, and have been
called the ‘erosion of large areas of phenotypic phase
space’ [25]. That is, because so many traits are related
to size [64], the removal of large individuals and
species means the loss of a wide variety of physiological
features or portions of particular trait distributions
(figure 3). The food web and ecosystem functioning
consequences of size and size loss are widely appreci-
ated [25,56,65], but other features may also be
Phil. Trans. R. Soc. B (2012)
affected. These include the loss of particular physio-
logical functions associated with large size, such as
regional heterothermy in fish [25], as well as signifi-
cant characteristics such as stress resistance. The
latter case may apply across a wide range of organisms
because, typically, storage compounds scale isometri-
cally with body mass (i.e. m1.0) [64,66], while
metabolic rates and water loss rates tend to scale allo-
metrically (m0.67–1.0) [67,68]. Large individuals and
species are, in consequence, frequently better able to
overcome stressful periods than smaller ones, which
may explain at least some patterns in size variation
through space [69]. Should global climate change-
related forecasts of increases in rainfall variability,
including, for example, more prolonged drought
periods, in many areas be borne out, as seems likely
[70], populations may be more prone to extinction
than was the case previously, resulting in food
web changes that might not have been expected
based on assessments of abundances of significant
species alone.
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Figure 3. The removal of large-bodied individuals and large-
bodied species (indicated by the red rectangles) will eventually

lead to the removal of several forms of physiological function
owing to the strong relationships between size and function.
This may be the case even if relationships are significantly
negative, but in the case of no relationship the effect may not
be realized.

Review. Trait-based conservation physiology S. L. Chown 1619
3. HABITAT ALTERATION
Habitat alteration is one of the most significant anthro-
pogenic factors affecting biodiversity [42]. Much
attention is rightly focussed on forest loss, but habitat
alteration may also be a consequence of biological inva-
sions, such as by trees [71], or trophic cascades as a
consequence of species removal [72]. Many of the
effects thereof are direct, as a result of changes to food
availability and the structure of the environment. A
noteworthy example of the latter is the effect of invasive
alien vegetation on sex determination in crocodiles [73].

However, substantial impacts as a consequence of
changes to climate and microclimate, mediated through
specific traits, may also be realized. For example, one of
the major challenges facing ectotherms in subtropical
and tropical environments is keeping their body temp-
eratures below those that may prove sublethal or lethal
[74]. This is largely done through behavioural thermo-
regulation. Thus, changes in vegetation cover, such as
through deforestation, will substantially alter the ability
of ectotherms to thermoregulate, especially under cir-
cumstances of increasing global temperatures [74].
However, because climate change includes changes in
precipitation, and is being accompanied by on-going
deforestation, matters may be substantially more com-
plicated, as has been shown in a recent analysis of
thermal performance traits in squamate reptiles [75].
Preferred body temperatures (which are often close to
optimal temperatures) are most closely (and negatively)
related to precipitation rather than to environmental
temperature variables. Thus, if tropical climate change
includes an increase in cloud cover and precipitation,
as has been reported for several areas by the IPCC
[76], these animals may suffer much less of an impact
than previously thought, especially if their thermal
safety margins are not quite as narrow as previously pre-
dicted [75]. By contrast, if drying affects forest cover (as
detected through productivity, for example) [77,78],
and if subtropical regions, where thermal safety margins
are already narrow, are most significantly affected by
Phil. Trans. R. Soc. B (2012)
such reductions in cloud cover and precipitation, risks
may be elevated [75]. Substantial conversion of subtro-
pical savannah and other subtropical habitats is also
taking place [79,80], making vegetation cover less
readily available. In combination, these factors could
mean considerable future extinction risk for squamate
reptiles in these regions. Climate change-related risk
to subtropical terrestrial reptiles has been forecast
using a different, though related, approach and to
some extent borne out through empirical surveys of
lizard population extinctions [81]. However, the com-
plexities of variation in available environmental
(operative) temperatures might also temper the global
extent of the risk [82]. Likewise, substantial differences
in drought and net primary productivity (NPP) between
the Northern and Southern Hemispheres [83] may
further complicate matters. What these trait-based
approaches highlight is that interactions between habitat
alteration and climate change, including direct effects of
vegetation change on precipitation, are likely to make
forecasts of extinction probabilities much more complex
than they first appear. Thus, while the evidence for extinc-
tions and their on-going likelihood is robust, agreement
on how thiswill playout spatially cannot yet be considered
high, emphasizing the significance of mitigation strategies
both for climate change and habitat alteration [75,79].

Humans are also markedly affecting a further emer-
gent property of habitats—their primary productivity.
Determining just how much of an impact changes in cli-
mate are having on NPP or net ecosystem productivity
and whether the trends are significant is not straightfor-
ward, making the field controversial [77,78,83] (see also
responses to some of these works). One contentious
study suggests that NPP has declined significantly over
the last decade in the Southern Hemisphere, but
increased over the Northern Hemisphere [83], while
an earlier work recorded an increasing trend between
1982 and 1999 [84]. Moreover, humans appropriate
approximately 24 per cent of terrestrial NPP [85].
From a conservation physiology perspective, the impli-
cation is that a range of traits may be affected in
unpredictable ways, largely through effects on body
size. A recent synthesis of the factors underlying spatial
and temporal body size variation has suggested that
eNPP, or ecologically and evolutionarily relevant NPP,
has a significant positive effect on body size, resulting
in most of the patterns seen globally [86]. If this turns
out to be the case, and humans alter NPP (and accord-
ingly eNPP) profoundly, then responses through
variation in body size should be marked. Few studies
have sought such an effect, with most investigations of
size-related trends being interpreted in the context of
changing temperatures [87,88]. Clearly, this is an area
where the evidence is limited and agreement less than
robust [89], but one that deserves further exploration.
4. CLIMATE CHANGE
Trait-based approaches have featured conspicuously in
explorations of the biodiversity impacts of climate
change, largely through mechanistic niche modelling
[29], but also by providing insights into how phenoty-
pic plasticity will affect, and in some instances is
affecting, species responses to change [32,44,90].
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More recently, they have further come to prominence
as a consequence of macrophysiological investigations.
These informatics-type approaches have demonstrated
limited thermal safety margins for ectotherms in the
tropics and subtropics [75,91], a topic recently
reviewed in depth [92]. Significantly, they have also
shown relatively limited geographical variation in
upper thermal limits [93,94], including much more
limited phenotypic plasticity, evolutionary lability
and heritability than is the case for lower thermal
limits and some other physiological traits [32,41,
95–97]. The consequences for biodiversity of this con-
servatism in upper thermal limits are clearly negative
given the likelihood that most ecoregions will, by
2070, face monthly temperature averages more than
two standard deviations from the 1960–1991 baseline,
with tropical regions experiencing these conditions
soonest [98]. Indeed, these consequences already
seem to be playing themselves out [81]. Threats to tro-
pical organisms are not only most pronounced for
ectotherms. A recent, trait-based investigation for
mammals suggested that tropical, small-bodied and
specialist species are likewise at particular risk from
changing climates [23].

Changing thermal regimes have rightly been the
focus of much of this trait-based macrophysiology.
However, much change in precipitation regimes is
not only being forecast, but is also now being realized
[76,78], and interactions with changing thermal
regimes are affecting several components of terrestrial
systems, such as evapotranspiration and NPP [77,83].
Many areas, especially in the Southern Hemisphere,
seem to be under increasing water stress [83], at
least given current trends, and many of them in any
case are water-limited [99]. For ectotherms, this
could further spell substantial potential difficulties
under climate change. One of the first studies to inves-
tigate how such fitness costs might be realized used a
standard environmental tolerance evolution model
[100], indicating that organisms in tropical and north-
ern high latitude areas would experience the most
significant impacts of changes in precipitation. This
outcome is, at least for the higher latitude regions,
somewhat contrary to recent findings of substan-
tial drought in the Southern Hemisphere [83], but
nonetheless highlights the considerable differences
between the hemispheres. It also emphasizes the
need to consider the potential effects of changing
water stress on small ectotherms.

One significant group of ectotherms that may be
particularly prone to such effects is the insects, given
their small size and susceptibility to desiccation
[101]. Just how vulnerable they may be can readily
be seen by considering not only the direct effects of
changing precipitation regimes, but also the indirect
effects of changing temperatures. The main avenues
for water loss in insects are the cuticle and respiratory
system. The former contributes most significantly
[101], but respiratory water loss in insects, especially
those exchanging gases discontinuously, may be
higher, per unit gas exchanged, than for many other
organisms, as a recent trait-based synthetic model
has demonstrated [102]. Increasing cuticular rates of
water loss with rising temperatures have been widely
Phil. Trans. R. Soc. B (2012)
demonstrated in insects [103], with some studies
showing that insects and other small ectotherms may
alter their phenotypes to limit such loss [104,105].
High vapour pressure deficit likewise causes increases
in water loss rate [103]. Respiratory water loss also
rises with increasing temperatures, and some insects
may likewise alter metabolic rates to restrict such loss
[101,104].

Global increases in temperature therefore have
probably not only had the effect of increasing meta-
bolic rates and therefore the overall costs of living
[91], but through the associated respiratory water
loss [102], and elevated cuticular water loss, have
probably also increased water stress in many areas
(figure 4). Increases in the frequency and severity of
drought or declines in soil moisture are likely to have
exacerbated this effect. The trait-based conservation
physiology approach clearly indicates the theoretical
potential for this effect. However, just as is the case
for increased energetic costs [91], whether such an
effect has been realized or whether phenotypic plas-
ticity has been sufficient to offset it [106] is not
known. What does appear certain, however, is that
on average, the outcomes are likely to play out in
very different ways across the hemispheres. That
southern systems are typically more water-limited
than northern ones, and may have experienced greater
recent drought conditions is clear [77,78,98,99].
However, insects in these southern areas also tend to
have much shallower metabolic rate–temperature
relationships than their northern counterparts [107].
Thus, at least from a respiratory water loss perspective,
Southern Hemisphere taxa may already be capable of
coping with dry conditions to a greater extent than
northern groups. In the past, this rate–temperature
variation was interpreted as being indicative of some
form of metabolic cold adaptation [108], although
the latter has proven to be a controversial idea [109].
An interpretation of a shallow slope to effect further
water conservation is not only in keeping with the
idea of a somewhat profligate respiratory water econ-
omy in insects [102], but also is in keeping with
empirical information suggesting that acclimation
effects on the rate–temperature relationship have
more to do with water savings than metabolic
responses per se [104]. Moreover, it fits well with find-
ings that mammalian metabolic rates in southern
systems may also have evolved in response to variable
precipitation regimes [110], making such an interpret-
ation more general. For birds, a different response has
been found [111]. However, variation in metabolic
rates and the slope of the rate–temperature relation-
ship are probably a consequence of responses both to
environmental temperature and water regimes,
making a single, simple explanation of such rate vari-
ation unlikely. Nonetheless, substantial variation in
global change and in forecast species responses
among the hemispheres bears out previous arguments
for the ecological significance of consistent among-
hemisphere variation in traits and at higher levels in
the biological hierarchy [112,113]. Such variation
deserves further exploration because it is manifest in
a wide variety of traits and across many groups
[112,114,115].
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5. POLLUTION
One trait that is known to vary in consistent ways with
global geography is clutch size in birds. Typically,
clutch sizes are smaller (averaging ca 2.2–3.0) in the
tropics and Southern Hemisphere than in the higher
latitudes of the Northern Hemisphere (averaging
4.0–4.5), a consequence of greater seasonality in the
north [114]. This hemisphere-related variation is
found in other features of birds, such as a preponder-
ance of cooperative breeders in the Southern
Hemisphere, reflecting greater interannual environ-
mental uncertainty [115], and a tendency for range
sizes to be much larger on average in the Northern
Hemisphere than elsewhere [116].

The implications of this variation more generally for
conservation are only starting to be explored. Perhaps
one of the most intriguing, though as yet poorly
explored, consequences of clutch size variation is on
the susceptibility of avian populations to organochlorine
pollutants. Recent assessments of such pollutants in
bird eggs in South Africa [117,118] have recognized
that low clutch sizes and long lifespans may mean
greater pollutant loads in fewer eggs and larger risks
of eggshell thinning given similar environmental pollu-
tant levels [117]. Although the data for such effects
Phil. Trans. R. Soc. B (2012)
remain limited, they do suggest that novel, trait-based
approaches in conservation physiology may reveal
threats not previously recognized. An additional
example drawn from the same research group is the
threat that pollution by SO2 and from volatile organic
compounds (VOCs) emitted by planted forestry trees
may have on the blue swallow, a species listed as criti-
cally endangered in South Africa, and breeding in a
localized area on the eastern escarpment [119,120].
The suggestion is that SO2 pollution from the west
and locally emitted VOCs form sulphonates that have
a detergent effect on the extremely water-repellent plu-
mage of this swallow species adapted for flying in dense
fog. During heavy fog years, the swallows are thought to
have a lower flight capability and reduced breeding suc-
cess. While firm, direct evidence for these effects is
lacking [119], this example is a striking one of how con-
servation physiology focused on particular traits, in this
case plumage water repellence, may provide testable
hypotheses to account for conservation threats.

A further example of how trait-based studies may
inform understanding of conservation threats, and
actions to mitigate them, concerns variation in
heavy-metal tolerance among indigenous and invasive
marine bryozoans in Australia [121]. Comparison of
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Cu tolerance in laboratory assays revealed marked
post-exposure recovery of growth in the invasive
species compared with reduced feeding efficiency
and reduced growth of the indigenous species, a pat-
tern also seen in field trials. These results bear out a
combination of survey and field-trial data from New
South Wales showing that increasing heavy metal pol-
lution leads to a decline in indigenous species diversity,
and an increase in the richness and dominance of non-
indigenous species [122]. Harbours are not only
notoriously polluted environments, but also serve as
the point of origin of ballast water and hull fouling
[123,124]. If pollution serves to favour species that
are globally invasive, this may promote the invasion
of other areas via shipping traffic. While ballast water
agreements to mitigate invasion risks are in place, deal-
ing with hull fouling is a much more complicated
matter [125,126].

Pollution not only takes the form of contamination
by heavy metals and organic pollutants, but also
involves the deposition of elements such as nitrogen
[127]. Although the impact of increasing carbon has
received much attention from the perspective of
ocean acidification, it may also be having a substantial
effect on terrestrial systems as a consequence of phys-
iological differences between C3 trees and C4 grasses,
changing the balance between shrublands (thickets)
and grasslands [128,129]. The idea, based on a
carbon-allocation physiological mechanism, and sup-
ported by laboratory data [128,130], is that elevated
CO2 levels promote C3 tree growth, enabling the
trees to escape the fire trap created by flammable C4

grasses. Thus, increasing CO2 concentrations should
be leading to an increase in shrublands irrespective
of land-management practices. This is indeed what is
being seen in parts of southern Africa [131], although
the interaction with rainfall still remains an area that
needs to be more fully explored (see also [132,133]).
Nonetheless, a physiological model of carbon allo-
cation, coupled with laboratory experiments and field
data, has demonstrated that rising CO2 levels may
have a significant impact on an important, and
under-conserved biome in southern Africa, and on
similar systems elsewhere. Shrub encroachment effects
on other aspects of diversity have been documented,
illustrating a growing conservation threat [79,134].
6. BIOLOGICAL INVASIONS
Trait-based approaches have long been a feature of
attempts to determine just what makes a species likely
to move through the range of steps [26] from being
indigenous in one area to an invader with major impacts
in another [135]. Although early studies tended to
be somewhat equivocal, recent work has drawn atten-
tion to show how comparisons should be made to
understand the significance of traits during the invasion
process and to avoid introducing bias into the analyses
[136], and has shown that trait differences do indeed
exist between invasive and non-invasive species. For
example, a recent meta-analysis of invasive plant species
traits demonstrated that size, growth rate, shoot allo-
cation, and aspects of physiology and fitness all
contribute to invasiveness, though depending to some
Phil. Trans. R. Soc. B (2012)
extent on the comparisons made [137]. Although it
appears, therefore, that trait-based analyses would be
helpful for assessing invasion risks (see also
[138,139]), it has also been suggested that the traits
identified in these analyses are common to species that
do well generally in disturbed and/or nutrient-rich
environments [140]. Although this view has been con-
tested [141,142], and the argument is likely to
continue given that trait-based approaches have always
been contentious in the field [135], to some extent it
is moot from a conservation physiology perspective.
Identifying a suite of traits that might promote an under-
standing of colonization and of spread in any set of
organisms is useful for forecasting impacts of changing
environments and for mitigating risks of species intro-
ductions, and is similar to the identification of the
influence of response and effect traits in understanding
the ecological significance of functional diversity [143].

Understanding the consequences of variation in
response traits is particularly significant for assessing
the extent to which changing climates may alter the con-
sequences for any system of non-indigenous species.
Several suggestions have been made that non-indigenous
specieswill benefit from climate change to a greaterextent
than will their indigenous counterparts [144–146].
Clearly, such a broad brush approach overlooks the fact
that climate change will take place in very different ways
in different parts of the world, and that interactions with
other forms of disturbance will also be significant. None-
theless, in some temperate environments, differences in
the physiology of indigenous and non-indigenous species
do indeed seem to be favouring the latter, including in
ascidians as a consequence of faster growth rates under
warm conditions in the non-indigenous species [147],
and in springtails, as a consequence both of greater desic-
cation resistance under warm conditions in adults and
faster egg growth rates in the non-indigenous species
[105,148]. How general these effects are is not yet
clear, but they certainly point to the value of trait-
based approaches to understanding interactions between
climate change and biological invasions.
7. CONCLUSIONS
Physiology is concerned with how organisms maintain
function in the face of a changing environment, and
thus, even if indirectly, how trait variation is related to
fitness. That a physiological perspective would have
much to offer conservation biology should consequently
have been self-evident. However, this perspective has
been slow to develop, although the pace is now quicken-
ing. A major contributor has been the realization that,
despite the caveats associated with so doing [149], a
macrophysiological approach can provide valuable
insights into conservation problems, and indeed identify
several that may have been missed. The limited scope
for evolution of upper thermal limits in terrestrial
ectotherms and the narrow safety margins for tropical
and sub-tropical organisms are clear examples. In
essence, much of this value has resulted from the
application of informatics approaches to trait-based
questions in physiology and conservation, in much the
same way that the application of informatics approaches
has led to the novel insights of macroecology [150].
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While the power of informatics is widely recognized in
the context of gene and metabolic function, its ability
to provide fundamental insights in other areas is growing
in appreciation [107,151]. Conservation is in a strong
position to benefit significantly in the future from
these developments. However, the realization of such
benefits will depend fundamentally on the extent to
which trait information is compiled, collected and
made broadly available in ways similar to that adopted
for genetic information. Considerable work on plants
has revealed which traits might be most useful, and
much progress has been made in compiling trait data-
bases [152]. Similar progress is being made for some
vertebrate groups [22], though how useful some of the
traits might be more generally (as opposed to simply
being available) is not yet clear. For invertebrates, less
attention has been given to compiling trait databases,
although the significance of doing so is appreciated
and in some cases has commenced (e.g. for freshwater
taxa [153,154]). For terrestrial taxa, compiling a set of
databases does beg the question of what traits might
be significant, especially given that few traits are routi-
nely investigated for the same taxa [155]. At least
for insects, it would seem that mass, critical thermal
minimum and maximum, thermal optimum, pre-
ferred temperature and survival of desiccation would
be a good place to start given that these variables
influence assemblage membership in a host of groups
[32,94,156,157]. Irrespective, even traits which are rou-
tinely measured, such as mass, are rarely compiled in
publicly accessible databases [69]. Conservation physi-
ology [158] provides important reasons and impetus
for doing so.
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