
Phil. Trans. R. Soc. B (2012) 367, 1688–1707

doi:10.1098/rstb.2012.0011
Review
* Autho

One con
integrati
predict
Ecophysiology meets conservation:
understanding the role of disease in

amphibian population declines
Andrew R. Blaustein1,*, Stephanie S. Gervasi1, Pieter T. J. Johnson2,

Jason T. Hoverman2, Lisa K. Belden3, Paul W. Bradley1

and Gisselle Y. Xie1

1Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331-2914, USA
2Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, Campus Box 334,

Boulder, CO 80309-0334, USA
3Biological Sciences, Virginia Tech, 2119 Derring Hall, Blacksburg, VA 24061, USA

Infectious diseases are intimately associated with the dynamics of biodiversity. However, the role
that infectious disease plays within ecological communities is complex. The complex effects of infec-
tious disease at the scale of communities and ecosystems are driven by the interaction between host
and pathogen. Whether or not a given host–pathogen interaction results in progression from infec-
tion to disease is largely dependent on the physiological characteristics of the host within the context
of the external environment. Here, we highlight the importance of understanding the outcome of
infection and disease in the context of host ecophysiology using amphibians as a model system.
Amphibians are ideal for such a discussion because many of their populations are experiencing
declines and extinctions, with disease as an important factor implicated in many declines and
extinctions. Exposure to pathogens and the host’s responses to infection can be influenced by
many factors related to physiology such as host life history, immunology, endocrinology, resource
acquisition, behaviour and changing climates. In our review, we discuss the relationship between
disease and biodiversity. We highlight the dynamics of three amphibian host–pathogen systems
that induce different effects on hosts and life stages and illustrate the complexity of amphibian–
host–parasite systems. We then review links between environmental stress, endocrine–immune
interactions, disease and climate change.
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1. INTRODUCTION
Infectious diseases are increasing at an unprecedented
rate [1] and are intimately associated with the dynamics
of biodiversity [2–7]. However, the role that infectious
disease plays within ecological communities is complex.
For example, infectious disease may cause popula-
tion declines and species extinctions [6,8] and alter
the structure and function of ecological communi-
ties [9,10]. Concurrently, however, parasites may also
play a role in promoting biodiversity and function as
indicators of ecosystem productivity and resilience
[11–13]. The complex effects of infectious disease
at the scale of communities and ecosystems are
fundamentally driven by the interaction between
individual hosts and pathogens. Whether or not a
given host–pathogen interaction results in progression
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from infection to disease is largely dependent on the
physiological characteristics of the host within the con-
text of the external environment. Here, we highlight
the importance of understanding the outcome of infec-
tion and disease in the context of host ecophysiology
using amphibians as a model system. Amphibians are
ideal for such a discussion because, as we discuss
below, amphibian populations are experiencing declines
throughout the world and disease is an important factor
implicated in declines and extinctions. Furthermore,
exposure to pathogens as well as the host’s responses
to infection can be influenced by a wide range of factors
related to physiology, including host life history, immu-
nology, endocrinology, resource acquisition, behaviour
and changing climates [14].

In our review, we first briefly discuss the relation-
ship between disease and biodiversity. Throughout,
we use the term ‘parasites’ inclusively to encompass
both microparasites (e.g. viruses, bacteria and fungi)
and macroparasites (e.g. helminths (worms), arthro-
pods). ‘Pathogens’ are types of parasites that tend to
cause pathology or disease in hosts under particular
This journal is q 2012 The Royal Society
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conditions. We highlight specific dynamics of three
important amphibian host–pathogen systems that
include viruses, trematodes and a chytrid fungus.
These pathogens induce a variety of different effects
on amphibian host species and life stages and serve to
illustrate the complexity of amphibian–host–parasite
systems. We then review links between environmental
stress, endocrine–immune interactions and disease.
Finally, as an applied problem linking host–pathogen
physiology across multiple spatial and temporal scales,
we discuss how climate change may influence patterns
of disease and amphibian conservation.
2. THE ‘BIODIVERSITY CRISIS’ AND AMPHIBIAN
POPULATIONS
A so-called ‘biodiversity crisis’ is exemplified by popu-
lation declines, range reductions and extinctions of
amphibian species around the world [15–18]. One
estimate suggests that the current extinction rates of
amphibians may be 211 times the background rate of
extinction [19]. According to criteria of the Inter-
national Union for Conservation of Nature, a higher
percentage of amphibians are threatened than birds
or mammals, with many amphibian populations and
species on the brink of extinction [16]. From an evol-
utionary historical perspective, amphibians may be
part of a sixth major extinction event [20].

There appears to be no single cause for amphibian
population declines. The causes for the population
decline or extinction of a given species may be differ-
ent from region to region and even in different
populations of the same species [14]. Amphibians, as
other organisms, are continuously exposed to numer-
ous stressors throughout their life cycle [21]. Natural
stress associated with competition, predation, resource
availability, reproduction and disease may be com-
pounded by human-induced stresses such as habitat
destruction, environmental contamination, invasive
species and changes in the climate and atmosphere.
These stressors affect amphibians at the molecular,
physiological, individual, population and community
levels. Moreover, there may be non-additive inter-
actions between more than one factor, interspecific
differences and even differences between life stages
in how amphibians react to stressors.

Amphibians are hosts for a wide range of infectious
organisms, including viruses, bacteria and fungi—
collectively known as the microparasites—as well as
trematodes, nematodes, cestodes, acanthocephalans,
mites and copepods—collectively known as the macro-
parasites [22–24]. While many such infections often
cause relatively little damage, some pathogens are par-
ticularly detrimental to amphibian viability, and
infectious diseases have been implicated in numerous
population declines [18,25–27]. Under certain con-
ditions, amphibian pathogens can induce a variety of
sublethal effects, including malformations, reduced
growth and development, and reduced foraging and
competitive abilities [21,28]. Moreover, pathogens
can kill individual amphibians. At certain levels,
mortality may eventually lead to local population
extinctions and even extinctions of entire species
[25,27–30]. In the sections that follow, we explore
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disease as an ecophysiological process before applying
these concepts to three pathogens that cause damage
to individual amphibians or entire populations.
3. DISEASE AS AN ECOPHYSIOLOGICAL
PROCESS
At its core, disease is both an ecological and physiologi-
cal process. From an ecological standpoint, infectious
diseases represent the product of interactions between
at least two species, a host and a pathogen, and
frequently many other co-occurring species in the com-
munity. For instance, parasite transmission can be
influenced by the presence of competitors, predators
and even other parasites [31–34]. From a physiological
perspective, processes such as infection and pathology
are strongly influenced by host immunity, endocrine
regulation, pathogen replication rate and body con-
dition that in turn are influenced by environmental
conditions. This suggests that broader integration
between ecological and physiological research (i.e. eco-
physiology, [35]) may be particularly useful for
understanding and forecasting infectious diseases in
human and wildlife populations [36].

Disease is a function of host response—and is marked
by disruption of physiological homeostasis. Pathology,
or damage to host cells and tissues caused by pro-
gression from infection to a diseased state, may cause
a modification of host behaviour and physiology. The
range of physiological responses employed by diseased
hosts broadly fall into two categories: tolerance and
resistance [37–39]. Resistance strategies, or those that
directly limit pathogen burden, include immunity and
other processes whereby the host actively ‘fights’ infec-
tion. Tolerance strategies limit the damage caused by
infectious disease. Tolerance mechanisms include pro-
cesses for tissue repair [38], but in general are less
well-understood than those related to resistance. Hosts
may employ a combination of tolerance and resistance
strategies against pathogens that include behaviour,
immunity and other physiological responses [40–42].
The strategy employed to cope with and fight pathogens
plays an important role in driving pathogen evolution
and infection outcome in individual hosts, populations
and ecological communities [38,39,43,44]. Further-
more, host responses to infection and disease must be
considered within the context of the biotic and abiotic
environments because environmental factors drive
pathogen-specific traits as well as host responses.

Understanding how hosts physiologically respond
to infectious pathogens provides a mechanistic expla-
nation for disease outcome at the level of the
individual, which can also cascade up to higher levels
of organization. Changes in host physiology can be
quantified and establish a cause-and-effect link
between host response and infection outcome. How-
ever, identifying the relative importance of pathogen
exposure versus host defences may not be straightfor-
ward; in many cases, disease variation is probably
due to differences in exposure and host defences, high-
lighting the value of experimental research controlling
for exposure in evaluating the role of defences among
host species (although these factors clearly influence
one another over evolutionary time scales) [45–47].
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Moreover, pathology of amphibian infections func-
tions within a backdrop of additional anthropogenic
stressors. Factors including atmospheric change, habi-
tat destruction, invasive species and environmental
contaminants are likely to interact in complex ways
with infectious disease [48]. For example, a number
of studies have shown that contaminants may reduce
immunocompetence in amphibians, and increase
susceptibility to disease [49–51]. Similarly, ultraviolet
B radiation may interact synergistically with disease
to influence susceptibility [52]. Invasive species often
contribute new pathogens to native amphibian
assemblages and promote disease [53].

While temperature is an important factor mediating
pathogen growth and reproduction [54], it also interacts
with host physiology to affect disease susceptibility.
4. THREE HOST–PATHOGEN SYSTEMS
(a) Amphibian ranaviruses

(i) Overview
Ranaviruses are large double-stranded DNA viruses
(ca 105 kbp, 150 nm diameter [55]) that infect ecto-
thermic vertebrates [56]. Currently, three amphibian
ranaviruses have been identified: frog virus 3 (FV3),
Bohle iridovirus (BIV) and Ambystoma tigrinum virus
(ATV) [57]. Mortality events and/or infections invol-
ving viruses have been detected in amphibian
population across the globe [58–68]. While ranavirus
infections have been detected in both adult and
larval amphibians, the virus appears to be most lethal
in larvae [69]. Transmission of the virus is horizontal,
and can occur by exposure to infected water or soil or
via cannibalism of infected individuals [70]. Ranaviral
disease is characterized by systemic haemorrhage and
tissue necrosis, ultimately resulting in organ failure
(usually the liver or kidneys) within less than a week
of exposure [56,62].

(ii) Factors that influence pathogen abundance and
transmission
Disease dynamics in this system are a function of both
host and virus processes together with environmental
factors. Given that the transmission of ranaviruses lar-
gely occurs within aquatic habitats, we focus on
disease dynamics within the larval population of
amphibian hosts. The likelihood of exposure to rana-
viruses is influenced by multiple factors including
virus persistence outside of hosts. Many amphibians
use pond habitats as breeding sites. These sites are
characterized by variation in hydroperiod (i.e. pro-
portion of days with water). Importantly, amphibian
species differ in their preference for permanent
versus ephemeral water bodies (e.g. wood frogs
(Rana sylvatica) breed in temporary ponds while
American bullfrogs (Rana catesbeiana) breed in perma-
nent ponds). Although contaminated water and
sediment are effective media for virus transmission
within natural ponds, the virus is inactivated following
pond drying [71]. Thus, species that breed in tempor-
ary ponds that dry each year may be exposed to
ranaviruses less frequently, because viability of the
virus among seasons outside the host is unlikely [72].
Without frequent exposure to the virus, the selective
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pressure on such species may not be strong enough
to favour the evolution of resistance. In contrast,
species that breed in permanent water bodies may be
exposed to ranaviruses more frequently because the
pathogen can persist in water, sediment or other reser-
voir species [56]. Such frequent exposure may have
selected for resistance to ranavirus infection.

The presence of intra- and interspecific reservoirs in
the environment also can play an important role in
virus transmission. For example, adult and juvenile
tiger salamanders (Ambystoma tigrinum) function as
intraspecific reservoirs for ATV transmission by intro-
ducing the virus into the larval population [73].
Although pond drying may eliminate the virus from
the system, intraspecific reservoirs can act to maintain
the pathogen in the system between years. In perma-
nent water bodies, potential reservoirs include
amphibian species with larvae that develop over more
than one season (e.g. R. catesbeiana), that exhibit pae-
domorphosis (e.g. A. tigrinum), or with aquatic adults
(e.g. red spotted newts (Notophthalmus viridescens);
[56]. However, little is currently known regarding
interspecific transmission of ranaviruses within natural
amphibian habitats.
(iii) Factors that influence host responses to infection
Once introduced into a community, a number of fac-
tors may contribute to host pathology including host
traits [74] as well as environmental stressors. Owing
to similarities in innate and adaptive immune
responses to pathogens, species within the same
family are expected to show similar levels of suscepti-
bility to infection. Recently, one of us demonstrated
that host phylogeny was an important factor driving
patterns in species susceptibility to ranavirus infection
in the laboratory [47]: species in the family Ranidae
were more susceptible to infection compared with
species within the families Ambystomatidae and Hyli-
dae. These results support field patterns of frequently
reported die-off events in the family Ranidae [63].
However, the mechanisms underlying such family-
level variation in susceptibility have yet to be
examined.

In wild amphibian populations, mass mortality events
associated with ranaviruses have frequently been associ-
ated with individuals undergoing metamorphosis. Given
that metamorphosis is a natural period of immune
suppression in amphibians, it has been hypothesized
that susceptibility to ranaviruses (i.e. infection and mor-
tality rates) is highest during this stage of development
[56]. While this hypothesis was supported for several
species within the genus Rana, species tested from
other amphibian families were equally susceptible
across developmental stages [75,76].
(iv) Consequences of infection for amphibian populations
and ecosystems
Natural and anthropogenic stressors are common in
aquatic communities. Research over the last decade
has shown that environmental stressors could be impor-
tant contributors to ranaviral disease dynamics within
amphibian habitats. Water temperature is one environ-
mental stressor that could affect host susceptibility to



Review. Disease and amphibian declines A. R. Blaustein et al. 1691
ranavirus infection. For example, Rojas et al. [77]
reported an increase in ATV virulence at lower tem-
peratures, which appeared to be related to a decrease
in host immune function at colder temperatures. In
support, Maniero & Carey [78] reported a decrease in
T-lymphocyte proliferation and serum complement
activity at low temperatures in northern leopard frogs.
They hypothesized that a decrease in T-lymphocyte
production would result in decreased signalling of
B-lymphocytes, which would reduce antibody pro-
duction and, in turn, compromise immunity during
periods of lower temperature. Thus, it is likely that
prevalence of ranaviruses in amphibian populations is
influenced by water temperature [79].
(b) Trematodes and amphibian disease

(i) Overview
Digenetic trematodes are flatworm parasites (or flukes)
with complex life cycles involving sequential trans-
mission from a molluscan first intermediate host
(e.g. a snail) to an invertebrate or vertebrate second
intermediate host (e.g. a frog) to a vertebrate definitive
host (e.g. a bird) (although there is considerable vari-
ation around this basic template) [80]. Owing to the
biphasic life cycle of amphibians, which generally
includes an aquatic larval stage followed by a more ter-
restrial adult stage, they function as both second
intermediate or definitive hosts to hundreds of differ-
ent trematode species [22,81–83]. Infection is often
acquired in one of two ways. For some trematodes,
larval amphibians get colonized and invaded by free-
swimming infectious stages called cercariae, which
emerge from infected snails and actively penetrate
second intermediate host tadpoles. These parasites
will encyst within the amphibian tissue as metacercar-
iae, ultimately awaiting the frog host’s consumption by
a suitable definitive host [22,84,85]. Alternatively or
additionally, amphibians can become infected by con-
suming an infected host, such as an insect, a mollusc,
or another amphibian. In this instance, the amphibian
will function as a definitive host (i.e. the host in
which the parasite reproduces sexually). Thus, parasite
transmission is horizontal but depends on the conver-
gence of and interactions among multiple host species
within a community.
(ii) Factors that influence host responses to infection
Historically, it was often assumed that trematodes
caused little to no pathology in amphibian hosts
[22]. While often true, important exceptions have
emerged that have the potential to influence host sur-
vival and population viability. For instance, the
trematode Ribeiroia ondatrae has gained recent atten-
tion for its role in causing limb deformities in frogs
and toads [86–89]. This parasite, which uses rams
horn snails, larval amphibians and birds as its primary
hosts, causes increased mortality and grotesque mal-
formations in a wide range of North American
amphibian species [90,91]. These malformations,
which can affect greater than 50 per cent of emerging
frogs in a population, primarily affect the limbs,
including extra limbs or limb elements, missing
limbs, abnormal skin webbings and misshapen limb
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bones [92–97]. Intriguingly, malformations—while
detrimental to the amphibian—may be adaptive for
the parasite by increasing the likelihood an infected
frog is consumed by a suitable definitive host such as
a bird [87,89,98]. Other trematodes, such as the
broadly distributed echinostome group that infect
amphibian kidneys, have also been shown to influence
amphibian survival and morphological development
under certain conditions [99–101]. For instance,
exposure to cercariae of Echinstoma trivolvis can
cause renal impairment in early-stage tadpoles leading
to whole-body oedema or mortality.

Unlike infections by microparasites, macroparasites
do not generally reproduce within a single host. Thus,
the numbers of parasites observed within a host rep-
resent separate exposure events, rather than a single
infection followed by intrahost replication (as seen
for microparasites). Because the risk of pathology
depends on the number of parasites within a host
(intensity-dependent pathology), factors that influence
host exposure play a central role in driving disease risk
for macroparasitic infections. With Ribeiroia, for
example, the likelihood of a tadpole dying or become
malformed increases monotonically with the number
of cercariae to which it is exposed [91,93]. Corre-
spondingly, the mean Ribeiroia infection in an
amphibian population can be a strong predictor of
the malformation frequency among metamorphosing
frogs [95].

After accounting for parasite exposure, we can also
explore the factors that determine whether a host exhi-
bits pathology, which will be influenced by both host
resistance and host tolerance [38]. Experimental studies
involving trematode parasites and larval amphibians
have provided clear evidence that hosts vary in their
defences against infection. For instance, in a compara-
tive study involving standardized exposures of 13
amphibian species to Ribeiroia cercariae, Johnson et al.
[91] found that resistance, or one minus the proportion
of parasites recovered following exposure, differed by
two orders of magnitude among species. While some
species had low resistance (approx. 40% of parasites
recovered), others had near complete resistance (less
than 1% recovery), which probably reflects differences
in behaviour [102,103], development time and
especially immunity [49,51,104].

Variation in pathology can also be driven by differ-
ences in host tolerance, such that the risk of disease
differs among hosts even after accounting for infection
differences [43]. For instance, early-stage amphibian
larvae with smaller body sizes often exhibit lower
tolerance to infection and a higher likelihood of morta-
lity or other pathologies relative to late-stage larvae
[43,44,97,101]. The mechanism for this pattern is
not well understood, but may stem in part from the
proportional increase in tissue damage caused by para-
sites in smaller host individuals (or smaller species, i.e.
each parasite impacts a greater fraction of the host’s
total body volume). Finally, features of the parasite
under consideration will also influence pathology.
Larger trematode cercariae that use chemical proteases
to penetrate amphibian tissue typically cause more
damage than species with small cercariae that enter
existing host body cavities [89]. Taken together,
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these examples illustrate the multitude of both host
and parasite factors that jointly determine patterns of
disease in ecological communities.
(iii) Factors that influence pathogen abundance
and transmission
In natural systems, several ecological factors are likely to
influence trematode parasite exposure in larval amphi-
bians. Chief among these is habitat use and whether
an amphibian develops in the type of aquatic environ-
ment used by the snail intermediate host for a given
trematode. Ribeiroia depends on rams horn snails (Heli-
soma spp.) that are most common in lentic habitats such
as ponds and lakes; amphibians developing in streams
are therefore unlikely to be exposed or to develop para-
site-induced malformations. Thus, one of the greatest
predictors of amphibian exposure will be the density
of infected snails in a system multiplied by the number
of cercariae released per snail (parasite production).
Second, the timing of host development will affect the
number of parasites to which a host is exposed. Some
amphibians, such as wood frogs (Lithobates sylvaticus),
develop very early in the season and can sometimes
complete metamorphosis before pond temperatures
warm enough for snails to release large numbers of cer-
cariae. Moreoever, species that develop quickly (e.g.
western toads, 45 days to metamorphosis) will probably
be exposed to far fewer parasites than those with
extended larval development (e.g. bullfrogs, 2 years to
metamorphosis). Indeed, Todd [105] hypothesized
that rapid development and a more terrestrial life
style in amphibians represent evolutionary responses
to decrease water-borne infection risk.

Habitat usage can also have important effects on
parasite abundance and infection success in amphibian
hosts. The snail hosts used by Ribeiroia, for instance,
tend to be most common in lentic habitats that are
highly productive or eutrophic (see [106,107]). Exper-
imental studies by Johnson et al. [108] showed that
increases in nutrient enrichment, as might occur in
association with livestock grazing or fertilizer appli-
cation, can increase both the density of infected
snails and the number of cercariae produced per
infected snail. This led to a two- to fourfold increase
in infection within amphibian hosts [108]. Similar
links between nutrient enrichment and infections
have also been reported for other pathogens of both
humans and wildlife [109,110]. Rohr et al. [51] also
found that, alongside a positive effect of nutrients,
herbicides such as atrazine could further increase
infections in amphibians by reducing their resistance
to infection (although this pathway was not shown
for Ribeiroia specifically). These findings indicate that
agricultural habitats can enhance trematode infections
in amphibian hosts both by increasing parasite abun-
dance and by increasing infection success. It is worth
noting, however, that agricultural practices can also
cause a decrease in the activity of definitive hosts,
such as birds, highlighting the complexity of inter-
actions between land-use change, infection patterns
and amphibian pathology [102,111,112].

Finally, other species in the environment can influ-
ence tadpole exposure by reducing the survival or
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transmission success of parasite cercariae. In experimen-
tal studies, for instance, aquatic insects and small fishes
actively consume Ribeiroia cercariae, ultimately reducing
infection in amphibian hosts by up to 48 per cent [113].
Predation on parasites is considered to be one important
mechanism through which community diversity can
influence disease risk [34,114]. Alternate hosts rep-
resent another mechanism through which community
composition affects parasite success. While Ribeiroia
can infect a wide range of amphibian species, these
species differ considerably in their ability to support an
infection. As a result, the specific composition of the
larval amphibian assemblage has the potential to influ-
ence the ability of the parasite to spread from snail to
amphibian hosts and the resulting availability of infec-
tion for potential bird hosts. For instance, the presence
of hosts with low infection rates (such as gray treefrogs)
can significantly reduce the amount of parasites that
colonize more sensitive hosts (such as American
toads), causing an increase in amphibian survival, a
reduction in pathology, and a decrease in the total
number of parasites in the system [115]. While further
work is needed to understand the importance of such
mechanisms under natural conditions, these experimen-
tal results suggest that the composition of aquatic
communities have the potential to strongly affect
parasite transmission and patterns of amphibian disease.
(iv) Consequences of infection for amphibian populations
and ecosystems
Little is known about the consequences of trematode
infections for amphibian populations and aquatic eco-
systems as a whole. What is clear is that infections by
trematodes such as Ribeiroia can strongly reduce indi-
vidual host performance and survival. For instance,
while parasite-induced malformations can affect a
large fraction (e.g. 20–100%) of the recently metamor-
phosed frog population, few malformations are ever
observed in adult frogs returning to breed, suggesting
that such abnormalities are detrimental to frog survi-
val [94,98]. Furthermore, experimental studies have
demonstrated that malformed frogs have reduced
jumping distances, poorer foraging success, decreased
endurance and slower swimming speeds [98]. In natural
environments, malformed frogs were more likely to
occupy suboptimal habitats and allowed simulated pre-
dators to approach more closely than did their normal
counterparts [98]. Perhaps as a result, metamorphic
frogs with one or more malformations exhibited a 22
per cent lower biweekly survival rate relative to normal
individuals [98]. Considering that malformations have
been observed in a wide range of amphibian species,
including those known to be in decline, there is signifi-
cant potential for infections and malformations to
influence amphibian survival (figure 1).

Collectively, these observations suggest that infec-
tions by trematodes such as Ribeiroia have the potential
to affect amphibian population dynamics and, by exten-
sion, community interactions and ecosystem processes.
Nonetheless, the long-term data necessary to evaluate
this hypothesis are not yet available, precluding a
quantitative assessment of the influence of parasite
infection. Thus, while infection and malformations
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likely cause high mortality in larval and metamorphic
amphibians, survival of these life stages already tend to
be low and highly variable through time, such that the
mortality caused by parasites could be compensatory.
Moreover, given that the distribution of parasites such
as Ribeiroia is variable across space and requires the pres-
ence of other species such as rams horn snails, parasite-
induced impacts in one wetland could be alleviated by
migration from surrounding, parasite-free sites (i.e. a
‘rescue effect’).
Phil. Trans. R. Soc. B (2012)
(c) The chytrid fungus, Batrachochytrium
dendrobatidis
(i) Overview
The emerging fungal pathogen Batrachochytrium den-
drobatidis (Bd) has been detected on every continent
where amphibians exist [116] and is implicated in
numerous amphibian population declines and extinc-
tions globally [26,30,116]. A broad range of species
are susceptible to Bd; as of 2009, 350 amphibian
species have tested positively for Bd infection [116].



1694 A. R. Blaustein et al. Review. Disease and amphibian declines
Bd undergoes a complex lifecycle, consisting of
an infective, substrate-independent, aquatic zoospore
stage and a non-motile, substrate-dependent zoospor-
angia stage. A thermal optimum between 17 and 258C
exists for Bd growth and development [117]. Exposure
to temperatures exceeding 308C can kill Bd cultures
[117,118] and cold temperatures (less than 178C)
slow growth rates and lengthen zoospores maturation
time [117]. Woodhams et al. [119] showed that the
pathogen might compensate for these temperature
effects by increasing the total number of zoospores pro-
duced in each zoosporangia at non-optimal (cooler)
temperatures, when development rate is slowed.
Because temperature plays an important role in Bd per-
sistence and growth, seasonal variation in risk of
exposure to Bd is an important factor in mediating dis-
ease epidemics. For example, Bd-associated mortality
tends to be correlated with cooler seasons [120,121].
Bd also appears to have an optimal pH of 6–7.5 and
growth is slower at more acidic and more alkaline con-
ditions [122]. Some evidence suggests that Bd is not
killed by ultraviolet light (270–320 nm). However,
recent field data found a negative association of Bd
with ultraviolet radiation in Europe [123]. Bd is easily
killed by several disinfectants [124,125]. Bd is highly
sensitive to desiccation. Complete drying at room temp-
erature kills Bd within 3 h [124]. It has been suggested
that Bd may be capable of persisting in a ‘resting’
stage or in a saprobic form within the abiotic environ-
ment during unfavourable conditions [118,126] and
studies have shown that zoospores can survive for up
to seven weeks in lake water, three to four weeks in
deionized water [124], and up to three months in sterile
moist river sand without nutrients [122]. While abio-
tic optima exist for Bd and are likely to drive risk of
exposure, Bd can grow and reproduce outside of
these optima, allowing the pathogen to persist in both
temperate and tropical areas.
(ii) Factors that influence host responses to infection
Infection outcome, specifically manifestation of the
disease chytridiomycosis, varies considerably among
amphibian species [127–131]. Some species appear
highly susceptible to Bd [128], others may possess
resistance to the pathogen [127], and some species
vary more subtly within the middle of the ‘susceptibility
continuum’ [128,131].

Exposure to Bd is probably influenced in complex
ways by a number of species-specific life-history
characteristics operating within the context of the
biotic and abiotic environments [27,30,116,132]. For
example, Bancroft et al. [74] found that body size at
maturity is a good predictor of documented infection
for amphibian species in the continental United
States. As would be predicted in the context of an
aquatic pathogen, several studies have found that the
degree of reliance on aquatic habitat (versus terrestrial
habitat) is an important correlate of infection
[74,133]. Other host-specific traits, including social
behaviour, may predispose certain species to greater
risk of exposure to and infection with Bd [74,128].

Bd is chemically attracted to and infects keratinized
cells of amphibians [134]. Infection occurs in both
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larval and post-metamorphic stages of amphibian
development; larval infection is restricted to kerati-
nized tooth rows and jaw sheaths, while infection in
post-metamorphic amphibians may be spread over
the entire surface of the body since the epidermis is
completely keratinized. Larval infection may lead to
impaired foraging efficiency and therefore reduced
growth and slower development [135,136]. In post-
metamorphic amphibians, infection of keratinized
epidermal layers may lead to a disruption of electrolyte
transport across the skin and impairment of osmoregu-
lation, which can be fatal [137,138]. Pathogenicity of
Bd in amphibians may also be driven by damage to
host tissue caused by enzymes secreted by the fungal
zoospores and zoosporangia [139].

The metamorphic stage has been suggested as
the most vulnerable life-history stage in amphibians
[140,141]. During metamorphosis, amphibians under-
go a temporary period of hormonally induced
immunosuppression [141]. This may lead to greater sus-
ceptibility to disease at the metamorphic stage, or greater
pathology of infection at this developmental transition. In
a field survey, Russell et al. [142] observed the highest
frequency of infection and highest infection load in meta-
morphic amphibians, when compared with larval and
adult amphibians of the same species, surveyed at the
same location, at the same time.

Infection intensity, specifically the accumulation
of infection load above a specific threshold value,
may determine Bd dynamics within species [143] and
populations [140,144]. For the mountain yellow-
legged frog (Rana muscosa), Vredenburg et al. [144]
and Briggs et al. [140] found that across surveyed popu-
lations of various sizes, declines in frog numbers were
not evident until average infection intensity reached a
threshold level of zoospore equivalents. Above this
threshold, mass mortalities and population declines
were consistently observed. In a laboratory setting, mor-
tality is greatest in individuals with the highest infection
loads [138,143].

Responses to infection may include tolerance and
resistance strategies. The physiological mechanisms
employed through these strategies may determine
whether infection progresses to a disease state and
whether disease results in reduced fitness. Resistance
strategies to Bd are likely to include defensive
immune responses that may drive Bd pathogenesis. It
is unknown how Bd is recognized by the immune
system [145]. Innate responses have been the most
thoroughly studied aspects of immunity against Bd
[146–149] although the range of innate responses
studied has been limited [147,145]. For example, anti-
microbial peptides (AMPs) secreted from the glands of
amphibian skin have been well-studied aspects of
immunity against Bd [146,147]. AMPS constitute an
important and relevant defence against Bd by helping
to prevent initial colonization of the skin by the fungal
pathogen, and some studies have shown that AMPs
may correlate strongly with susceptibility to Bd
[148]. The full picture of pathogen-induced immune
regulation is likely to include other innate, adaptive
and signalling (e.g. cytokine) responses to Bd. There
is evidence of cellular and humoral responses to Bd,
with some evidence of cellular responses at the



Review. Disease and amphibian declines A. R. Blaustein et al. 1695
innate and adaptive levels, including skin inflam-
mation [150,151] and little support for a memory
response to the pathogen [149,152]. It is possible
that pathology of infection is caused not only by Bd
infection itself, but also from the inflammatory
responses triggered by hosts themselves. Immuno-
pathology is a little understood phenomenon in the
amphibian–Bd system.

Fever may be a part of the behavioural–physiological
repertoire in response to a pathogen and is the most
outstanding component of the acute phase immune
response [153]. Thus, Richards-Zawacki [154] discov-
ered that during a Bd epidemic, increases in the body
temperature of Panamanian golden frogs (Atelopus
zeteki) reduced the odds of infection. Geiger et al.
[155] showed that elevated temperature regimes
cleared Bd from Midwife toad tadpoles (Alytes
obstetricans), while Weinstein [156] and Retallick &
Miera [157] showed that housing infected adults at
high temperatures cleared experimental Bd infection.
Han et al. [158] found no evidence of behavioural
fever in larvae of four frog species exposed to Bd.

Tolerance mechanisms employed by amphibians
against Bd are relatively unknown. However, it is poss-
ible that some species naturally possess more effective
barriers to infection (i.e. increased skin thickness,
greater constitutive levels of protective mucus or
anti-fungal secretions from skin). The presence of cer-
tain strains of bacterial microflora on amphibian skin
may be important mechanisms of tolerance of Bd
infection (as they are not an active resistance strategy
employed by the host). Certain bacterial strains
found on amphibian skin produce toxins that inhibit
and also kill Bd [159–161].

In addition to amphibian-produced skin peptides,
recent evidence shows that the skin of healthy
amphibians is host to a diverse symbiotic bacterial
community [162–167]. Not surprisingly, in vitro
some of these bacteria inhibit Bd growth [159] by
producing metabolites that are likely to inhibit Bd
zoospore development or colonization [160,168].
Recent in vivo experiments suggest that supplementing
the skin microbiota with these anti-Bd bacteria can
actually reduce morbidity and mortality associated
with Bd infection in amphibians [169,170] and thus
reducing the natural microbiota can increase morbid-
ity following Bd exposure [171]. There is potential
for using beneficial bacteria for prevention and treat-
ment of Bd in threatened populations. However,
many basic ecological and evolutionary questions relat-
ing to these symbiotic communities are also being
discussed [7]. For instance, does natural selection act
on the structure or function of these communities
more strongly? And is richness per se of the community
important for disease resistance or is the presence of
single key mutualists driving Bd resistance? Rapid
advances in molecular sequencing technologies are
allowing for much more complete quantitative assess-
ments of these symbiotic communities and will allow
us to address many of these questions. For example,
McKenzie et al. [172] have recently completed the
first analysis of frog skin microbial communities and
have demonstrated clear species-specific communities
across sites.
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In reality, innate immunity on amphibian skin may
be a function of the balance of antimicrobial peptides
and symbiotic bacteria [173,174]. Antimicrobial
peptides might serve as a filter for selecting the sym-
biotic bacterial community, or may fill in gaps in
immune defence where symbiotic bacteria fall short.
The challenge will be to design integrative studies
that are able to examine the numerous defence mech-
anisms of frogs, both host and bacterially driven, that
all function to influence disease resistance in natural
populations of amphibians.

Genetic and phenotypic strain differences in Bd
may lead to differences in virulence, pathogen
growth and development [116,143], as well as infectiv-
ity [143,157,175,176]. Further, the type and the
magnitude of host physiological responses may ulti-
mately determine if an individual becomes infected
with a pathogen as well as the outcome of infection
after host and pathogen make contact [177].
(iii) Factors that influence pathogen abundance
and transmission
Both external (environmental) and internal (host-
specific) factors may drive patterns of susceptibility in
the amphibian–Bd system. At a global scale, climatic
factors—most notably patterns of temperature and
precipitation—have been correlated with disease suscep-
tibility [18,27,178]. Environmental factors may also
alter pathogen growth and development [117,119] as
well as behavioural, ecological and physiological
responses of hosts [30,116].

Exposure to Bd is determined by persistence and
transmission of Bd in the biotic and abiotic environ-
ments. Similarly, traits associated with certain
amphibian species, namely those that put them at
more or less risk of coming into contact with Bd,
drive patterns of disease across geographical regions
[74,133]. These traits may include affinity for certain
temperatures or social tendencies [74,128,133,158].
Once exposure to Bd occurs, host responses as well
as pathogen-specific traits play an integral role in
driving the pathology of infection.

Persistence of Bd in the environment and, therefore,
the chance of exposure to the pathogen may be driven
by the presence or absence and abundance of other
biota, especially certain reservoir hosts (i.e. hosts that
support maintenance and growth of the pathogen)
may change pathogen dynamics from density depen-
dent to density independent [179]. Several species
have been suggested to be reservoir hosts for Bd.
Most notably, the American bullfrog (Lithobates cates-
beianus) can persist with extremely high infection
loads without signs of infection or manifestation of
chytridiomycosis [53,127,128] and may be highly
competent disease reservoirs in some amphibian
assemblages [180]. Because larval amphibians can
support sublethal infection between larval and post-
metamorphic amphibians [181], it has been suggested
that the larval stage of amphibians may similarly serve
as a pathogen reservoir in the Bd system [141]. More-
over, the invasion of exotic reservoir hosts could
dramatically increase the Bd exposure in native hosts
whose susceptibility to infection is unknown [53].



1696 A. R. Blaustein et al. Review. Disease and amphibian declines
Because substantial variation in interspecific and
intraspecific susceptibility to Bd exists, it is possible
that exposure to Bd is dependent on species diversity
and identity in amphibian assemblages.

(iv) Consequences of infection for amphibian populations
and ecosystems
Because Bd has a global distribution and is associated
with numerous population declines and extinctions
throughout the world, one can expect changes in popu-
lations of sympatric species and within ecosystems as Bd
emerges. However, because different species, life stages
and populations may display different effects after
exposure to Bd, it is difficult to predict how the specific
changes will be manifested in natural systems. Recent
evidence suggests that Bd can alter community struc-
ture. For example, the presence of competitors and
predators can affect growth, susceptibility and survival
of larval amphibians exposed to Bd [182,183]. Sub-
lethal consequences of Bd infection can alter host
behaviours with consequences for disease dynamics.
For example, Bd can cause changes in schooling
larvae [158] and natural contact patterns between
hosts [184] may increase Bd transmission probability.

As Bd infection and amphibian declines occur in
some of the world’s most species-diverse communities,
examining Bd-induced changes in community structure
is of considerable importance. For example, high
amphibian species richness could underlie long-term,
low-level persistence of chytridiomycosis through
reservoir species [32].

Despite the rapid and continued spread of Bd, the
influence of host diversity on Bd dynamics is not well
known. However, recent experimental evidence by
Searle et al. [185] showed a dilution effect where
increased species richness reduced disease risk, even
when accounting for changes in density. The influence
of host species diversity on infection dynamics remains
an important topic in disease ecology for which the
amphibian–chytridiomycosis system may provide a
tractable test.

Recent studies have shown that chytridiomycosis also
has consequences at the ecosystem level. For example,
through experimental exclusions of tadpoles from pre-
and post-decline streams, Connelly et al. [186] found
dramatic increases in inorganic sediments, increases in
stream algae biomass and changes in algal community
composition immediately following larval amphibian
extirpations. Ecosystem-level consequences of such
extensive biodiversity loss are likely to be complex
and long-lasting, encompassing concurrent changes
in primary productivity, energy transfer between
aquatic and terrestrial habitats and the composition
and interactions among organisms found at multiple
trophic levels.
5. SUMMARY OF HOST–PATHOGEN SYSTEMS
A comparison of the three host–pathogen systems
presented here reveals common trends and provides
insight into the larger phenomenon of ecophysiology
of amphibian disease. For example, sensitivity and
susceptibility to different pathogens varies between
amphibian life-history stages. In addition, susceptibility
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to pathogens and/or the host’s resulting pathology
may be exacerbated during the transition between
the larval and post-metamorphic stage. Hormonally
induced immunological restructuring and suppression
occurring naturally at metamorphosis may predispose
amphibians to opportunistic infections and pathogen-
induced mortality [141,187]. In many instances,
including those outlined here, infection load and pathol-
ogy of infection show a positive relationship; as hosts
acquire more trematodes, virus particles or fungal zoo-
spores, they tend to suffer greater morbidity and
mortality as a function of infection [91,93,138,144].
In addition, species or pathogen-specific ‘infection
thresholds’ may exist, above which mortality occurs
[144]. The phenomenon of infection thresholds has
yet to be tested in different pathogen taxa, but may be
particularly relevant when elevated infection load
causes greater impairment of vital organ function. The
observations that microparasites (e.g. viruses, bacteria
and fungi) and macroparasites (e.g. worms and arthro-
pods) can both cause intensity-dependent pathology
owing to differential exposure rates are intriguing.

An important theme emerging from and extending
beyond the case studies provided is the importance
of environmental reservoirs and cofactors in driving
disease dynamics in host–pathogen systems. Biotic
and abiotic sources for maintenance of the pathogen
maintain disease even when highly susceptible hosts
decline [179,188]. In our case studies, substantial
interspecific variation in susceptibility to the pathogens
exists [47,56,90,91,131] and may drive patterns of
pathogen transmission and disease emergence and
re-emergence over time and space. Generally, in
terms of host responses to pathogens, there is variation
in interspecific and intraspecific tolerance and resist-
ance to infection [43,44,132]. Mechanisms for
tolerance and resistance may differ among life-history
stages and may change based on tradeoffs with com-
peting physiological demands such as growth and
reproduction. Finally, ecological stressors may com-
pound the effects of disease and may act
synergistically to promote mortality events associated
with disease [21,28].
6. LINKS BETWEEN ENVIRONMENTAL
STRESS, ENDOCRINE–IMMUNE
INTERACTIONS AND DISEASE
In the host–pathogen systems discussed above, and
presumably in other systems, infections are more likely
to cause host damage under particular conditions.
Therefore, a more in-depth examination of how envi-
ronmental stress can influence host defences against
infections is warranted. One primary physiological
response of vertebrates to stressful environmental
stimuli, including stress tied with disease, is an increase
in circulating glucocorticoids (cortisol or corticosterone,
depending on the vertebrate species). These hormones
are produced from the adrenal gland (interrenal in
amphibians) via the hypothalamic–pituitary–adrenal
axis (HPA; HPI in amphibians) and help animals
survive environmental perturbations by mobilizing
energy stores, modulating immune responses and
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suppressing non-vital physiological responses, such as
reproduction [189].

In amphibians, diverse environmental stressors ran-
ging from pond-drying [190,191] to predator presence
[192,193], to environmental pollutants [194–197] to
habitat fragmentation [198] can alter the HPA
(HPI in amphibians) axis activity and influence cir-
culating corticosterone levels. The direction and the
magnitude of response vary based on numerous
factors, including the specific ‘stressor’ being exam-
ined, the amphibian species and the life stage. A key
point with all of these studies though is that typi-
cally negative feedback within the system prevents
long-term elevation of these steroids in free-living
animals, although there are certainly cases where
chronic alteration of the stress response can occur in
wildlife [199,200].

Longer term elevation of glucocorticoids is known,
based primarily on human and captive animal studies,
to have increasing negative consequences, including
eventual muscle catabolism and immunosuppression.
Inhibition of the immune response by chronic elevation
of glucocorticoids occurs at multiple levels. Glucocorti-
coids can alter cytokine production [201], suppress
T-cell proliferation and antibody production [201,202]
and inhibit inflammatory responses [203]. Some studies
have demonstrated these types of responses specifically
in amphibians as well [204]. However, much of what
we know about these responses is based on treatment
of animals in the laboratory with pharmacological
doses of synthetic steroids (e.g. dexamethasone); less
work has examined effects of glucocorticoids with realis-
tic, endogenous levels of hormone [205]. Based on these
more realistic studies with endogenous hormone,
McEwen et al. [206] suggested that glucocorticoids
should be viewed more as modulators of the immune
response instead of as immunosuppressive hormones.
There are clearly very complex interactions between
the endocrine and immune systems of vertebrates.
Work in mammalian laboratory models is advancing
our mechanistic understanding of these interactions
[207]. However, understanding how these systems
interact in an organismal context to impact survival
and fitness in free-living wildlife, including amphibians,
remains an elusive goal, although new research in the
field of ecological immunology is starting to consider
this question [208].

Given the potential for immunosuppression,
increases in glucocorticoids in response to environ-
mental stressors have often been suggested as a
possible mechanism explaining increased infection in
natural populations of animals. This is a difficult link
to establish in free-living amphibians. For example,
while exogenous treatment with glucocorticoids in the
laboratory can alter the immune response and increase
parasite infection in tadpoles [104], extrapolating this
response to physiological increases in hormone levels
experienced by free-living animals has not been done.
Indeed, many factors such as density that may elevate
glucocorticoid levels in the laboratory [209,210], may
not result in longer term elevation of glucocorticoids
in more natural field conditions [211], which might
make these factors less likely to lead to the immun-
suppresive states demonstrated in laboratory models of
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chronic stress. One recent approach has been to exam-
ine haematological profiles (defined as the ratio of
neutrophils to lymphocytes) as an indicator of stress,
as these measures have often been associated with
increased glucocorticoids in vertebrates [212]. Several
studies have examined these profiles in amphibians
[213,214], but again, interpretation in light of physio-
logical function is not entirely clear, and future studies
will probably need to address more clearly the impli-
cations of variation in these profiles for an individual’s
fitness.

A recent study by Warne et al. [76] provides what
might be the most realistic assessment of the role of
glucocorticoid hormones and the HPI axis in modulat-
ing infection dynamics, and represents perhaps the
only study to address this issue directly in amphibians.
They suggest that during certain developmental win-
dows (e.g. during metamorphosis), energy might be
limited and the allocation of energy to development
versus the immune system that is modulated by the
HPI axis could have critical impacts on infection. In
their system, this conflict results in increased ranavirus
mortality during the late-stages of metamorphosis.
Adopting this more sophisticated model of HPI inter-
action with the immune response will provide future
researchers with a more complete picture of the com-
plexities of these systems for free-living amphibians.
7. CLIMATE CHANGE AS AN APPLIED
CHALLENGE IN DISEASE RESEARCH
Climate change can alter host–pathogen interactions
and the physiology of both host and pathogen in
ways that could increase or decrease levels of disease
([14] and references therein). As global temperatures
increase, pathogens may experience faster growth and
reproduction that could potentially increase the severity
of infectious diseases [54,215]. Conversely, elevated
temperatures outside the thermal optima for growth
and reproduction of pathogens may reduce the severity
of infection. In the case of Bd, increases in temperature
of a few degrees (above the optimum for growth and
reproduction of sporangia/zoospores) may limit the
severity of infection and disease [117,118].

Additionally, warmer winters and night-time temp-
eratures may reduce the cycle of pathogen die-offs that
naturally occur during colder regimes [216,217].
Higher water temperatures can induce eutrophication
with blooms of algae, bacteria, protozoans and small
metazoans [218,219], which could enhance infections
by a wide range of parasites [90,109], including the
trematode Ribeiroia ondatrae [108].

Climate change could also alter host–pathogen
relationships through changes in precipitation or hydrol-
ogy. Because many amphibian pathogens are aquatically
transmitted, increased rainfall that leads to more stand-
ing water could increase transmission rates. Conversely,
reduced precipitation could result in aggregation of
greater numbers of animals at fewer, smaller water
bodies, promoting transmission of pathogens/disease.
Also, aquatically transmitted pathogens can be sensitive
to water conditions. For example, Bd dies after 3 h of
desiccation [124], so loss of moisture or precipitation
could affect the survival of this pathogen. High
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temperatures impede growth and can kill Bd in the lab-
oratory [117,118]. Kriger [220] argues that droughts
should reduce the severity of Bd epidemics, but there
is also some evidence that droughts actually increase
outbreaks [221,222].

Changes in climate could also shift the ranges of the
pathogen, hosts or the pathogen vector. As climate
change alters local habitats, new areas may appear that
are suitable for the host or pathogen, while others disap-
pear. For example, Seimon et al. [223] documented
upward range expansion of both amphibian hosts and
Bd in the Andes with warming. As high elevation sites
experience loss of glaciers, this opens up new habitat
for amphibians in the area. Bd has been detected on
amphibians at these new sites, demonstrating a shift in
both host and pathogen ranges. In other scenarios, the
pathogen or host could potentially shift ranges without
the other following.

On a local scale, an experimental field study by
Kiesecker et al. [48] illustrates a complex inter-
relationship among climate change, changes in the
atmosphere, amphibian mortality events and disease.
Kiesecker et al. [48] linked El Niño–Southern Oscil-
lation events with decreased winter precipitation in
the Oregon USA Cascade Range. They suggested
that less winter snow pack resulted in lower water
levels, when western toads (Bufo boreas) breed in
early spring. Toad embryos developing in shallower
water are exposed to higher levels of ultraviolet B radi-
ation, which may compromise embryo disease defence
mechanisms, which results in increased mortality from
the pathogenic oomycete, Saprolegnia ferax.

Kupferberg et al. [224] presented another example
of how changing hydrology may influence amphibian
diseases on a local level. The authors found that out-
breaks of a pathogenic copepod, Lernaea cyprinacea,
are more severe following unusually warm summers
in northern California. The authors speculated that
this could be partly caused by changes in hydrology.
During the warm summer of the outbreak, water
levels were reduced, forcing amphibian larvae into
high densities. Reduced discharge slowed river veloci-
ties, which could have allowed for easier transmission
of the copepod parasite.

Climate change and spatial dynamics have both
been used to explain the spread of Bd in tropical
America. Bd is implicated as the proximate cause for
Atelopus frog population crashes and species extinc-
tions in tropical America. Pounds et al. [225]
presented a mechanistic explanation for how climate
change may influence outbreaks of Bd by modifying
conditions in montane areas of Central and South
America, where night-time temperatures are shifting
closer to the thermal optimum for Bd, while increased
daytime cloudiness prevents frogs from finding ther-
mal refuges from the pathogen. Climate change and
outbreaks of chytridiomycosis have been reported in
several other studies. Bosch et al. [226] showed a sig-
nificant association between rising temperatures and
outbreaks of chytridiomycosis in Spain. D’Amen &
Bombi [227] showed the emergence of Bd after a
climatic shift or extreme weather event in Italy.
Increases in chydriomycosis were correlated with low
summer temperatures in Australia [228]. Lips et al.’s
Phil. Trans. R. Soc. B (2012)
[229] analysis of amphibian population declines
and Bd spread did not support the climate-linked epi-
demic hypothesis of Pounds [225]. They suggest that
Bd is an introduced pathogen that has been spreading
throughout the American tropics since the 1970s. This
spatio-temporal hypothesis suggests that Bd spreads
independently of climate shifts. Parmesan & Singer
[230] suggest that both the climate and spatio-temporal
hypotheses are supported by numerous studies, are not
mutually exclusive and may be interactive. Rohr et al.
[231] found no support for the ‘chytrid-thermal opti-
mum hypothesis’ [225]. However, they suggest that
climate change is likely to play an important role in
amphibian population declines worldwide.

Long-term studies in South Carolina, USA, illustrate
those populations of several amphibian species have
been in decline [232]. At this site, the presence of Bd
was rare and there was no evidence of chytridiomycosis.
The investigators concluded that the population
declines in this region were more likely owing to extreme
weather such as low rainfall and shortened hydroperiod
for breeding rather than a Bd epidemic.

Overall, the effects of climate change on amphibian dis-
eases are difficult to predict. While some pathogens may
increase in prevalence and severity, others may decline.

Regardless of how climate change may influence
amphibian disease dynamics, there are obvious spatial
and temporal considerations that may influence the
physiology of disease. Thus, disease prevalence can
fluctuate seasonally if there are temporal thermal refu-
gia. However, if temperatures continually fall within or
outside of the optimal growth temperature range of the
pathogen, this fluctuation might not be observed. For
example, in Australia, Drew et al. [228] observed that
Bd prevalence was more likely at locations where the
average summer maximum temperature remained
below 308C.

Even if a disease does not show seasonal fluctu-
ations and is endemic to a geographical range,
disease prevalence can vary on smaller geographical
scales. In Australia, Van Sluys & Hero [233] found
Bd-infected male stoney creek frogs (Litoria wilcoxii)
were more likely to be found in forested rather than
open habitats. While prevalence was determined to
be lower in the upland-forested habitats, mean infec-
tion intensity was not different among habitat types.
In this study, the authors were unable to determine if
the difference in prevalence was due to host density,
host ability to clear infection, ability to avoid expo-
sure to Bd zoospores or some other behavioural or
ecological explanation that was confounded with
these habitat differences.

Muths et al. [234] found Bd-infected western toads
(Bufo boreas) more likely at lower elevations in the
Rocky Mountains of the USA than at higher elevations.
Historical mean maximum temperature explained the
distribution of Bd-infected frogs. However, since the
Bd-infected frogs from lower elevation were found
near the lower limit of the optimum growth range of
the pathogen (17–258C), an increase in elevation (and
a subsequent decrease in temperature) may have limited
the range of this pathogen.

Raffel et al. [235] found that Bd infection levels in
newts increased in ponds with a more complex substrate
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consisting of either dead tree leaves or live emergent
vegetation. This complex substrate and emergent veg-
etation allow for both cooler water temperature and a
reduced diurnal temperature range. The authors
suggest that whereas a complex substrate provides a
set of cooler microhabitats, the canopy overhead limits
the area available for a host to thermoregulate and
clear Bd infection at a higher temperature. The authors
propose that the around-shore canopy cover creating a
complex substrate, and the emergent vegetation all
limit the thermal refugia available to these newts leading
to increased pathogen loads.

Alongside its effects on community composition, cli-
mate change will affect host and parasite physiology,
phenology and co-evolutionary dynamics leading to
complex shifts in disease dynamics [236,237]. Predict-
ing the specific outcome of such interactions for
human and wildlife diseases is remarkably challenging,
in part because there is considerable uncertainty
surrounding the magnitude of changes in climate vari-
ables such as precipitation, temperature variability and
regional-scale warming patterns [238]. Nonetheless,
focusing efforts on identifying key mechanisms likely
to dominate climate-driven changes to disease severity
in model host–parasite systems can provide important
information about where to direct resources for
mitigating climate-driven increases in disease [237].

Laboratory studies on one such model system,
the complex life-cycle parasite Ribeiroia ondatrae,
suggest that the net effect of climate change on host
pathology will be determined by changes occurring
at multiple steps in the transmission cycle. Because
Ribeiroia is sequentially transmitted between birds,
snails and amphibians, understanding the net effects
of temperature changes on infection requires careful
examination of the individual hosts and their
interactions with parasites. The production of infec-
tious stages (cercariae) by trematodes is often
positively influenced by temperature, which has led
some to suggest forecasted warming could exacerbate
infections [239]. Higher temperatures could also
cause cercariae to be released earlier in the season,
which could have important implications for the
Ribeiroia system. Tadpoles exposed in earlier stages
of development or to greater doses of the parasite are
much more likely to experience pathology (e.g.
mortality or limb deformities) as a result of infection
[44]. While tadpoles will probably also accelerate
their growth in response to climate warming, parasites
are generally expected to increase developmental rates
even more quickly owing to their smaller body sizes
and higher metabolic rates. Moreover, the timing of
amphibian breeding is typically co-controlled by temp-
erature and precipitation, suggesting they may be less
plastic in their ability to change developmental
timing. Thus, temperature-driven changes that alter
the timing of amphibian exposure or the abundance
of parasites to which they are exposed could affect
the net pathology experienced by amphibians.

In a series of laboratory experiments, Paull &
Johnson [240] found that increases in temperature
accelerated the development of Ribeiroia eggs in the
environment, the development of rediae within snail
hosts and the time-to-parasite release by snails.
Phil. Trans. R. Soc. B (2012)
Moreover, parasite cercariae were more active and
more infectious to amphibians at higher temperatures.
Interestingly, however, parasite-induced malformations
and total Ribeiroia metacercariae were greatest at
intermediate temperatures. This stemmed from two fac-
tors: first, the increase in development rate of tadpoles at
warmer temperatures allowed them to ‘escape’ the vul-
nerable stages of limb growth more quickly; and second,
while parasite infectivity increased with temperature,
parasite persistence tended to decrease at the highest
temperature such that these tadpoles supported lower
overall infections (and therefore fewer malformations).
These observations, in combination with the fact that
infected snails also exhibit higher mortality at high
temperatures, highlight the complexity and multi-
faceted nature of host–parasite interactions in response
to changing temperatures.
8. SUMMARY
Ultimately, infection outcome in amphibians is determi-
ned by the complex interaction between environmental
factors, pathogen characteristics and host traits and
responses. A useful method for uncovering the most
important factors that drive infection dynamics in
this system involves taking a bottom-up approach.
Understanding effects at higher levels of organization
depends on establishing basic cause-and-effect relation-
ships between pathogen exposure, host responses,
manifestation of disease and infection outcome.
Cause-and-effect relationships between host physiologi-
cal responses to a pathogen and infection outcome
provide the baseline for understanding more complex
interactions [241,242].

A persistent challenge at the frontier of disease ecol-
ogy research is to synthesize information from
physiology, life-history theory and ecology to better
understand and predict patterns of disease risk
among hosts. Given the role of multi-host pathogens
in emerging infections of both plants and animals,
understanding the drivers of disease variation has
immediate relevance for human health, economic
growth and wildlife conservation [1,8,243]. Because
amphibians serve as hosts for a tremendous diversity
of micro- and macroparasites, including viruses, hel-
minths, parasitic arthropods, fungi, protists and
bacteria [22,23,85], they are ideal for studying disease
ecology dynamics. Furthermore, amphibians are
declining globally and infectious diseases as well as
life-history characteristics are considered important
factors in causing or predicting losses [74,178,244],
highlighting the importance of identifying factors
that predict disease patterns. Beyond amphibians, a
broader integration between physiological and ecologi-
cal studies of disease has applied importance for
identifying species that are either at risk of disease-
driven population declines or those that function as
reservoir or ‘superspreading’ hosts with the potential
to influence epidemics or epizootics [237,245].
Finally, physiological research must be integrated
into conservation to identify species or populations
that are most vulnerable to disease as well as other
threats [246].
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