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Maternal effects are widespread in ecology and can alter the dynamics of a population. We investigated the

impact of maternal foraging strategies on offspring weaning mass—a proxy of maternal foraging success and

of offspring survival—in southern elephant seals on ı̂les Kerguelen. Using 4 years of data, we modelled pup

weaning mass as a two-component mixture and used blood stable isotope values to discriminate between

maternal foraging strategies previously identified from bio-logging studies. Carbon isotope ratio was a

strong predictor of weaning mass, but the relationship was non-monotonic in contrast to a priori

expectations. Females foraging in the interfrontal zone weaned pups with a smaller mass compared with

females foraging in Antarctic waters. Pup mass was positively correlated with a proxy of global primary pro-

duction in the interfrontal zone for small weanlings. Maternal effects, via a poor foraging efficiency in the

1970s, may help explain the large population decrease observed at that time on ı̂les Kerguelen because of an

overall decrease in pup weaning mass, survival and subsequent recruitment.
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1. INTRODUCTION
Maternal effects can be broadly defined as the influence a

mother’s phenotype exerts on her offsprings’ phenotype

[1]. Acknowledging the occurrence of maternal effects

sheds a new light on some classic ecological phenomena

such as population cycles [2] or life-history trade-offs

[3]. In mammalian species, females alone usually support

their offspring. Yet, this biological burden may prove to

be an evolutionary blessing in disguise as females, via

maternal effects, have the potential to shape population

dynamics or evolutionary responses [4]. Investigations

of the influence of mother characteristics such as mass,

body length or age on offspring phenotype are numerous,

but the impacts of complex maternal phenotypes such as

foraging behaviour are less elucidated [5].

Pinnipeds are marine carnivores that are well suited for

studying maternal effects: females usually give birth to a

single pup and provide all care until weaning. Lactation is

especially important in phocid species in which weaning

is usually abrupt and occurs after a short nursing period.

Among pinnipeds, most phocids exhibit a capital-breeding

strategy, whereby females accumulate energy stores prior to

hauling-out and parturition; then fast while nursing their

pup [6]. Hence, maternal foraging behaviour may have

great leverage on both female and pup fitness. We investi-

gated the role of maternal foraging strategies in the

southern elephant seal (Mirounga leonina).
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The southern elephant seal is the largest extant phocid

species. Females only haul-out on land to breed in the

early austral spring and to moult in the late summer.

The bio-logging revolution has provided invaluable

insights into the foraging ecology of these exceptional

divers [7,8]. The main drawback of bio-logging studies

is its costs: small sample size may weaken inferences

[9]. Besides, animal movement analyses usually rely on

the area-restricted search assumption that decreased

speed and increased track sinuosity betray foraging

[10,11]. This condition may be sufficient to infer fora-

ging, while not being strictly necessary [12].

Stable isotopes are popular tools to trace the flow of

molecules across food webs [13]. Commonly used

elements are carbon (d13C/ ð13C=12CÞ) and nitrogen

(d15N/ ð15N=14NÞ), which can provide information

about the diet’s geographical origin and trophic position

of a consumer, respectively [14].

Marine organisms can travel great distances between

their marine foraging and terrestrial breeding grounds

[15]. In the case of southern elephant seal breeding

on ı̂les Kerguelen, Bailleul et al. [8] identified two main

foraging zones for females prior to hauling-out: the

interfrontal zone (pelagic sub-Antarctic waters bounded

by the sub-tropical front and the southern boundary of

the Antarctic circumpolar current; electronic sup-

plementary material, figure S1) and the Antarctic zone

(area south of the southern boundary of the Antarctic cir-

cumpolar current; electronic supplementary material,

figure S1). Based on tracking studies (n ¼ 44 post-

moult trips of females), the estimated proportion of

females committed to each strategy is 73 and 22 per
This journal is q 2012 The Royal Society
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Table 1. Summary statistics of weaning mass (kg) of pups from ı̂les Kerguelen. Bowley’s skewness coefficient, which varies

between 21 and 1 is reported [20]. The kurtosis estimator is computed according to An & Ahmed [21] (their ĝN2 ), with the
value 0 corresponding to the kurtosis of normal distribution. Both the skewness and kurtosis coefficients are dimensionless.

year n mean median s.d. skewness kurtosis

2006 193 105 104 19 0.03 20.29
2007 57 106 106 19 0.08 0.27
2008 202 110 114 23 20.25 0.02
2009 234 111 112 23 20.14 20.18

2006–2009 686 109 110 22 20.11 20.13
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cent for the interfrontal zone and Antarctica, respectively

(the remaining 5% accounts for individuals who remained

on the Kerguelen plateau, C. Guinet 2010, unpublished

data). Given the latitudinal gradient in d13C values of par-

ticulate organic matter within the Southern Ocean [16],

stable isotopes analysis can inform where southern

elephant seals have been foraging (electronic supplemen-

tary material, figure S2). Ducatez et al. [17] showed how

blood d13C value of pups, which are easy to handle and

to weigh, accurately reflected that of their mother. Inferring

the foraging history of breeding females prior to haul-out is

thus possible using stable isotope analysis of their pup’s

blood. d13C value hints at the latitude, where an animal

fed, but gives no information on the longitude [18]. How-

ever, stable isotopes can circumvent small sample size

issues that plague bio-logging studies.

Our aims were twofold: we investigated (i) the repre-

sentativeness of results from bio-logging studies and

(ii) assessed the influence of maternal foraging strategies

on their pup’s fitness. We augment the work of Ducatez

et al. [17] using more data and an explicit mixture model-

ling approach. Specifically, we modelled weaned pups as

a mixture of two groups depending on their isotope ratio,

then compared their respective proportions with those of

maternal foraging behaviour estimated from tracking data.

McMahon et al. [19] found a positive relationship

between a pup post-weaning survival and its weaning

mass: females that have stored and transferred more

energy to their pup prior to the spring haul-out had a

larger reproductive fitness. Because any changes in pat-

terns of maternal foraging strategies may affect pup

survival, we assessed the effect of maternal foraging strat-

egies on pup fitness by studying the relationships between

pup weaning mass and blood isotope ratio. Using carbon

stable isotope values in particular, we inferred maternal

foraging grounds before hauling-out, and evaluated how

it affected pup weaning mass.
2. MATERIAL AND METHODS
(a) Materials

Field work was carried out during the austral spring

(September–November) of 2006–2009 on the Courbet

Peninsula, ı̂les Kerguelen (498300 S, 698300 E). Except in

2007 due to logistics, a cohort of approximately 200 pups

was monitored daily from birth to weaning (table 1). Each

pup was individually marked upon birth on the trailing edge

of one hind-flipper with a numbered plastic tag (Dalton

Rototag, Nettlebed, UK), which was removed upon weaning.

When spotted outside a harem, any marked pup was considered

weaned, immediately captured, weighed and blood-sampled.
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Blood was collected from the dorsal venous sinus using 90 �
1.2 mm needles. Ethanol (70%) was added for sample preser-

vation before laboratory analysis. Body weight was measured

with a weighing scale with a precision of 0.1 kg in 2006–

2008, but of 2 kg in 2009. This measurement error was taken

into account in subsequent analyses.

Before stable isotope analysis, whole blood was oven-

dried for 48 h at 50–608C. Samples were weighted (range:

3–5 mg) into tin cups prior to combustion in an elemental

analyser (Euro Vector EA 3024) coupled to a continuous

flow mass spectrometer (Micromass Isoprime). Carbon to

nitrogen (C/N) ratios were checked, and when above 3.7,

lipids were extracted using cyclohexane. Lipids are depleted

in 13C relative to proteins and carbohydrates [22], but

lipid extraction is usually unnecessary because of the

typically small lipid content of blood. Out of 686 samples,

67 were lipid-extracted and their nitrogen value was chec-

ked for consistency. Excluding those samples did not

change any results. Stable isotope ratios are presented in

the usual d notation (in) relative to Vienna Pee Dee

Belemnite and atmospheric N2 for d13C and d15N, respect-

ively. Replicate measurements of laboratory standards

(acetanilide, d13C ¼227.5‰ and d15N ¼ 10.3‰, two of

every 23 samples) indicated precisions of 0.15‰ (carbon)

and 0.20‰ (nitrogen). Measurement errors were accounted

for in statistical analyses.

(b) Model building

Using nitrogen stable isotope values, Bailleul et al. [8] used a

mixture modelling approach to distinguish between large and

small adults as assessed from their standard body length

(snout-to-tail length, STL), and found a bimodal distri-

bution of carbon stable isotope values in female adults and

juvenile males. Kurtosis of the distribution of pup weaning

mass tended to be negative, which was suggestive of bi-

modality (figure 1a,b and table 1; [23,24]). A bimodal

distribution could reflect the two identified foraging strat-

egies of females. We built a generalized linear mixed model

(GLMM) to assess the relationship between pup weaning

mass and stable isotope values:

mass ¼ massþ sexþ d13Cþ d13C2 þ d15Nþ d15N2

þ weaning dateþ yearþ 1; ð2:1Þ

where 1, the residuals, are assumed to follow a normal distri-

bution of mean 0 and variance sresidual
2 .

Squared values of blood isotope values allowed for a non-

linear functional response, whose appropriateness was

preliminarily checked with splines. For example, a convex

function of d13C value may be interpreted as higher or

lower latitude waters being a highly profitable foraging zone

for females as they would transfer more energy to and
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Figure 1. Distribution of the (a,b) raw data and (c,d ) fitted models. The upper panels show the whole dataset (on a density
scale, a) and the data broken down by year (on a class-size scale, b). On the lower panel, fitted values from two different

models, (c) a GLMM and a (d ) HMM (dotted curves represent each component of the mixture) are represented.
The mode and the overall shape of the data are better described by a two-component mixture model.
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wean a larger pup than females foraging at the interfrontal

zone. Both d13C and d15N values were included since their

correlation was modest (r ¼ 0.32, 95% CI [0.25, 0.39]).

Weaning date was included in all models as (i) it was not lar-

gely correlated to any other covariates and (ii) it is a loose

proxy for maternal age: older (and larger) females haul-out

later than young (and smaller) ones [25]. Pup STL was

not included as weaned pups are still growing: STL is an

intermediate outcome and should not be controlled [26].

Weaning STL and mass were largely correlated (r ¼ 0.63,

95% CI [0.58, 0.67]) with the distribution of STL also

suggestive of bimodality (not shown).

We further hypothesized weaned pups to form a hetero-

geneous aggregate of small and large individuals. We

modelled weaning mass (figure 1a,b) as a mixture of two

normal distributions:

mass ¼ ð1� pÞðmass1 þ sex1þ year1Þ
þ pðmass2 þ sex2þ year2Þ þ 1; ð2:2Þ

where mass2 . mass1 and p(12p) denotes the proportion of

large (small) weanlings.

Equation (2.2) defines a hierarchical mixture model

(HMM). Group membership (that is being a small or a

large weanling) can be conceptualized as missing data to be

estimated from stable isotope values:

robitð pÞ ¼ interceptþ d13Cþ d13C2 þ d15N

þ d15N2 þ weaning date; ð2:3Þ
Proc. R. Soc. B (2012)
where the robit is a robust link function [27]. Other link

functions (probit and logit) were initially considered but

led to convergence problems.

(c) Environmental covariates

Considering how primary production is positively linked to

the biological richness available to foraging predators

[28,29], we investigated the effect of this environmental

covariate. We suspected a priori the years with high pri-

mary production during active pregnancy (after blastocyst

implantation) to be more profitable for females.

Chlorophyll a concentration maps were computed from

SeaWiFs sea colour images with a ground resolution of 4�4

km (http://oceancolor.gsfc.nasa.gov/). Owing to cloud cover

causing a large percentage of missing pixels, we used monthly

data in the interfrontal zone (408 : 608 S to 08 : 1258 E) and cal-

culated chlorophyll a anomalies about the monthly mean for

each pixel. A proxy of the total surface chlorophyll a pro-

duction was then calculated every year from cumulated

anomalies between October and May, the bulk period of

main chlorophyll a production in sub-Antarctic waters [30].

We modelled a year effect j specific to each group ie1,2:

year j;i ¼ chlaþh j;i ; ð2:4Þ

where h j,i , the residuals for group i, are assumed to follow a

normal distribution of mean 0 and variance s2
yeari

.

Dragon et al. [31] evidenced a positive correlation between

sea ice extent and chlorophyll a concentration in Antarctic

waters. Sea ice extent is assessed from microwave energy

(whose measurement is unaffected by the majority of clouds)

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/


Table 2. Summary statistics for carbon and nitrogen isotopic composition of southern elephant seal pup blood on ı̂les

Kerguelen. The mean, standard deviation (s.d.) and coefficient of variation (CV) are reported.

d13C d15N

year n mean (‰) s.d. (‰) CV (%) mean (‰) s.d. (‰) CV (%)

2006 193 221.2 0.9 4.2 11.4 0.4 3.6
2007 57 220.9 0.9 4.3 11.1 0.4 3.9
2008 202 220.7 0.8 3.8 11.4 0.5 4.1
2009 234 221.3 0.9 4.1 11.4 0.5 4.0

2006–2009 686 221.1 0.9 4.2 11.4 0.5 4.0

Table 3. Posterior predictive checks (PPCs) of the fitted

models (GLMM, generalized linear mixed model; HMM,
hierarchical mixture model without environmental
covariates; HMMChla, hierarchical mixture model with
chlorophyll a covariate; HMMChla, SIE , hierarchical mixture

model with chlorophyll a and sea ice extent covariates).
PPCs are based on 1000 repetitions of the dataset.
Reported p-values correspond to Pr(Trep . Tobs), where T is
the chosen statistic, either the minimum, maximum or
kurtosis of the weaning mass distribution. Extreme p-values

(i.e. close to 0 or 1) betray misfit, while p-values around 0.5
indicate a good fit. A naive coefficient of determination R2

for the whole model (not just for the year level) is also
reported. The selected model is in bold.

statistic GLMM HMM HMMChla HMMChla SIE

minimum 0.45 0.42 0.48 0.46
maximum 0.67 0.38 0.32 0.25
kurtosis 0.80 0.57 0.53 0.58

R2 0.07 0.31 0.33 0.33
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radiated from the Earth’s surface. Sea ice extent is more readily

available than chlorophyll a concentration in Antarctic waters.

We investigated the influence of the former (extracted over the

zone .608 S to 08 and 1258E; [31]) on weaning mass for pups

whose blood d13 C value was suggestive of an Antarctic

signature (small d13C values). We assessed the relevance of

the chlorophyll a concentration and sea ice extent with a

year-level R2-statistic [32].

(d) Model checking

We assessed model fit with posterior predictive checks [33],

wherein each fitted model is used to predict (hypothetical)

repetitions of the dataset. We then compared an observed

summary statistics (Tobs) with its predicted values (Trep)

and computed a pvalue:

pvalue ¼ PrðTrep . TobsÞ: ð2:5Þ

A pvalue close to 0.5 flags a good fit (Trep � Tobs), while an

extreme pvalue (0 or 1) betrays a major model misfit. We

chose three test-statistics (T ) to assess which data regularities

were captured by the model: minimum, maximum and

kurtosis of the weaning mass distribution.

Model implementation with annotated BUGS code is

detailed in the electronic supplementary material.
3. RESULTS
(a) Stable isotopes

Carbon isotope ratios for pups ranged from 223.9 to

218.8‰ (mean ¼ 221.1‰), while those of nitrogen

ranged from 10.1 to 12.8‰ (mean ¼ 11.4‰). Using

regression coefficients estimated by Ducatez et al. [17],

the mean predicted isotope ratios for females were

221.4+0.1‰ and 10.1+0.1‰ for carbon and nitro-

gen, respectively. Results of stable isotopes analyses are

summarized in table 2 and in electronic supplementary

material, figure S3. Variations in both carbon and nitro-

gen isotope values were small: the absolute coefficient of

variation was less than 5 per cent for both isotopes.

Across years, the distribution of d15N values was very

stable (except for 2007 owing to small sample size; elec-

tronic supplementary material, figure S3). Distributions

of d13C values were comparatively more variable (larger

yearly deviations from the overall median; electronic sup-

plementary material, figure S3) but deviations from the

overall mean were small (,0.5‰).

(b) Model fitting and checking

The GLMM provided a worse fit to the data when com-

pared with all HMMs (table 3 and figure 1c,d ). Graphical

inspection of observed versus predicted values (electronic

supplementary material, figure S4) revealed little, if any,
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predictive power for the GLMM (table 3). In contrast,

modelling weaning mass as a mixture of two Gaussian

distributions accounted for about one-third of the

observed variability (table 3). An HMM, either with or

without an environmental covariate, provided an overall

better fit (table 3). Neither the GLMM nor the HMMs

managed to reproduce satisfactorily the observed maxi-

mum weaning mass: the GLMM tended to overestimate

and the HMMS to underestimate it.

All predictors of group membership in HMMs were

important (figure 2d). Carbon isotopic composition was

a strong predictor of group membership, but in a non-

monotonic way. Pups with either the largest or smallest

blood d13C values were very likely to have a large weaning

mass, compared with pups with an intermediate value.

In contrast, a greater d15N value depressed, in a monotonic

fashion, the probability of a pup to have a large weaning

mass. Finally, weaning date had a modest positive effect:

pups weaned later in the season were also more likely to

have a larger weaning mass. There was no sign-reversal of

coefficients between the GLMM and HMMs. Results

from the HMMs are summarized in table 4.

(c) Environmental covariates

Inclusion of a proxy of global primary production in the

interfrontal zone slighty improved model fit (table 3).

Posterior predictive checks favoured the HMM with

only chlorophyll a concentration at the interfrontal

zone, but estimates from all HMMs were very similar,

except for year-level variances. For small weanlings,



si
ze

0

25

50

d13C

d13C2 d15N d15N2d13C

p

−24 −23 −22 −21 −20 −19

0

0.5

1.0

(a)

10.0 10.5 11.0 11.5 12.0 12.5 13.0

(b)

(c) (d )

si
ze

0

25

50

weaning

weaning date

p

30 Sept 15 Oct 31 Oct 16 Nov

0

0.5

1.0

parameter

−2

−1

0

1

2

3

4

si
ze

 e
ff

ec
t (

ro
bi

t s
ca

le
)

d15N

Figure 2. Graphical representation of the robit regression for group membership predictors of the HMM with environmental
covariate. (a) Carbon and (b) nitrogen isotope values had a significant effect on predicting whether a pup’s weaning mass was
small (p ¼ 0) or large (p ¼ 1). (c) The effect of weaning date was also suggestive, although not statistically significant at the
95% level. (a–c) Histograms of the raw data are depicted above each plot. (d ) Depicts the effect size of the estimated regression

coefficients (on the robit scale). Reported estimates are for standardized variables. The grey envelope corresponds to a 95%
credibility interval, and the black line to the posterior mean.

Maternal strategies in elephant seals M. Authier et al. 2685
chlorophyll a anomaly at the interfrontal zone accounted

for one-third of the variability (figure 3). Antarctic sea ice

extent accounted for 80 per cent of the variability of mass

within large weanlings. Yet, adding this covariate to the

model did not improve model fit judging from posterior

predictive checks (table 4). Reported results are from

the HMM with chlorophyll a anomaly.

(d) Mixture proportions

HMMs with environmental covariates (chlorophyll a only

and chlorophyll a with sea ice extent) separated 29 per

cent ([17 : 40]) of small pups from 71 per cent ([60 :

83]) of large pups (table 3). These proportions were rela-

tively stable across years with 70 ([56 : 84]), 73 ([53 :

88]), 76 ([64 : 86]) and 67 ([53 : 81]) per cent of large

pups in 2006, 2007, 2008 and 2009, respectively.
4. DISCUSSION
(a) Pup weaning mass

Data on weaning mass from southern elephant seal

pups at ı̂les Kerguelen suggested that weanlings were a
Proc. R. Soc. B (2012)
heterogeneous aggregate: about 30 per cent of weanlings

had an average mass of 90 kg, while the remaining 70

per cent had an average mass of 115 kg (table 4). Given

that an extra 5 kg may sustain a fasting pup for 10 days

at sea [19], this difference is biologically significant.

Females foraging at high (inferred from smaller d13C

values) or low (inferred from larger d13C values) latitudes,

had a greater probability of weaning a large pup than

females foraging in the interfrontal zone (figure 2a and

electronic supplementary material, figure S1). This non-

monotonic relationship between a pup’s blood carbon iso-

tope ratio and its probability of a large weaning mass was

surprising. We suspected a priori that the Antarctic strat-

egy, because of the high productivity around Antarctica

[34], was more profitable for females so that the smaller

the d13C value, the greater the probability for a pup to

be large.

Stable isotope values actually suggested that females

foraging in subtropical waters (high d13C values) stored

enough energy to wean a large pup. Although a temperate

species, southern elephant seals may wander in low-

latitude water masses (electronic supplementary material,



Table 4. Results from the mixture model with environmental covariates. The difference in mass between the two groups is

approximately 25 kg. A different ‘random’ year effect was fitted to each group. A ‘statistically significant’ difference between
sex was found among large weanlings only. Reported estimates are for standardized variables: for example, a male in the
second group is on average 4 + 2 kg heavier than a female.

parameter mean s.e. lower bound upper bound

mass1 (kg) 89 4 82 99
group 1: sex (kg) 2 4 25 9
small weanlings syear1 (kg) 4 4 0 11

1 2 p (%) 29 7 17 40

mass2 (kg) 115 4 107 124
group 2: sex (kg) 4 2 1 8
large weanlings syear2 (kg) 7 4 2 16

p (%) 71 7 60 83
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figure S1), but we deem this strategy to be minor: only

one tag-equipped female out of 44 went into sub-tropical

waters (C. Guinet 2010, unpublished data).

Latitude is not the only factor affecting d13C values.

There is also an inshore/offshore gradient in carbon iso-

topes, whereby d13C value is larger in neritic than in

pelagic waters [35,36]. Îles Kerguelen are surrounded

by a large and very productive plateau (bathymetry

,1000 m) [37]. If females were to forage extensively on

this plateau before hauling-out, a surge in the blood

d13C value of their pup would be expected. Females

may be very opportunistic and feed also while transiting

between foraging grounds [12], and particularly, on the

Kerguelen plateau.

The Kerguelen plateau is an important foraging

ground for adult males [8]. Breeding males are hauling-

out before females so that, before pupping, females

could forage on the Kerguelen plateau without competing

with or being harassed by males [38]. Importantly, the

majority of post-moulting tracks of females equipped

with telemetric tags were usually incomplete for the last
Proc. R. Soc. B (2012)
part of the homeward trip. This last part may be reflected

in an increased blood d13C value and could explain the

observed positive relationship between a pup weaning

mass and its blood carbon isotope ratio (see §4c).

Nitrogen isotope ratio negatively correlated with the

probability for a pup to be large. This pattern may suggest

that, within the Southern Ocean food web, lower trophic

level preys (myctophid fish, d15N values e [7.6 : 10.2]‰

[39]) are of higher quality when compared with upper

level ones (squids, d15N values e [10.0 : 10.9]‰ [39]).

Traditional stomach content analyses concluded that

southern elephant seals feed largely on squids [40]. Yet,

these studies are biased by an over-representation of

hard-to-digest items (cephalopod beaks) in the otherwise

empty stomach of a fasting animal. With a stable isotope

analysis, Cherel et al. [39] suggested that adult southern

elephant seals may be feeding mainly on myctophid fish

that represent the bulk of the mesopelagic fish biomass

within the Southern Ocean [41]. Their high fat and

protein contents [42] probably make them more

profitable prey for female southern elephant seals when

compared with squids. A non-exclusive alternative

might be the occurrence of a gradient in d15N values

within the Southern Ocean owing to different baseline

d15N value in inshore [36] or sub-tropical [18] waters.

Pup’s blood d13C and d15N values were modestly corre-

lated. However, there was no statistical support for a

non-monotonic relationship between d15N value and the

probability of a pup to be large at weaning. Thus, d13C

and d15N values are providing complementary infor-

mation. Owing to logistic difficulties associated with

(i) sampling the Southern Ocean and (ii) sampling the

potential prey species of southern elephants seals, we

assumed that differences in d15N values stemmed from

different diets rather than different baselines.

Weaning date, a crude proxy of maternal age [25], cor-

related positively with the probability for a pup to be

large. This relationship was expected as older females

are more experienced and, also being larger, can store

more energy to transfer to their pup. For this interpret-

ation to hold, we assumed that breeding females had a

stable foraging strategy [43,44] and that younger females

used the interfrontal zone as much as older females.
(b) Foraging strategies as maternal effects

Stable isotopes predicted pup weaning mass, and allowed

us to infer maternal foraging strategies. With respect to a



Maternal strategies in elephant seals M. Authier et al. 2687
proxy of primary productivity in the interfontal zone, the

two groups of pups we identified responded differently to

environmental conditions. For a given year, weaning mass

correlated positively with greater than average primary pro-

duction in the interfrontal zone (figure 3) for small pups

only. We inferred from the blood carbon isotope ratios of

these pups that their mother would have foraged mainly

in the interfrontal zone. Although we only have 4 years of

data, we may speculate that the interfrontal zone is a safe

bet for females: the observed positive correlation with cur-

rent primary productivity may be interpreted as foraging

success being more predictable there. Many top-predator

species target fronts and mesoscale eddies to forage on

mesopelagic fish whose spatial distribution is much more

predictable close to frontal structures [45]. This decreased

variability in resources of the interfrontal zone may also

mean an increased competition, especially in bad years,

such as in 2008 (figure 3). That there was no sex difference

in mass among small pups in this highly dimorphic species,

may also hint at the interfrontal zone being a safe, though

poor, bet for breeding females.

Females adopting an Antarctic strategy managed to

wean a larger pup (figure 2a). At the beginning of their

post-moulting trip, females foraging in Antarctic waters

started to exploit the Antarctic shelf (defined as the

zone south from the Antarctic slope area with depths

less than 500 m) but progressively retreated with the

expansion of Antarctic sea ice [46]. Females stayed in

the marginal sea-ice zone, and did not venture, as did

males, into the pack ice [46]. This sexual segregation

may result from distinct sex-specific constraints: females

cannot afford to be blocked within the pack ice as they

need to give birth on land. Antarctic foraging may thus

be riskier for a female as she has to travel further away

from ı̂les Kerguelen, and her success will depend on Ant-

arctic sea ice extent as she sticks to the marginal sea-ice

zone. That females foraging at high latitudes still mana-

ged to wean a large pup may be testimony to a risky, yet

very profitable, strategy.

Survival rates and breeding probabilities in relation

to foraging strategies are to our knowledge unavailable, but

adding stable isotope values as covariates in mark-capture-

recapture analyses may help assessing the long-term

life-history consequences of foraging strategies in this

species. Burton et al. [47] cautioned that differences in wean-

ing masses observed across colonies of the Southern Ocean

may also be the result of local ‘natural selection due to differ-

ences in the importance of weaning mass for subsequent

survival’. Yet, that we found such differences within a single

colony begs an explanation.

The Kerguelen population of breeding southern

elephant seal females crashed during the 1960–1980s

[48]. Causes behind this decline are still unclear [49],

although the hypothesis of an ecosystem regime shift affect-

ing the Southern Ocean and impacting many species of

upper marine predators is favoured [49,50]. Our results

are consistent with this hypothesis: if foraging in the Antarc-

tic zone allowed females to wean high-quality pups, a

depressed biological productivity [50] would have decreased

the larger fitness pay-offs enjoyed by those females when

compared with others. As a result, all females would wean

smaller pups with dimmer prospects of post-weaning survi-

val. The large population decrease on ı̂les Kerguelen could

have stemmed from a small juvenile recruitment rate [51].
Proc. R. Soc. B (2012)
(c) Current limitations

Our data are largely observational by nature: pups were

sampled at random yet knowledge of their mother’s fora-

ging strategy was missing. Accordingly, we conceptualized

foraging strategy as missing data that we predicted from

stable isotope values. Foraging strategy itself cannot be

controlled for: it is not possible to assign pups to different

‘treatments’ (maternal foraging strategies) before sampling

them. We acknowledge that strong causal claims derived

from observational data are usually not warranted and

some interpretations are speculative.

Latitude affects d13C values in the Southern Ocean,

but is not the only factor. We strongly suspect that

southern elephant seal females may be feeding on the

Kerguelen plateau prior to hauling-out, in which case

the blood d13C value of their pup could not be indicative

of where they may have fed before reaching the Kerguelen

peri-insular shelf. The probability for a pup to be large

upon weaning reached a nadir of 0.5 (figure 2a), which

translates as the maximum uncertainty possible. This

nadir was observed for a carbon isotope value of pup

blood of roughly 222‰, suggestive of a polar frontal sig-

nature. The group of large pups is most likely itself

heterogeneous, aggregating pups whose mother foraged

either (i) into the marginal Antarctic sea-ice zone or

(ii) elsewhere but fed extensively on the plateau on the

homeward trip to ı̂les Kerguelen. Bio-logging studies

and our isotopic investigation did not yield congruent

proportions for the a priori strategies we considered

(Antarctic versus interfrontal). This is unsurprising as

females may be feeding on the homeward trip [12].

Using blood isotopic data from 26 seals that were

sampled both upon tag application and retrieval, we

found that carbon isotope values were strongly correlated

with the mean latitude of a female’s foraging trip [52].

Further analysis revealed that blood turn-over rate was

at least four months [52]. Thus, blood carbon isotope

ratio may in part reflect opportunistic feeding on the

Kerguelen plateau, but seems nevertheless to reflect the

whole foraging trip of females.

Our data encompassed only 4 years. We uncovered a

small correlation between small weanlings and a proxy of

productivity in the interfrontal zone. This correlation is

biologically plausible both in sign and in effect size:

southern elephant seals do not feed on chlorophyll, so

a large effect would be unsound. Owing to data unavaila-

bility on chlorophyll a concentration around Antarctica,

we assessed the effect of sea ice extent on the weaning

mass of large pups and found a suspiciously large corre-

lation. While the relationship is plausible [53], the effect

size is probably an overestimate arising from the short

time series we currently have, as corroborated by posterior

predictive checks (table 3). Inclusion of proxy of pro-

ductivity did slightly improve our HMMs (table 3). That

the maximum weaning mass is underestimated suggests

that an important predictor for large pups is still missing.

Even a reasonably complex model only accounted for

one-third of the observed variability in weaning mass, a

figure typical of an observational study in ecology [54].
(d) A paradoxical result?

Nevertheless, a glance at figure 2a suggests a paradox: high

and low d13C values predicted with certainty a pup to be a
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large weanling. Yet, only 1 per cent of pups had a carbon

signature lower than 223‰, suggestive of a true Antarctic

maternal strategy. Likewise, only 3 per cent of pups had a

carbon isotope ratio higher than 219.5‰, which we specu-

lated reflects extensive feeding on the Kerguelen plateau. If

both foraging in Antarctic oceanic waters and on the

Kerguelen plateau are so profitable, why do most females

still bother to forage in the interfrontal zone [8,55]?

Our analysis thus seems rather at odds with observed

patterns from bio-logging studies as we identified two

groups, one of which encompassed pups whose mother for-

aged in the interfrontal zone. These small pups represented

about 30 per cent of our sample, which is not consistent

with an estimated 73 per cent of females foraging in the

interfrontal zone. However, the group of large pups we

identified, probably being heterogeneous, may include

pups whose mother foraged in the interfrontal zone and

on the Kerguelen plateau. Our analysis suggested that the

small pups were more likely to be from females that foraged

exclusively in the interfrontal zone, but this relationship was

not deterministic (figure 2a).

The paucity of signatures from the Kerguelen plateau

also begs the question as to why adult males used it so

much and females so little [8]. Predation by killer whales

(Orcinus orca) or sleeper sharks (Somniosus antarcticus,

[56]) may deter females from foraging on the Kerguelen

plateau. Still, such predation may only be marginal and

very difficult to evidence directly. Male harassment may

also explain this pattern [38]. Isotopic analysis of archival

tissues, such as whiskers or teeth, may prove useful to

shed light on the ontogeny of this putative sexual segre-

gation, a pattern documented in other seal species [57]

and between juveniles of both sexes and adult females in

southern elephant seals [58].
5. CONCLUSIONS
Southern elephant seals are astonishing swimmers and

divers [7,8], turning the study of their foraging behaviour

into a challenge. Using stable isotopes and a mixture

modelling approach, we investigated maternal effects on

offspring mass. Our analysis may suggest an important

role for maternal foraging strategies in shaping population

trends on ı̂les Kerguelen [51]. Some evidence suggests

that southern elephant seal females are faithful to their

foraging grounds [43]. The relatively stable mixture pro-

portions across years observed in this study could reflect

a stable commitment of females to a foraging strategy.

Yet, this may have adverse fitness consequences in both

the short- and long-term. Females committed to a

foraging strategy in the interfrontal zone may never con-

tribute to the next generation, having weaned only small

pups. This then begs the question of the ontogeny of fora-

ging behaviour, which the relatively short integration time

of blood precludes to address. In contrast, stable isotope

analyses of metabolic inert tissues, such as teeth

[44,59,60], may provide further insight into the ecology

of southern elephant seals.
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