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The ciliate subclass Haptoria is a diverse taxon that includes most of the free-living predators in the class

Litostomatea. Phylogenetic study of this group was initially conducted using a single molecular marker

small-subunit ribosomal RNA (SSU rRNA genes). Multi-gene analysis has been limited because very

few other sequences were available. We performed phylogenetic analyses of Haptoria incorporating

new SSU rRNA gene sequences from several debated members of the taxon, in particular, the first mol-

ecular data from Cyclotrichium. We also provided nine large-subunit ribosomal RNA (LSU rRNA) gene

sequences and 10 alpha-tubulin sequences from diverse haptorians, and two possible relatives of contro-

versial haptorians (Plagiopylea, Prostomatea). Phylogenies inferred from the different molecules showed

the following: (i) Cyclotrichium and Paraspathidium were clearly separated from the haptorids and even

from class Litostomatea, rejecting their high-level taxonomic assignments based on morphology. Both

genera branch instead with the classes Plagiopylea, Prostomatea and Oligohymenophora. This raises

the possibility that the well-known but phylogenetically problematic cyclotrichiids Mesodinium and

Myrionecta may also have affinities here, rather than with litostomes; (ii) the transfer of Trachelotractus

to Litostomatea is supported, especially by the analyses of SSU rRNA and LSU rRNA genes, however,

Trachelotractus and Chaenea (more uncertainly) generally form the two deepest lineages within litostomes;

and (iii) phylogenies of the new molecular markers are consistent with SSU rRNA gene information in

recovering order Pleurostomatida as monophyletic. However, Pleurostomatida branches cladistically

within order Haptorida, as does subclass Trichostomatia (on the basis of SSU rRNA phylogenies).

Our results suggest that the class-level taxonomy of ciliates is still not resolved, and also that a systematic

revision of litostomes is required, beginning at high taxonomic levels (taxa currently ranked as subclasses

and orders).
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1. INTRODUCTION
Ciliates are a large group of complex unicellular organ-

isms numbering approximately 8000 described species,

currently subdivided into 11 classes [1]. One of the

most frequently encountered groups is the haptorians,

which are found worldwide in freshwater and marine

habitats and are voracious predators of flagellates, other

ciliates and even small metazoans [2,3]. Haptorians gen-

erally immobilize and kill their prey using extrusomes

called toxicysts [1]. The group also includes the com-

monly encountered planktonic ciliates Mesodinium and

Myrionecta rubra, which can harbour cryptophyte endo-

symbionts and/or plastids [4–6], and can form red-tide

blooms in which they contribute up to 70 per cent of

the local primary production.

Systematically speaking, the haptorian ciliates are

generally treated as a subclass, Haptoria, within the class

Litostomatea [1,7], together with subclass Trichostomatia,
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which lack toxicysts and which are all endosymbionts of

metazoans, including fishes and humans [1]. The haptor-

ians are characterized morphologically by telokinetal

stomatogenesis, usually uniform holotrichous somatic

ciliation, and orally located toxicysts [8]. The group is a

diverse assemblage of loosely associated taxa, comprising

over 1000 species [9]. The systematics of this group is rela-

tively difficult to determine because few morphological

and/or ontogenetic characters are available. Lynn [1]

recognized three orders within this subclass—Haptorida,

Pleurostomatida and Cyclotrichiida—pending molecular

analyses to strongly confirm or refute these divisions.

Foissner & Foissner [2] suggested six orders, namely Hap-

torida, Spathidiida, Pleurostomatida, Pseudoholophryida,

Cyclotrichiida and Archistomatida.

Recent molecular phylogenetic analyses based on a

single gene small-subunit ribosomal RNA (SSU rRNA)

do not provide unambiguous support for any previously

proposed taxonomy of haptorians [1,9,10]. Haptoria

was not monophyletic in these analyses, with several of

its branches grouping together with Trichostomatia

[9,11,12]. The branching pattern within the haptorians

was not well resolved, which may be due to undersampling
This journal is q 2012 The Royal Society
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Figure 1. Morphology and infraciliature of nine haptorian ciliates in vivo and after silver impregnation (two images (m,n) are
from Pan et al. [15], others are from Lin et al. [16]). (a,b) Amphileptus marinus, (c,d) Chaenea teres, (e,f ) Phialina salinarum,
(g,h) Paraspathidium apofuscum, (i,j) Trachelotractus entzi, (k,l ) Chaenea vorax, (m,n) Epiphyllum shenzhenense, (o,p) Loxophyllum
jini, (q,r) Cyclotrichium cyclokaryon.
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of haptorian genera [9]. Further, the cyclotrichiids for

which there are full-length SSU rRNA gene sequences—

the Mesodinium/Myrionecta grouping—do not branch

with other haptorians, but instead branch within a basal

polytomy of the class Litostomatea [9] or more often as

the sister group to all other ciliates [13]. However, since

these sequences are extremely divergent, it is strongly sus-

pected that the recovered position of the Mesodinium/

Myrionecta grouping is influenced by phylogenetic

analysis artefact [14].

In addition, the evolutionary positions of some

key taxa of haptorian ciliates have not been resolved.

Members of the genus Cyclotrichium Meunier, 1910

(figure 1q,r) are common in the marine and limnetic

microzooplankton [17]. Since these organisms are fragile

and highly motile, they were only superficially described

in early studies, without data on infraciliature [17]. The

most recent morphological study, which includes infraci-

liature data, follows Lynn [8] in assigning Cyclotrichium to

family Didiniidae, within order Haptorida [17]. However,

other recent systems assign Cyclotrichium to a different

order, Cyclotrichiida because they lack an ancestral char-

acter of haptorids, the dorsal brush (DB) [2,14]. This

latter assignment would imply a close relationship to

Mesodinium/Myrionecta; however, the phylogenetic pos-

ition of Cyclotrichium has never been studied using

molecular techniques.

The genus Paraspathidium (figure 1g,h) has a haptorid-

like shape and suite of morphological characters (DB,

extrusomes, a slit-like, apically located cytostome, dikine-

tids around buccal field) [18]. It has been regarded as a

gymnostome haptorid (Litostomatea) by Foissner [19].

Nonetheless, recent SSU rRNA gene phylogenies and

analysis of the secondary structures of the variable
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region 2 (V2) and variable region 4 (V4) of this molecule

support a relationship with class Plagiopylea rather than

with class Litostomatea [20]. This has not been tested

with other phylogenetic markers.

Trachelotractus (figure 1i,j ) was traditionally considered

to be a karyorelictean owing to its similarity with trache-

locercids in general appearance and contractility

[21,22], but was transferred to class Litostomatea, order

Haptorida by Foissner [23] because of detailed similarity

to typical haptorid species—for example, a peribuccal

ridge with extrusomes, somatic monokinetids, oralized

somatic kinetids and specialized ciliary rows curving

around the pharyngeal opening [24]. However, SSU

rRNA gene phylogenies including a single species of

Trachelotractus recover it as a deep branch within the

class Litostomatea, and not specifically related to other

members of Haptorida [24]. Again it is important that

this be confirmed with improved taxon sampling, and

additional markers.

Given these important systematic uncertainties and

apparent conflicts between morphology and the available

SSU rRNA gene phylogenies, molecular phylogenies of

haptorids with better taxon sampling and gene sampling

are required. At present, there are no sequence data at

all for more than 95 per cent of named haptorid species,

and datasets for genes other than SSU rRNA are extre-

mely sparse. For example, the large-subunit ribosomal

RNA (LSU rRNA) gene sequence data are limited to a

single full-length sequence (Spathidium) and a fragment

of about 300 nucleotides from four genera [25]. No pre-

vious analysis of Litostomatea has used sequences from

protein-coding genes.

In the present work, we increase the taxon sampling of

these ciliates, with an emphasis on free-living Haptoria,
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Figure 2. Models of the secondary structure of variable region 4 (V4) of the SSU rRNA molecule, and the phylogenetic tree
of 15 taxa based on V4 region primary sequences and secondary structure combined. Models of the secondary structure com-
prising helices E23-1,(2), 4, 7, 8, 9, 10, 11, 12, 13, 14 and two pseudoknots formed by helices E23-9 to 12, helices E23-13
and 14 are shown. The number of nucleotides in Helix E23-1 and 2 (or only E23-1) for each species is given above the long

arrow. Note the Helix E23-7 in Paraspathidium–Cyclotrichium and the classes Plagiopylea and Prostomatea (arrows).
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especially phylogenetically controversial taxa. New SSU

rRNA genes were sequenced from seven species, and we

expanded phylogenetic analyses of the major taxa of the

subclass Haptoria with new gene markers: near-full-length

LSU rRNA genes and alpha-tubulin proteins, with

sequences inferred from nine and 10 species, respectively.

Phylogeny and morphological characters were considered

together to provide a new evaluation of the phylogenetic

relationships of haptorian ciliates.
2. RESULTS
(a) Overview

In total, 29 new sequences were obtained from 14 species

of ciliates representing 10 genera, predominantly from

taxa traditionally and/or currently recognized as haptor-

ians (see the electronic supplementary material, table

S1). Nine species of these (from eight genera) are

depicted in figure 1. For all 10 genera, this includes the

first phylogenetically useful sequence data for genes

other than SSU rRNA. It also includes, to our knowledge,

the first molecular data of any kind from Cyclotrichium.

We ran four sets of analyses for the SSU rRNA gene data,

with different taxon samples—one ‘primary’ set with 78

ciliate species and two dinoflagellates as outgroups, and

three further sets that also included the divergent or partial

sequences from Mesodinium, Myrionecta and/or Askenasia.
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We performed two sets of analyses of alpha-tubulin genes

based on amino acid and nucleotide sequences, respect-

ively, for 54 ciliate species. The single set of analyses of

LSU rRNA genes included 20 species covering five classes

of ciliates, and two outgroups.
(b) Small-subunit ribosomal RNA structure in

Cyclotrichium

The complete Cyclotrichium cyclokaryon SSU rRNA gene

is 1708 nucleotides long, which is longer than typical

litostome SSU rRNA genes (approx. 1640 nucleotides).

The secondary structure of V4 in Cyclotrichium does not

have the deletions otherwise common to all litostome cili-

ates (figure 2): Litostomes, including the divergent

Mesodinium and Myrionecta, have characteristic deletions

in helices 23_1,2, 23_13, 23_14 and lack helix 23_7

[9,26] (figure 2c). By contrast, the total length of Helix

E23-1 and 2 (or only Helix E23-1) in Cyclotrichium is

markedly greater than in haptorian litostomes (43 bp

versus 28–34 bp—compare figure 2c,d ). Helix E23-7 is

present in Cyclotrichium (arrows in figure 2) but is

absent in all haptorians. However, the structure of this

region in Cyclotrichium is similar to that of Paraspathidium,

and of all plagiopyleans and prostomateans (figure

2a,b,e). A phylogeny of V4 regions based on combined

information of the primary sequence and the secondary
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structure (figure 2f ) shows a close relationship of Cyclotri-

chium and Paraspathidium (0.99 Bayesian inference (BI),

84% maximum parsimony (MP)). They cluster with

Coleps spp. and form a sister group to Prorodon (0.55

BI, 65% MP) and then group with the Plagiopylea

clade (1.00 BI, 100% MP). Haptorian genera formed

another well-supported group (0.98 BI, 100% MP),

which was clearly separated from these other taxa.
Proc. R. Soc. B (2012)
(c) Phylogenetic analyses of small-subunit

ribosomal RNA genes

The BI, maximum likelihood (ML) and MP analyses of

the primary SSU rRNA gene dataset recovered nearly

identical topologies. The ML tree is shown in figure 3.

Cyclotrichium and Paraspathidium do not branch with

other haptorids, or even other litostomes. Instead, Cyclo-

trichium branches as sister to the plagiopylean clade with



Multigene phylogeny of haptorians Q. Zhang et al. 2629
low support (47% ML, 0.85 BI, 51% MP). This clade

then clusters with the two isolates of Paraspathidium apo-

fuscum with moderate support values (63% ML, 1.00 BI,

38% MP). Together they form a sister group to the class

Prostomatea, represented by Prorodon and Coleps, with

moderate/low support (46% ML, 0.97 BI, 29% MP).

Cyclotrichium, Plagiopylea (see below), Paraspathidium

and Prostomatea in turn branch with Oligohymeno-

phorea with strong support (93% ML, 1.00 BI, 70%

MP), forming a group we call ‘clade X’ for simplicity

(see below). These taxa group in turn with the

colpodeans, nassophoreans and phyllopharyngeans with

high support (95% ML, 1.00 BI, 70% MP; figure 3).

The newly sequenced Plagiopyla sp. groups together

with Lechriopyla mystax and Plagiopyla nasuta, forming

a maximally supported clade corresponding to

class Plagiopylea.

The other new SSU rRNA gene sequences branch

with or within the Litostomatea clade. The new sequence

for Phialina salinarum is identical to the published

sequence across the analysed sites, while the undeter-

mined Phialina species groups with the Ph. salinarum

sequences with moderate support (64% ML, 0.93 BI,

72% MP). This Phialina clade branches specifically with

Lacrymaria marina, with maximal support (100% ML,

1.00 BI, 100% MP).

The new sequence from an unidentified Loxophyllum

species (sampled at Qingdao, China) differs at 10 positions

from another unidentified Loxophyllum species (sampled

at Guangdong, China). These two sequences branch

together with high support (97% ML, 1.00 BI, 97% MP)

within a well-supported Loxophyllum clade (91% ML,

1.00 BI, 90% MP). Loxophyllum branches as expected in a

highly nested position within a maximally supported clade

that corresponds to the order Pleurostomatida (figure 3).

The new sequence from an unidentified Trachelotractus

species is most similar to its congener Trachelotractus

entzi, but differs at 217 nucleotide positions. It branches

with T. entzi with maximal support. The new population

of Chaenea vorax is identical to the published sequences

from both C. vorax and Chaenea teres across all analysed

sites. Trachelotractus and Chaenea occupied the two deepest

positions within Litostomatea, with generally strong

statistical support (99% ML, 1.00 BI, 97% MP for

Trachelotractus as the deepest branch; 65% ML, 0.91 BI,

81% MP for Chaenea as the second deepest branch).

This renders Haptorida (sensu lato) as a paraphyletic

group, with both Pleurostomatida and Trichostomatia

forming strongly supported clades that branch after the

divergences of Trachelotractus and Chaenea. The optimal

tree actually places Trichostomatia in a very shallow pos-

ition within Haptorida, but this position, and most of the

remaining backbone of the litostome tree, receives very

limited support (e.g. ML bootstrap support values less

than 50%).

Sets 1 and 2 of the supplementary SSU rRNA

gene analyses (electronic supplementary material,

figures S1–S6) included the problematic cyclotrichiids

Mesodinium and Myrionecta (which have highly divergent

SSU rRNA gene sequences) and Askenasia (for which

only a partial sequence is available), with and without

outgroups to ciliates, while set 3 included just Askenasia

(and the outgroups). The overall topologies recovered in

the supplementary analysis did not differ materially
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from those described above. In set 1, with dinoflagellates

as outgroups, Mesodinium and Myrionecta form an extre-

mely long branch that has variable positions in ML and

BI trees. It branches inside Oligohymenophorea in the

ML tree, while it attached at the base of the Ciliophora

clade in the BI tree, but support for either placement is

very weak (8% ML, 0.88 BI; electronic supplementary

material, figures S1 and S2). When outgroups are

excluded (set 2), Mesodinium and Myrionecta branch

variably within one of the two main clades of the ciliate

tree (the clade including clade X, Nassophorea and Phyl-

lopharyngea) in ML and BI trees (52% ML, 0.92 BI;

electronic supplementary material, figures S3 and S4).

They branch with Nassophorea in the ML tree, and as

sister group to the clade of Plagiopylea, Cyclotrichium,

Paraspathidium and Prostomatea in the BI tree (support

was negligible in each case). In sets 1 and 2 Askenasia

forms a clade that does not branch specifically

with either Mesodinium–Myrionecta or Cyclotrichium

(i.e. other cyclotrichiids), however, it branches variably

within clade X, either branching basally to the clade,

including Plagiopylea, Paraspathidium and Cyclotrichium

(ML trees and BI tree in set 1; electronic supplementary

material, figures S1–S3); or as the sister group to the rest

of clade X (0.77, BI tree in set 2; electronic supplemen-

tary material, figure S4). A more stable position for

Askenasia is recovered in set 3, when Mesodinium and

Myrionecta are excluded from the analysis (figure 3b and

electronic supplementary material, figures S5 and S6).

Here, Askenasia branches at the base of the clade that

includes Plagiopylea, Paraspathidium and Cyclotrichium.

Support for the affinity of Askenasia with the Prosto-

matea–Plagiopylea–Paraspathidium–Cyclotrichium clade

is generally weak (50% ML, 0.73 BI in set 3) as is the

support for its basal position within this clade (27%

ML, 0.82 BI in set 3), however, there is stronger

support for its inclusion in clade X as a whole (78%

ML, 0.99 BI).
(d) Phylogenetic analyses of large-subunit

ribosomal RNA genes

Taxon sampling in the LSU rRNA dataset is more

limited, but overall the topology recovered is consistent

with the SSU rRNA gene tree (figure 4). Paraspathidium

and Cyclotrichium again do not group with litostomes,

but instead branch with Prostomatea, Plagiopylea and

Oligohymenophorea to form a strongly supported ‘clade

X’ (100% ML, 1.00 BI, 90% MP). In contrast to the

SSU rRNA gene tree, Paraspathidium and Cyclotrichium

group together to a well-supported clade (100% ML,

1.00 BI, 100% MP), and this clade specifically groups

with Prostomatea, represented by the new sequence

from Prorodon sp., with strong support (99% ML,

1.00 BI, 96% MP). The new sequence of Plagiopyla

sp., representing class Plagiopylea, forms a weakly/

moderately supported clade with the oligohymeno-

phorean Paramecium (64% ML, 0.98 BI, 40% MP);

the precise position of this clade relative to the other

Oligohymenophorea is unstable.

Class Litostomatea is otherwise monophyletic (100%

ML, 1.00 BI, 100% MP). As in the SSU rRNA gene

tree Trachelotractus and Chaenea branch sequentially at

the base of the Litostomatea clade; statistical support is
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nearly maximal (100% ML, 1.00 BI, 99% MP) and high

(95% ML, 1.00 BI, 91% MP), respectively. Thus,

Haptorida again appears paraphyletic relative to Pleuros-

tomatida in optimal trees (there are no LSU rRNA data

for Trichostomatia). The other haptorids (Phialina and

Spathidium) group together with high support in ML

and BI analyses (100% ML, 1.00 BI), while in MP ana-

lyses, Spathidium and Phialina branch sequentially with

the pleurostomatid clade, with weak support (56% MP,

data not shown) and high support (91% MP, data not

shown) for the two nodes. The four included members

of order Pleurostomatida group as a single clade, with

near-maximum support (100% ML, 1.00 BI, 99%

MP). Inside the pleurostomatid clade, the Loxophyllum

spp. clade groups with Amphileptus (78% ML, 0.99 BI,

90% MP), leaving Epiphyllum basal.

(e) Phylogenetic analyses of alpha-tubulin

The alpha-tubulin trees have more limited taxonomic

sampling than the SSU rRNA trees, and are generally

less well-resolved owing to the limited divergence between

species. Nonetheless, we found broadly consistent phylo-

genetic patterns to those seen with SSU rRNA genes. The

ML tree estimated for amino acid sequences is shown in

figure 5. The nucleotide-level analyses based on the first

two codon positions recover a similar topology to that

estimated from amino acid sequences, except for the pos-

ition of Trachelotractus (see below; data not shown), but

statistical support is lower overall.

According to the amino acid analysis, C. cyclokaryon

and Paraspathidium apofuscum are not closely related to

other haptorids, or other Litostomatea. Instead, they

show again a closer relationship to Prostomatea, Plagiopy-

lea and Oligohymenophorea (i.e. clade X). In the ML tree,

Cyclotrichium and Paraspathidium are most closely related

to the prostomatean Prorodon, although this clade is not

strongly supported (55% ML, 0.97 BI). These taxa then

cluster with Oligohymenophorea and Plagiopylea (rep-

resented by the new Plagiopyla sequence) with limited

support (62% ML, 1.00 BI).

The other litostomes, with the exception of T. entzi,

form a strongly supported clade (97% ML, 1.00 BI).
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Trachelotractus entzi branches with this clade in the ML

analyses, although this position is poorly supported (47%

ML), but branches basally (i.e. in a clan with the

karyorelictid Loxodes striatus) in the Bayesian analyses and

in the DNA-based phylogenies. Within the litostome

clade Chaenea is not recovered as deep branch, but instead

shows a close relationship to Spathidium, with some sup-

port (73% ML, 1.00 BI); these two branch with Phialina

spp., with almost no support. The included pleurosto-

matids (Loxophyllum spp., Epiphyllum shenzhenense and

Amphileptus marinus) form a very weakly supported mono-

phyletic group (36% ML, 0.80 BI). The trichostomatian

Epidinium branches as sister to pleurostomatids in the

ML tree, but support is negligible.
(f) Combined analyses

We also estimated phylogenies for a combined dataset of

the three examined genes; the dataset included 18 ciliate

genera/species, plus outgroups, with sampling of ciliates

similar to the 28S rRNA analyses. The recovered top-

ology (electronic supplementary material, figure S7) was

largely similar to the 28S rRNA topology: Cyclotrichium

and Paraspathidium formed a strongly supported clade,

and grouped strongly with Prorodon, then with Plagiopyla

and Oligohymenophorea to form a strongly supported

‘clade X’ (all ‘strongly supported’ clades receiving

98–100% ML bootstrap support). Trachelotractus and

Chaenea again branched successively in the two most

basal positions in the ‘true’ litostome clade, with 100%

bootstrap support for both positions. Pleurostomatida,

represented by Loxophyllum spp., Epiphyllum and

Amphileptus, was again monophyletic, with full support.
(g) Hypothesis testing

Approximately unbiased tests were performed on each of

the four datasets to test the robustness of phylogenetic

associations of particular interest. A clade of Cyclotrichium

and Paraspathidium with true litostomes was clearly

rejected with the SSU rRNA, LSU rRNA and combined

datasets (p , 0.0001 in all cases; electronic supplemen-

tary material, table S2). Trees with Chaenea basal within
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Litostomatea, rather than Trachelotractus, were also

rejected with the SSU rRNA, LSU rRNA and combined

datasets (p ¼ 0.026 for SSU rRNA, otherwise p ,

0.0001; electronic supplementary material, table S2).

Neither hypothesis was rejected with the alpha-tubulin

dataset alone, probably reflecting the limited information

in this dataset.
3. DISCUSSION
(a) Cyclotrichium and Paraspathidium: a

separation from the class Litostomatea

Our analyses of all three examined genes examined reject a

placement of both Cyclotrichium and Paraspathidium in the

order Haptorida or even in the class Litostomatea. Rather,

these two taxa always fall into a well-supported clade

X. The predicted secondary structures of V4 regions of

the SSU rRNA gene are consistent with this finding.

These results, together with the earlier work using SSU

rRNA data from Paraspathidium alone [10] indicate

strongly that both taxa should be transferred out of the

class Litostomatea. They cannot at this stage be placed
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in any existing order-level taxon or even class. Resolution

of their higher taxonomic status should be made once

the precise interrelationships between Cyclotrichium,

Paraspathidium, plagiopyleans, prostomateans and oligo-

hymenophoreans are resolved, since these varied between

our analyses. Improved taxon sampling in this region of

the tree for multiple genes would be valuable.

The fact that neither Cyclotrichium nor Paraspathidium

are haptorid litostomes is broadly consistent with their

rather unusual morphological characters. Cyclotrichium

has a similar general appearance to core members of the

haptorid family Didiniidae (i.e. Didinium and Monodinium)

because it has an anterior circumoral ciliary girdle and

an oval or semi-globular body shape [17]. However,

Cyclotrichium is distinguished from these organisms by the

densely ciliated cell surface (versus completely ‘naked’

except the ciliary girdle in Didiniidae), by the anterior pro-

boscis, which is huge, flattened or slightly domed (versus

long and conical in Didiniidae), and by the lack of DBs

[8,17]. The absence of a DB is of special significance,

since this feature is regarded as a synapomorphy for

Litostomatea, and one of the ancestral features among the
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typical haptorians [27], though see below. Paraspathidium,

meanwhile had been regarded as a gymnostome haptorid

based on its Spathidium-like general appearance, the DB

and the oralized somatic kinetids [19]. However, this

taxon also has several characters found in most prostoma-

teans, for example, a complex contractile vacuole and a

dikinetidal perioral ciliature [19], which distinguishes it

from typical haptorians. Since Paraspathidium is clearly

not closely related to litostomes it would be interesting to

re-examine the DB feature in this organism.
(b) Is Cyclotrichium related to cyclotrichiids?

Lynn [1,8] assigned Cyclotrichium to family Didiniidae

because it has one girdle of ciliary kinetids, although it

lacks a DB (see above). On the other hand, the absence

of a DB is a character of the order Cyclotrichiida, as

included in some other taxonomic systems, such as

those of Foissner & Foissner [2] and Vd’acny et al. [14].

In these systems, Cyclotrichiida unites planktonic ciliates

such as Askenasia, Mesodinium and Myrionecta, which

have the cilia arranged in one or several girdles, but are

without a DB [7,28,29]. However, in SSU rRNA gene

phylogenies, Mesodinium and Myrionecta are extraordi-

narily divergent, and represent an extremely long branch

that is not placed reliably within Ciliophora [9,13].

Unsurprisingly, we did not see any particular relation-

ship between Mesodinium/Myrionecta and Cyclotrichium.

Interestingly, however, our SSU rRNA gene phylo-

genies placed the partial sequences from Askenasia

spp. close to Cyclotrichium and Paraspathidium, though

not specifically with either. This hints at the possibility

that Cyclotrichium may be related to at least some of

the more familiar cyclotrichiids. If Askenasia and/or

Cyclotrichium were to truly represent cyclotrichiids, the

phylogenetic position of the cyclotrichiids might be

closer to Oligohymenophorea, Prostomatea and Plagiopy-

lea than to litostomes. Again, sequence data for ‘typical’

cyclotrichiids for markers other than SSU rRNA genes

would be crucial.
(c) Trachelotractus and Chaenea as possible

deep-branching litostomes

Trachelotractus was transferred to Litostomatea because it

lacks all main infraciliary characteristics of trachelocercids

and is more similar in this respect to members of the litos-

tome order Haptorida (see §1), such as Helicoprorodon

(Helicoprorodontidae) [23]. Our analyses, in which we

added additional Trachelotractus sequences to the SSU

rRNA dataset and considered different phylogenetic mar-

kers, further support the transfer of Trachelotractus from

Karyorelictea to Litostomatea, and its deep-branching

position [19,24]. Chaenea, meanwhile, was recently

suggested by Vd’acny et al. [14] to be an ancestor-like

form to Lacrymaria and Phialina in order Haptorida,

based on a similar, but simpler morphology (e.g. no

differentiation of ‘head’ region and trunk; no ‘head kin-

eties’; only four rowed DBs). However, our analyses of

several genes (except alpha tubulin), and previous phylo-

genies of SSU rRNA genes do not favour this scenario,

with Chaenea instead forming an independent deep

branch within Litostomatea [10,15]. The appropriate

systematic positions of Trachelotractus and Chaenea

within Litostomatea is uncertain—if the deep-branching
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positions recovered in most analyses are confirmed by

future studies (see below), we could assume more confi-

dently that the class Litostomatea originally evolved

from a haptorid-like ancestor.

(d) New genes for phylogenetics of Litostomatea

We reported 19 new LSU rRNA genes and alpha-tubulin

genes from the subclass Haptoria. In addition to the

positions of problematic or potentially deep-branching

haptorian litostomes discussed above, the new datasets

give a broadly compatible view of litostome phylogeny

to that seen with SSU rRNA genes. In particular, both

LSU rRNA genes and alpha-tubulin proteins also recover

Pleurostomatida as a monophyletic group. At this stage,

however, the taxon sampling of markers other than SSU

rRNA is still limited, and this precludes in-depth testing

of several interesting hypotheses. In particular, it would

be important to obtain sequences of the new markers

from unsampled taxa of typical haptorids (e.g. families

Dileptidae, genus Helicoprorodon), and from (additional)

Trichostomatia. This would allow analyses to better

resolve the evolutionary trends within litostomes. As dis-

cussed above, it would be especially important to

examine the phylogenetic placement of Mesodinium,

Myrionecta and Askenasia with markers other than SSU

rRNA genes. This current study therefore, represents a

useful foundation on which a more robust understand-

ing of litostome phylogeny, diversity and evolution

might be built.

(e) Perspectives

The current view of ciliate diversity subdivides the group

into a small number of classes [1]. These classes are very

much viewed as the fundamental evolutionary groups

of ciliates, analogous to the division of animals into

phyla. The positions of Cyclotrichium and Paraspathidium

in multiple gene phylogenies illustrate that the current

catalogue of ciliate classes is incomplete—very likely it

will be necessary to recognize at least one class-level

taxon to accommodate these organisms. This may well

be an important group from a scientific standpoint—as

discussed above, it might represent the true phylogenetic

home of the photosynthetic Mesodinium/Myrionecta

group—which are ecologically important and a fascinating

evolutionary enigma [13]. Meanwhile, multiple gene phy-

logenies emphasize the large disparity between taxonomy

and phylogeny within the true litostomes. In short, despite

more than two decades of increasingly sophisticated

molecular phylogenetics, the higher level phylogeny of cili-

ates remains substantially under-resolved. A much greater

commitment to employing multiple phylogenetic markers,

in parallel with improved taxon sampling, is almost cer-

tainly needed to understand the evolutionary history of

this major group of eukaryotic organisms.
4. MATERIAL AND METHODS
(a) Ciliate collection and identification

Cyclotrichium cyclokaryon, Phialina salinarum, T. entzi,

Chaenea sp., E. shenzhenense and Loxophyllum jini were

collected from the sandy beach of Daya Bay, Guangzhou,

southern China (228420 N, 1148320 E) between March

2007 and November 2009. Amphileptus marinus, Chaenea

vorax, Loxophyllum sp., Paraspathidium apofuscum, Phialina
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sp., Plagiopyla sp. and Trachelotractus sp. were collected from

sandy beaches on Jiaozhou Bay, Qingdao, China (368080 N,

1208430 E) between July 2007 and November 2009. Samples

were collected from the upper 0–4 cm sand layer. The speci-

mens were investigated in vivo and impregnated with protargol

following the methods of Wilbert [30] (figure 1). Species

identifications of Cyclotrichium, Phialina, Trachelotractus,

Paraspathidium, Loxophyllum and Chaenea were based on Long

et al. [31] and Pan et al. [15]. Identification of Plagiopyla

sp. was based on Lynn & Small [8]. Prorodon sp. was kindly

offered by Dr Xinlu Shi (Hangzhou Normal University,

China) and was collected from a freshwater puddle in the

Xinjiang province of China (458380 N, 86820 S) in May 2007,

and identification was following Lynn & Small [8]. Terminology

and systematic classification in the present work are according

to Lynn’s 2008 system [1].

(b) DNA extraction, gene amplification and gene

sequencing

After the identification based on several cells, one or more

identical cells of each species from the same sample were iso-

lated for DNA extraction. Genomic DNA was extracted

using a REDExtract-NAmp Tissue PCR Kit (Sigma, St

Louis, USA) with modifications suggested by Zhang et al.

[20]. Primers used for SSU rRNA gene amplification were

Euk A and Euk B [32], covering nearly the full length of

the gene. Primers for partial LSU rRNA gene amplification

were 28S-F2 (50 –ACSCGCTGRAYTTAAGCAT–30) and

28S-R2: (50 –AACCTTGGAGACCTGAT–30) [33]. The

partial alpha-tubulin gene was amplified using the forward

primer Tub-1 (50 –AAGGCTCTCTTGGCGTACAT–30)

and the reverse primer Tub-2 (50 –TGATGCCTTCAA-

CACCTTCTT–30) [34] for Paraspathidium apofuscum,

C. cyclokaryon, Phialina salinarum, Phialina sp. and

T. entzi, with PCR conditions following Yi et al. [35]. A

different primer pair was used for Prorodon sp. and Plagiopyla

sp.: Tub 371 (50 –(CUA)4 ATH CAN CCN GAY GGN CAR

ATG CC) and Tub 4092 (50 –(CAU)4 CAT NCC YTC

NCC NAC RWA CCA–30) [36]. After confirmation of the

appropriate size of the amplified fragments (1.7 kb for the

SSU rRNA gene, 1.9 kb for the LSU rRNA gene and

1.1 kb for the alpha-tubulin gene) on an agarose gel, each

PCR product was cloned using a pUCm-T cloning vector

(Sangon Company, Shanghai, China). Genes were

sequenced in both directions on an ABI 3700 sequencer

(Invitrogen sequencing facility, Shanghai, China), using the

M13–47 and M13–48 primers. All new sequences have

been deposited in the GenBank database (see the electronic

supplementary material, table S1 for accession numbers).

(c) Phylogenetic analyses

(i) Analysis for small-subunit ribosomal RNA and large-subunit

ribosomal RNA nucleotide sequences

The sequences of the SSU rRNA gene and LSU rRNA gene

were aligned using CLUSTALW, as implemented in BIOEDIT v.

7.0.0 [37], and further modified manually using BIOEDIT.

The datasets used for the primary phylogenetic analyses

included 1495 positions for SSU rRNA and 1712 positions

for LSU rRNA. MODELTEST [38] and MRMODELTEST v. 2

[39] were used to select the best models for the ML analyses

and BI. The ML trees were estimated with the PHYML v.

2.4.4 program [40] using a GTR þ I þ G model (pinvar ¼

0.25, a ¼ 0.54 for SSU rRNA; pinvar ¼ 0.11; a ¼ 0.74 for

LSU rRNA). The reliability of internal branches was
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assessed using non-parametric bootstrapping with 1000

replicates. BI was performed with MRBAYES v. 3.1.2 [41],

under a GTR þ I þ G model. Markov chain Monte Carlo

(MCMC) simulations were run with two sets of four chains

using the default settings, with a sampling frequency of

0.01. In each case, convergence was confirmed from the stan-

dard deviation of split frequencies (less than 0.01), and 25

per cent of generations were discarded as burn-in. A MP

tree was constructed for each gene using PAUP [42]. The

MP trees were found using heuristic searches with 100

random-addition sequences, and tree bisection and recon-

nection branch swapping. Bootstrap support was calculated

from 1000 replicates.

The previously determined SSU rRNA gene sequences

from cyclotrichiids—from Askenasia, Mesodinium and

Myrionecta—were excluded from the primary analyses

because they were only partial, or were extraordinarily diver-

gent. To test the possible relationships between Cyclotrichium

and these other cyclotrichiids, three sets of supplementary

phylogenetic analyses were performed using ML and BI

methods. In the first Mesodinium pulex, My. rubra and Aske-

nasia spp. were added to the primary SSU dataset (86

species; 1436 included sites). In the second, Me. pulex, My.

rubra and Askenasia were included but the dinoflagellate out-

groups excluded (84 species; 1436 included sites). In set 3,

the extremely long branches of Me. pulex and My. rubra

were excluded, but the partial Askenasia sequences were

retained, along with the outgroups (83 species; 1495

included sites). The same GTR þ I þ G models and other

parameters were used as in the primary analyses.

The secondary structures of the V4 region of the

SSU rRNA molecules were depicted and compared for

Cyclotrichium and representative species of potentially related

classes, including six plagiopyleans, seven prostomateans,

seven haptorians and Paraspathidium. Information on the

secondary structure of Mesodinium from Strüder-Kypke

[9] is used for comparison. Default settings of the mfold

website (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1-2.

3.cgi) [43] were used to produce the putative secondary

structures of the V4 region. The structures were edited with

RNAVIZ v. 2.0 [44] for aesthetic purposes under the newest

eukaryotic SSU V4 model of Wuyts [26]. Phylogenetic trees

based on the primary sequence and the secondary structure

of the V4 region were constructed following the instruc-

tions on the MARNA website (http://biwww2.informatik.

uni-freiburg.de/Software/MARNA/index.html)[45].

(ii) Analysis of alpha-tubulin proteins

The deduced amino acid translations of the alpha-tubulin

gene sequences were aligned using CLUSTALW implemented

in BIOEDIT v. 7.0.0, then inspected by eye and manually

edited. No introns were detected in the new sequences.

Three hundred and fifty-seven positions were included in

the final sequence alignment. Phylogenies based on the

amino acid sequences were constructed using ML, BI and

MP methods. The MP tree showed very poor resolution

and is not reported further. The ML tree and corresponding

bootstrap support values (1000 replicates) were estimated

using PHYML v. 2.4.4 [40], applying a JTT þ G model

(a ¼ 0.64), which was selected as the best model using

PROTTEST v. 1.4 [46]. Amino acid alignments were also ana-

lysed in MRBAYES with the amino acid model selected by the

software. The MCMC simulations were run with two sets of

four chains using the default settings. Chains were run for

http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1-2.3.cgi
http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1-2.3.cgi
http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1-2.3.cgi
http://biwww2.informatik.uni-freiburg.de/Software/MARNA/index.html
http://biwww2.informatik.uni-freiburg.de/Software/MARNA/index.html
http://biwww2.informatik.uni-freiburg.de/Software/MARNA/index.html
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1 � 106 generations, with a sampling frequency of 0.01, with

the first 25 per cent discarded as burn-in. In addition, the

first- and second-codon positions of the DNA sequences

were analysed by ML using PHYML, under a GTR þ I þ G

model (pinvar ¼ 0.34; a ¼ 0.43). Bootstrap analyses were

performed on 1000 resampling replicates using identical

settings.
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